148 research outputs found

    The film business in the United States and Britain during the 1930s

    Get PDF
    Film was a most important product in the lives of the people during the 1930s. This paper sets out to analyse the underlying economic arrangements of the film industries of the U.S. and Britain during the decade in producing and diffusing this commodity-type to the population at large. In doing this, the paper finds a highly competitive industry that was built around showing films that audiences wanted to see, irrespective of the extent of vertical integration. It also examines the nature of the inter-relationship between the two industries and finds an asymmetry between the popularity of British films in the American market and that of American films in the British market. Our explanation for this is that the efforts of British firms on the American market were not sufficiently sustained to make a significant impact on American audiences

    Amplification of thymidylate synthetase in metastatic colorectal cancer patients pretreated with 5-fluorouracil-based chemotherapy

    Get PDF
    Resistance to 5-fluorouracil (5-FU) represents a major contributor to cancer-related mortality in advanced colorectal cancer patients. Genetic variations and expression alterations in genes involved in 5-FU metabolism and effect have been shown to modulate 5-FU sensitivity in vitro, however these alterations do not fully explain clinical resistance to 5-FU-based chemotherapy. To determine if alterations of DNA copy number in genes involved in 5-FU metabolism impacted clinical resistance to 5-FU-based chemotherapy, we assessed thymidylate synthetase (TYMS) and thymidine phosphorylase (TYMP) copy number in colorectal liver metastases. DNA copy number of TYMS and TYMP was evaluated using real time quantitative PCR in frozen colorectal liver metastases procured from 62 patients who were pretreated with 5-FU-based chemotherapy prior to surgical resection (5-FU exposed) and from 51 patients who received no pretreatment (unexposed). Gain of TYMS DNA copy number was observed in 18% of the 5-FU exposed metastases, while only 4% of the unexposed metastases exhibited TYMS copy gain (p=0.036). No significant differences were noted in TYMP copy number alterations between 5-FU exposed and unexposed metastases. Median survival time was similar in 5-FU exposed patients with metastases containing TYMS amplification and those with no amplification. However, TYMS amplification was associated with shorter median survival in patients receiving post-resection chemotherapy (hazard ratio = 2.7, 95% confidence interval = 1.1 to 6.6; p=0.027). These results suggest amplification of TYMS amplification as a putative mechanism for clinical resistance to 5-FU-based chemotherapy and may have important ramifications for the post-resection chemotherapy choices for metastatic colorectal cancer

    Antifungal Testing and High-Throughput Screening of Compound Library against Geomyces destructans, the Etiologic Agent of Geomycosis (WNS) in Bats

    Get PDF
    Bats in the northeastern U.S. are affected by geomycosis caused by the fungus Geomyces destructans (Gd). This infection is commonly referred to as White Nose Syndrome (WNS). Over a million hibernating bats have died since the fungus was first discovered in 2006 in a cave near Albany, New York. A population viability analysis conducted on little brown bats (Myotis lucifugus), one of six bat species infected with Gd, suggests regional extinction of this species within 20 years. The fungus Gd is a psychrophile (“cold loving”), but nothing is known about how it thrives at low temperatures and what pathogenic attributes allow it to infect bats. This study aimed to determine if currently available antifungal drugs and biocides are effective against Gd. We tested five Gd strains for their susceptibility to antifungal drugs and high-throughput screened (HTS) one representative strain with SpectrumPlus compound library containing 1,920 compounds. The results indicated that Gd is susceptible to a number of antifungal drugs at concentrations similar to the susceptibility range of human pathogenic fungi. Strains of Gd were susceptible to amphotericin B, fluconazole, itraconazole, ketoconazole and voriconazole. In contrast, very high MICs (minimum inhibitory concentrations) of flucytosine and echinocandins were needed for growth inhibition, which were suggestive of fungal resistance to these drugs. Of the1,920 compounds in the library, a few caused 50% - to greater than 90% inhibition of Gd growth. A number of azole antifungals, a fungicide, and some biocides caused prominent growth inhibition. Our results could provide a theoretical basis for future strategies aimed at the rehabilitation of most affected bat species and for decontamination of Gd in the cave environment

