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Abstract. To support the assessments of the Intergovern-
mental Science-Policy Platform on Biodiversity and Ecosys-
tem Services (IPBES), the IPBES Expert Group on Scenar-
ios and Models is carrying out an intercomparison of bio-
diversity and ecosystem services models using harmonized
scenarios (BES-SIM). The goals of BES-SIM are (1) to
project the global impacts of land-use and climate change
on biodiversity and ecosystem services (i.e., nature’s con-
tributions to people) over the coming decades, compared to
the 20th century, using a set of common metrics at multiple
scales, and (2) to identify model uncertainties and research
gaps through the comparisons of projected biodiversity and
ecosystem services across models. BES-SIM uses three sce-
narios combining specific Shared Socio-economic Pathways
(SSPs) and Representative Concentration Pathways (RCPs)
— SSP1xRCP2.6, SSP3xRCP6.0, SSP5SXxRCP8.6 — to explore
a wide range of land-use change and climate change fu-
tures. This paper describes the rationale for scenario selec-
tion, the process of harmonizing input data for land use,
based on the second phase of the Land Use Harmonization
Project (LUH2), and climate, the biodiversity and ecosys-
tem services models used, the core simulations carried out,
the harmonization of the model output metrics, and the treat-
ment of uncertainty. The results of this collaborative mod-
eling project will support the ongoing global assessment of
IPBES, strengthen ties between IPBES and the Intergovern-
mental Panel on Climate Change (IPCC) scenarios and mod-
eling processes, advise the Convention on Biological Diver-
sity (CBD) on its development of a post-2020 strategic plans
and conservation goals, and inform the development of a new
generation of nature-centred scenarios.
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1 Introduction

Understanding how anthropogenic activities impact biodi-
versity and human societies is essential for nature conser-
vation and sustainable development. Land-use and climate
change are widely recognized as two of the main drivers of
future biodiversity change (Hirsch and CBD, 2010; Maxwell
et al., 2016; Sala, 2000; Secretariat of the CBD and UNEP,
2014), with potentially severe impacts on ecosystem services
and ultimately human well-being (Cardinale et al., 2012;
MEA, 2005). Habitat and land-use changes, resulting from
past, present, and future human activities, as well as cli-
mate change, have both immediate and long-term impacts
on biodiversity and ecosystem services (Graham et al., 2017;
Lehsten et al., 2015; Welbergen et al., 2008). Therefore, cur-
rent and future land-use projections are essential elements for
assessing biodiversity and ecosystem change (Titeux et al.,
2016, 2017). Climate change has already been observed to
have direct and indirect impacts on biodiversity and ecosys-
tems, which are projected to intensify by the end of the cen-
tury, with potentially severe consequences for species and
habitats, and, therefore, also for ecosystem functions and ser-
vices (Pecl et al., 2017; Settele et al., 2015).

Global environmental assessments, such as the Millen-
nium Ecosystem Assessment (MEA, 2005), the Global Bio-
diversity Outlooks (GBO), the multiple iterations of the
Global Environmental Outlook (GEO), the Intergovernmen-
tal Panel on Climate Change (IPCC), and other studies have
used scenarios to assess the impact of socio-economic de-
velopment pathways on land use and climate and their con-
sequences for biodiversity and ecosystem services (Jantz et
al., 2015; Pereira et al., 2010). Models are used to quan-
tify the biodiversity and ecosystem services impacts of dif-
ferent scenarios, based on climate and land-use projections
from general circulation models (GCMs) and integrated as-
sessment models (IAMs) (Pereira et al., 2010). These models
include empirical dose-response models, species—area rela-
tionship models, species distribution models and more mech-
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anistic models such as trophic ecosystem models (Pereira
et al., 2010; Akcgakaya et al., 2015). So far, each of these
scenario exercises has been based on a single model or a
small number of biodiversity and ecosystem services mod-
els, and intermodel comparison and uncertainty analysis have
been limited (IPBES, 2016; Leadley et al., 2014). The Ex-
pert Group on Scenarios and Models of the Intergovernmen-
tal Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES) is addressing this gap by carrying out a
biodiversity and ecosystem services model intercomparison
with harmonized scenarios, for which this paper lays out the
protocol.

