10 research outputs found
Internal wave pressure, velocity, and energy flux from density perturbations
Determination of energy transport is crucial for understanding the energy
budget and fluid circulation in density varying fluids such as the ocean and
the atmosphere. However, it is rarely possible to determine the energy flux
field , which requires simultaneous measurements of
the pressure and velocity perturbation fields, and . We present
a method for obtaining the instantaneous from density
perturbations alone: a Green's function-based calculation yields , and
is obtained by integrating the continuity equation and the
incompressibility condition. We validate our method with results from
Navier-Stokes simulations: the Green's function method is applied to the
density perturbation field from the simulations, and the result for
is found to agree typically to within with
computed directly using and from the Navier-Stokes
simulation. We also apply the Green's function method to density perturbation
data from laboratory schlieren measurements of internal waves in a stratified
fluid, and the result for agrees to within with results from
Navier-Stokes simulations. Our method for determining the instantaneous
velocity, pressure, and energy flux fields applies to any system described by a
linear approximation of the density perturbation field, e.g., to small
amplitude lee waves and propagating vertical modes. The method can be applied
using our Matlab graphical user interface EnergyFlux
Self-Propulsion of Immersed Objects via Natural Convection
Natural convection of a fluid due to a heated or cooled boundary has been studied within a myriad of different contexts due to the prevalence of the phenomenon in environmental and engineered systems. It has, however, hitherto gone unrecognized that boundary-induced natural convection can propel immersed objects. We experimentally investigate the motion of a wedge-shaped object, immersed within a two-layer fluid system, due to a heated surface. The wedge resides at the interface between the two fluid layers of different density, and its concomitant motion provides the first demonstration of the phenomenon of propulsion via boundary-induced natural convection. Established theoretical and numerical models are used to rationalize the propulsion speed by virtue of balancing the propulsion force against the appropriate drag force
Urachal cyst and enteric duplication in a pediatric patient
Here we present an unusual case of a 3-year-old male with multiple congenital developmental abnormalities discovered during laparotomy: an urachal cyst and enteric duplication. This combination of anomalies has not been described before. Keywords: Urachal cyst, Enteric duplicatio
Sex, Race, and Geographic Region Influence Clinical Outcomes Following Primary HIV-1 Infection
Background. It is unknown whether sex and race influence clinical outcomes following primary human immunodeficiency virus type 1 (HIV-1) infection