    Bivalent-Like Chromatin Markers Are Predictive for Transcription Start Site Distribution in Human

    Get PDF
    Deep sequencing of 5′ capped transcripts has revealed a variety of transcription initiation patterns, from narrow, focused promoters to wide, broad promoters. Attempts have already been made to model empirically classified patterns, but virtually no quantitative models for transcription initiation have been reported. Even though both genetic and epigenetic elements have been associated with such patterns, the organization of regulatory elements is largely unknown. Here, linear regression models were derived from a pool of regulatory elements, including genomic DNA features, nucleosome organization, and histone modifications, to predict the distribution of transcription start sites (TSS). Importantly, models including both active and repressive histone modification markers, e.g. H3K4me3 and H4K20me1, were consistently found to be much more predictive than models with only single-type histone modification markers, indicating the possibility of “bivalent-like” epigenetic control of transcription initiation. The nucleosome positions are proposed to be coded in the active component of such bivalent-like histone modification markers. Finally, we demonstrated that models trained on one cell type could successfully predict TSS distribution in other cell types, suggesting that these models may have a broader application range

    How can chiropractic become a respected mainstream profession? The example of podiatry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chiropractic profession has succeeded to remain in existence for over 110 years despite the fact that many other professions which had their start at around the same time as chiropractic have disappeared. Despite chiropractic's longevity, the profession has not succeeded in establishing cultural authority and respect within mainstream society, and its market share is dwindling. In the meantime, the podiatric medical profession, during approximately the same time period, has been far more successful in developing itself into a respected profession that is well integrated into mainstream health care and society.</p> <p>Objective</p> <p>To present a perspective on the current state of the chiropractic profession and to make recommendations as to how the profession can look to the podiatric medical profession as a model for how a non-allopathic healthcare profession can establish mainstream integration and cultural authority.</p> <p>Discussion</p> <p>There are several key areas in which the podiatric medical profession has succeeded and in which the chiropractic profession has not. The authors contend that it is in these key areas that changes must be made in order for our profession to overcome its shrinking market share and its present low status amongst healthcare professions. These areas include public health, education, identity and professionalism.</p> <p>Conclusion</p> <p>The chiropractic profession has great promise in terms of its potential contribution to society and the potential for its members to realize the benefits that come from being involved in a mainstream, respected and highly utilized professional group. However, there are several changes that must be made within the profession if it is going to fulfill this promise. Several lessons can be learned from the podiatric medical profession in this effort.</p

    A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila

    Get PDF
    Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells

    Myocardial energy depletion and dynamic systolic dysfunction in hypertrophic cardiomyopathy

    Get PDF
    Evidence indicates that anatomical and physiological phenotypes of hypertrophic cardiomyopathy (HCM) stem from genetically mediated, inefficient cardiomyocyte energy utilization, and subsequent cellular energy depletion. However, HCM often presents clinically with normal left ventricular (LV) systolic function or hyperkinesia. If energy inefficiency is a feature of HCM, why is it not manifest as resting LV systolic dysfunction? In this Perspectives article, we focus on an idiosyncratic form of reversible systolic dysfunction provoked by LV obstruction that we have previously termed the 'lobster claw abnormality' — a mid-systolic drop in LV Doppler ejection velocities. In obstructive HCM, this drop explains the mid-systolic closure of the aortic valve, the bifid aortic pressure trace, and why patients cannot increase stroke volume with exercise. This phenomenon is characteristic of a broader phenomenon in HCM that we have termed dynamic systolic dysfunction. It underlies the development of apical aneurysms, and rare occurrence of cardiogenic shock after obstruction. We posit that dynamic systolic dysfunction is a manifestation of inefficient cardiomyocyte energy utilization. Systolic dysfunction is clinically inapparent at rest; however, it becomes overt through the mechanism of afterload mismatch when LV outflow obstruction is imposed. Energetic insufficiency is also present in nonobstructive HCM. This paradigm might suggest novel therapies. Other pathways that might be central to HCM, such as myofilament Ca2+ hypersensitivity, and enhanced late Na+ current, are discussed
    corecore