Over the past 2 decades, IPCC has fostered the develop-
ment of global scenarios to inform climate mitigation and
adaptation policies. The Representative Concentration Path-
ways (RCPs) describe different climate futures based on
greenhouse gas emissions throughout the 21st century (van
Vuuren et al., 2011). These emissions pathways have been
converted into climate projections in the most recent Climate
Model Inter-comparison Project (CMIPS). In parallel, the cli-
mate research community also developed the Shared Socio-
economic Pathways (SSPs), which consist of trajectories of
future human development with different socio-economic
conditions and associated land-use projections (Popp et al.,
2017; Riahi et al., 2017). The SSPs can be combined with
RCP-based climate projections to explore a range of futures
for climate change and land-use change, and they are being
used in a wide range of impact modeling intercomparisons
(Rosenzweig et al., 2017; van Vuuren et al., 2014). There-
fore, the use of the SSP-RCP framework for modeling the
impacts on biodiversity and ecosystem services provides an
outstanding opportunity to build bridges between the climate,
biodiversity and ecosystem services communities; it has been
explicitly recommended as a research priority in the IPBES
assessment on scenarios and models (IPBES, 2016).

Model intercomparisons bring together different commu-
nities of practice for comparable and complementary model-
ing, in order to improve the comprehensiveness of the subject
modeled, and to estimate uncertainties associated with sce-
narios and models (Frieler et al., 2015). In the last decades,
various model intercomparison projects (MIPs) have been
initiated to assess the magnitude and uncertainty of cli-
mate change impacts. For instance, the Inter-Sectoral Im-
pact Model Intercomparison Project (ISI-MIP) was initiated
in 2012 to quantify and synthesize climate change impacts
across sectors and scales (Rosenzweig et al., 2017; Warsza-
wski et al., 2014). The ISI-MIP aims to bridge sectors such as
agriculture, forestry, fisheries, water, energy, and health with
global circulation models, Earth system models (ESMs),
and integrated assessment models for more integrated and
impact-driven modeling and assessment (Frieler et al., 2017).

Here, we present the methodology used to carry out
a BES-SIM in both terrestrial and freshwater ecosystems.
The BES-SIM project addresses the following questions.
(1) What are the projected magnitudes and spatial distribu-
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tion of biodiversity and ecosystem services under a range of
land-use and climate future scenarios? (2) What is the mag-
nitude of the uncertainties associated with the projections ob-
tained from different scenarios and models? Although inde-
pendent of the ISI-MIP, the BES-SIM has been inspired by
ISI-MIP and other intercomparison projects and was initiated
to address the needs of the global assessment of IPBES. We
brought together 10 biodiversity models and six ecosystem
functions and services models to assess impacts of land-use
and climate change scenarios in the coming decades (up to
2070) and to hindcast changes to the last century (to 1900).
The modeling approaches differ in several respects concern-
ing how they treat biodiversity and ecosystem services re-
sponses to land-use and climate changes, including the use
of correlative, deductive, and process-based approaches, and
in how they treat spatial-scale and temporal dynamics. We
assessed different classes of essential biodiversity variables
(EBV5s), including species populations, community compo-
sition, and ecosystem function, as well as a range of mea-
sures on ecosystem services such as food production, pol-
lination, water quantity and quality, climate regulation, soil
protection, and pest control (Pereira et al., 2010; Akcakaya et
al., 2015). This paper provides an overview of the scenarios,
models and metrics used in this intercomparison, and thus
a roadmap for further analyses that is envisaged to be inte-
grated into the first global assessment of the IPBES (Fig. 1).

2 Scenario selection

All the models included in BES-SIM used the same set of
scenarios with particular combinations of SSPs and RCPs.
In the selection of the scenarios, we applied the following
criteria: (1) data on projections should be readily available,
and (2) the total set should cover a broad range of land-
use change and climate change projections. The first crite-
rion entailed the selection of SSP-RCP combinations that
are included in the ScenarioMIP protocol as part of CMIP6
(O’Neill et al., 2016), as harmonized data were available for
these runs and they form the basis of the CMIP climate simu-
lations. The second criterion implied a selection of scenarios
with low and high degrees of climate change and different
land-use scenarios within the ScenarioMIP set. Our final se-
lection was SSP1 with RCP2.6 (moderate land-use pressure
and low level of climate change) (van Vuuren et al., 2017),
SSP3 with RCP6.0 (high land-use pressure and moderately
high level of climate change) (Fujimori et al., 2017), and
SSP5 with RCP8.5 (medium land-use pressure and very high
level of climate change) (Kriegler et al., 2017), thus allow-
ing us to assess a broad range of plausible futures (Table 1).
Further, by combining projections of low and high anthro-
pogenic pressure on land use with low and high levels of cli-
mate change, we can test these drivers’ individual and syner-
gistic impacts on biodiversity and ecosystem services.

Geosci. Model Dev., 11, 4537-4562, 2018
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Input -
harmonized scenarios & data
(sections 2, 3)

Land use

LUH2

(native resolution or GLOBIO
downscaled) for

SSP1, SSP3, SSP5

Climate

ISIMIP2a IPSL-CMS5A-LR
(native resolution or WorldClim
downscaled) or MAGICC* for

RCP2.6, RCP6.0, RCP8.5
*GLOBIO

Others (model-specific)

Species records, habitat affinities,
range maps, vegetation cover,
population density, correlation

Models
(section 4)

Biodiversity

Species-based:

AIM-biodiversity, InSiGHTS, MOL,
BIOMOD?2 (uncertainty analysis)

Community-based.:

c¢SAR-iDiv, cSAR-IIASA-ETH,
BILBI, PREDICTS,

GLOBIO - Aquatic, Terrestrial

Ecosystem-based:
Madingley

Ecosystem functions and services
LPJ-GUESS, LPJ, CABLE (DGVMs),
GLOBIO-ES, InVEST, GLOSP
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Output -
common (or categorized) metrics
(section 5)

Biodiversity

Local, regional and global diversity
Abundance and intactness

Local and global habitat change

Nature’s contributions to people
Pollination

Climate regulation

Water regulation (quantity, quality)
Soil protection

Hazards/extreme events regulation
Pest control

Energy production

Food and feed

Materials

coefficients of pressure drivers, etc.

(see Tables 2, 3, 5 and S1)

Figure 1. Input-models—output flowchart of BES-SIM.

The first scenario (SSP1XxRCP2.6) is characterized by a
relatively “environmentally friendly world” with low popu-
lation growth, high urbanization, relatively low demand for
animal products, and high agricultural productivity. These
factors together lead to a decrease in the land use of around
700 Mha globally over time (mostly pastures). This scenario
is also characterized by low air pollution, as policies are in-
troduced to limit the increase in greenhouse gases in the at-
mosphere, leading to an additional forcing of 2.6 W m~2 be-
fore 2100. The second scenario (SSP3xRCP6.0) is character-
ized by “regional rivalry”, with high population growth, slow
economic development, material-intensive consumption, and
low food demand per capita. Agricultural land intensification
is low, especially due to the very limited transfer of new agri-
cultural technologies to developing countries. This scenario
has minimal land-use change regulation, with a large land
conversion for human-dominated uses, and a relatively high
level of climate change with a radiative forcing of 6.0 W m~>
by 2100. The third scenario (SSPSxRCPS8.5) is a world char-
acterized by “strong economic growth” fuelled by fossil fu-
els, with low population growth, high urbanization, and high
food demand per capita but also high agricultural produc-
tivity. As a result, there is a modest increase in land use.
Air pollution policies are stringent, motivated by local health
concerns. This scenario leads to a very high level of climate
change with a radiative forcing of 8.5 W m~2 by 2100. Full
descriptions of each SSP scenario are provided in Popp et
al. (2017) and Riahi et al. (2017). The SSP scenarios ex-
cluded elements that have interaction effects with climate

Geosci. Model Dev., 11, 4537-4562, 2018

(see Appendix 1 and Table S2)

(see Tables 4, 6, and S3)

change except for SSP1, which focuses on environmental
sustainability. Thus, SSPs describe futures where biodiver-
sity is not affected by climate change to allow for the impor-
tant estimation of the climate change impact on biodiversity
(O’Neill et al., 2014).

3 Input data

A consistent set of land-use and climate data was imple-
mented across the models to the extent possible. All mod-
els in BES-SIM used the newly released Land Use Har-
monization version 2 dataset (LUH2, Hurtt et al., 2018).
For the models that require climate data, we selected the
climate projections of the past, present, and future from
CMIPS/ISIMIP2a (McSweeney and Jones, 2016) and its
downscaled version from the WorldClim (Fick and Hijmans,
2017), as well as MAGICC 6.0 (Meinshausen et al., 2011a,
b) from the IMAGE model for GLOBIO models (Table 2).
A complete list of input datasets and variables used by the
models is documented in Table S1 of the Supplement.

3.1 Land-cover and land-use change data

The land-use scenarios provide an assessment of land-
use dynamics in response to a range of socio-economic
drivers and their consequences for the land system.
The IAMs used for modeling land-use scenarios — IM-
AGE for SSP1/RCP2.6, AIM for SSP3/RCP7.0, and RE-
MIND/MAgPIE for SSP5/RCPS8.5 — include different eco-
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Table 1. Characteristics of the (a) SSP, (b) RCP and (c) SSPxRCP scenarios simulated in BES-SIM (adapted from Moss et al., 2010; O’Neill

et al., 2017; Popp et al., 2017; van Vuuren et al., 2011).

(a) SSP scenarios

SSP1
Sustainability

SSP3
Regional rivalry

SSP5
Fossil-fueled development

Population growth

Urbanization

Equity and social cohesion
Economic growth

International trade and globalization
Land-use regulation

Agricultural productivity

Consumption and diet

Relatively low

High

High

High to medium

Moderate

Strong to avoid environmental
trade-off

High improvements with diffu-
sion of best practices

Low growth in consumption,

Low (OECD countries) to high
(high-fertility countries)

Relatively low

Low High
Low High
Slow High
Strongly constrained High

Limited with continued defor-
estation

Low with slow technology de-
velopment and restricted trade
Resource-intensive  consump-

Medium with slow decline in
deforestation

Highly managed and resource
intensive

Material-intensive  consump-

low meat tion tion, meat-rich diet
Environment Improving Serious degradation Highly successful management
Carbon intensity Low High High
Energy intensity Low High High
Technology development Rapid Slow Rapid
Policy focus Sustainable development Security Development, free market, hu-
man capital
Participation of the land-use sector in  Full Limited Full
mitigation policies
International cooperation for climate No delay Heavy delay Delay
change mitigation
Institution effectiveness Effective Weak Increasingly effective
(b) RCP scenarios RCP2.6 RCP6.0 RCP8.5

Low emissions

Intermediate emissions

High emissions

Radiative forcing

Concentration (p.p.m.)

Peak at 3Wm~2 before 2100
and decline
Peak at 490 CO; equiv. before

Stabilizes without overshoot
pathways to 6 W m™~2 in 2100
850 CO; equiv. (at stabilization

Rising forcing pathways lead-
ing to 8.5Wm™2 in 2100
> 1370 CO; equiv. in 2100

2100 and then declines after 2100)
Methane emission Reduced Stable Rapid increase
Reliance on fossil fuels Decline Heavy Heavy
Energy intensity Low Intermediate High
Climate policies Stringent Very modest to almost none High range of no policies
(¢) SSPXRCP scenarios SSP1xRCP2.6 SSP3xRCP6.0 SSP5xRCP8.5

Highest mitigation

Limited mitigation

No mitigation

Bioenergy

Low

Highest

Lowest

nomic and land-use modules for the translation of narra-
tives into consistent quantitative projections across scenar-
ios (Popp et al., 2017). It is important to note that the used
land-use scenarios, although driven mostly by the SSP story-
lines, were projected to be consistent with the paired RCPs
and include biofuel deployment to mitigate climate change.
The SSP3 is associated with RCP7.0 (SSP3xRCP7.0); how-
ever, climate projections (i.e., time series of precipitation and
temperature) are currently not available for RCP7.0. There-
fore, we chose the closest RCP available, which was RCP6.0,
for the standalone use of climate projections, and chose
SSP3xRCP6.0 for the land-use projections from the LUH2.
In this paper, we refer to this scenario as SSP3xRCP6.0.
The land-use projections from each of the IAMs were
harmonized using the LUH2 methodology. LUH2 was de-

www.geosci-model-dev.net/11/4537/2018/

veloped for CMIP6 and provides a global gridded land-use
dataset comprising estimates of historical land-use change
(850-2015) and future projections (2015-2100), obtained by
integrating and harmonizing land-use history with future pro-
jections of different IAMs (Jungclaus et al., 2017; Lawrence
et al., 2016; O’Neill et al., 2016). Compared to the first ver-
sion of the LUH (Hurtt et al., 2011), LUH2 (Hurtt et al.,
2018) is driven by the latest SSPs, has a higher spatial reso-
lution (0.25 vs 0.50°), more detailed land-use transitions (12
versus 5 possible land-use states), and increased data-driven
constraints (Heinimann et al., 2017; Monfreda et al., 2008).
LUH2 provides over 100 possible transitions per grid cell
per year (e.g., crop rotations, shifting cultivation, agricultural
changes, wood harvest) and various agricultural management
layers (e.g., irrigation, synthetic nitrogen fertilizer, biofuel

Geosci. Model Dev., 11, 4537-4562, 2018
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Table 2. Improvements made in the Land Use Harmonization v2 (LUH2) from LUH v1 (sources: Hurtt et al., 2011, 2018).

LUH vl

LUH v2

Spatial resolution

0.5°

0.25°

Time steps

Annually from 1500 to 2100

Annually from 850 to 2100

Land-use categories

5 categories

12 categories

— Primary — Forested primary land (primf)
— Secondary — Non-forested primary land (primn)
— Pasture — Potentially forested secondary land (secdf)
— Urban — Potentially non-forested secondary land (secdn)
— Crop — Managed pasture (pastr)
— Rangeland (range)
— Urban land (urban)
— C3 annual crops (c3ann)
— C3 perennial crops (c3per)
— C4 annual crops (c4ann)
— C4 perennial crops (c4per)
— Cj3 nitrogen-fixing crops (c3nfx)
Future RCPs (4) SSPs (6)
—RCP2.6 — SSP1-RCP2.6
—RCP4.5 — SSP4-RCP3.4
—RCP6.0 — SSP2-RCP4.5
—RCP8.5 — SSP4-RCP6.0
—SSP3-RCP7.0
— SSP5-RCP8.5

Land-use transitions < 20 per grid cell per year

> 100 per grid cell per year

Improvements

— New shifting cultivation algorithm

— Landsat forest/non-forest change constraint

— Expanded diagnostic package

— New historical wood harvest reconstruction

— Agricultural management layers: irrigation, fertilizer, biofuel crops,
wood harvest product split, crop rotations, flooded (rice)

crops), all with annual time steps. The 12 land states include
the separation of primary and secondary natural vegetation
into forest and non-forest sub-types, pasture into managed
pasture and rangeland, and cropland into multiple crop func-
tional types (C3 annual, C3 perennial, C4 annual, C4 peren-
nial, and N-fixing crops) (Table 2).

For biodiversity and ecosystem services models that rely
on discrete, high-resolution land-use data (i.e., the GLOBIO
model for terrestrial biodiversity and the INVEST model), the
fractional LUH2 data were downscaled to discrete land-use
grids (10 arcsec resolution; ~ 300 m) with the land-use al-
location routine of the GLOBIO4 model. To that end, ur-
ban, cropland, pasture, rangeland, and forestry areas from
LUH2 were first aggregated across the LUH2 grid cells to
the regional level of the IMAGE model, with forestry con-
sisting of the wood harvest from forested cells and non-
forested cells with primary vegetation. Next, the totals per
region were allocated to 300 m cells with the GLOBIO4 land
allocation routine, with specific suitability layers for urban,
cropland, pasture, rangeland, and forestry areas. After allo-

Geosci. Model Dev., 11, 4537-4562, 2018

cation, cropland was reclassified into three intensity classes
(low, medium, high) based on the amount of fertilizer used
per grid cell. More details on the downscaling procedure are
provided in Supplementary Methods in the Supplement.

3.2 Climate data

GCMs are based on fundamental physical processes (e.g.,
conservation of energy, mass, and momentum and their inter-
action with the climate system) and simulate climate patterns
of temperature, precipitation, and extreme events on a large
scale (Frischknecht et al., 2016). Some GCMs now incor-
porate elements of Earth’s climate system (e.g., atmospheric
chemistry, soil and vegetation, land and sea ice, carbon cy-
cle) in Earth system models (GCMs with an interactive car-
bon cycle), and have dynamically downscaled models with
higher-resolution data in regional climate models (RCMs).
A large number of climate datasets are available today
from multiple GCMs, but not all GCMs provide projections
for all RCPs. In BES-SIM, some models require continuous

www.geosci-model-dev.net/11/4537/2018/
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Table 3. Sources of land-use and climate input data in BES-SIM.
BES-SIM model Land-use data ‘ Climate data
LUH2 v2.0 native =~ LUH2 v2.0 downscaled | ISIMIP2a IPSL-CM5A-LR  ISIMIP2a  IPSL-CMSA-LR IMAGE!
resolution 0.25°  (GLOBIO) 300m | native resolution 0.5° downscaled (WorldClim) 1km (MAGICC 6.0)

Species-based models of biodiversity

AIM-biodiversity *
InSiGHTS *
MOL *

Community-based models of biodiversity

cSAR-iDiv
cSAR-ITASA-ETH
BILBI

PREDICTS
GLOBIO - Aquatic
GLOBIO4 — Terrestrial *

Ecosystems-based model of biodiversity

Madingley *

Models of ecosystem functions and services

LPJ-GUESS
LPJ

CABLE
GLOBIO-ES
InVEST *
GLOSP *

* ¥ ¥ ¥

1 All GLOBIO models use MAGICC climate data from the IMAGE model.

time-series data. In order to harmonize the climate data to be
used across biodiversity and ecosystem services models, we
chose the bias-corrected climate projections from CMIPS,
which were also adopted by ISIMIP2a (Hempel et al., 2013)
or their downscaled versions available from WorldClim (Fick
and Hijmans, 2017). Most analyses were carried out using
a single GCM, the IPSL-CMS5A-LR (Dufresne et al., 2013),
since it provides mid-range projections across the five GCMs
(HadGEM2-ESGFDL-ESM2M, IPSL-CM5A-LR, MIROC-
ESM-CHEM, and NorESM1-M) in ISIMIP2a (Warszawski
et al., 2014).

The ISIMIP2a output from the IPSL-CMSA-LR pro-
vides 12 climate variables on daily time steps from the
pre-industrial period 1951 to 2099 at 0.5° resolution (Mc-
Sweeney and Jones, 2016), of which only a subset was
used in this exercise (Table S1). The WorldClim downscaled
dataset has 19 bioclimatic variables derived from monthly
temperature and rainfall from 1960 to 1990 with multi-year
averages for specific points in time (e.g., 2050, 2070) up to
2070. Six models in BES-SIM used the ISIMIP2a dataset and
three models used the WorldClim dataset. An exception was
made for the GLOBIO models, which used MAGICC 6.0
climate data (Meinshausen et al., 2011a, b) in the IMAGE
model framework (Stehfest et al., 2014), to which GLOBIO
is tightly connected (Table 3). The variables used from the
climate dataset in each model are listed in Table S1.

www.geosci-model-dev.net/11/4537/2018/

3.3 Other input data

In addition to the land-use and climate data, most models
use additional input data to run their future and past sim-
ulations to estimate changes in biodiversity and ecosystem
services. For instance, species occurrence data are an inte-
gral part of modeling in 6 of 10 biodiversity models, while 2
models rely on estimates of habitat affinity coefficients (e.g.,
reductions in species richness in a modified habitat relative
to the pristine habitat) from the PREDICTS model (Newbold
etal., 2016; Purvis et al., 2018). In three dynamic global veg-
etation models (DGVMs), atmospheric CO, concentrations,
irrigated fraction, and wood harvest estimates are commonly
used, while two ecosystem services models rely on topogra-
phy and soil-type data for soil erosion measures. A full list
of model-specific input data is given in Table S1.

4 Models in BES-SIM

Biodiversity and ecosystem services models at the global
scale have increased in number and improved consider-
ably over the last decade, especially with the availability
of biodiversity data and advancement in statistical model-
ing tools and methods (IPBES, 2016). In order for a model
to be included in BES-SIM, it had either to be published
in a peer-reviewed journal or adopt published methodolo-
gies, with modifications made to modeling sufficiently docu-
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mented and accessible for review (Table S2). Sixteen mod-
els were included in BES-SIM (Appendix A, details on
modeling methods in Table S2). These models were mainly
grouped into four classes: species-based, community-based,
and ecosystem-based models of biodiversity, and models of
ecosystem functions and services. The methodological ap-
proaches, the taxonomic or functional groups, the spatial
resolution and the output metrics differ across models (Ap-
pendix A). All 16 models are spatially explicit, with 15 of
them using land-use data as an input and 13 of them requiring
climate data. We also used one model, BIOMOD?2 (Thuiller,
2004; Thuiller et al., 2009), to assess the uncertainty of cli-
mate range projections without the use of land-use data.

4.1 Species-based models of biodiversity

Species-based models aim to predict historical, current, and
future potential distribution and abundance of individual
species. These can be developed using correlative meth-
ods based on species observation and environmental data
(Aguirre-Gutiérrez et al., 2013; Guisan and Thuiller, 2005;
Guisan and Zimmermann, 2000) as well as expert-based so-
Iutions where data limitations exist (Rondinini et al., 2011).
Depending on the methodologies employed and the ecologi-
cal aspects modeled, they can be known as species distribu-
tion models, ecological niche models, bioclimatic envelope
models, and habitat suitability models (Elith and Leathwick,
2009). Such species-based models have been used to forecast
environmental impacts on species distribution and status.

In BES-SIM, four species-based models were included:
AIM-biodiversity (Ohashi et al., 2018), InSiGHTS (Ron-
dinini et al., 2011; Visconti et al., 2016), MOL (Jetz et al.,
2007; Merow et al., 2013), and BIOMOD2 (Appendix A,
Table S2). The first three models project individual species
distributions across a large number of species by combin-
ing projections of climate impacts on species ranges with
projections of land-use impacts on species ranges. AIM-
biodiversity uses Global Biodiversity Information Facility
(GBIF) species occurrence data on 9025 species across five
taxonomic groups (amphibians, birds, mammals, plants, rep-
tiles) to train statistical models for current land use and
climate to project future species distributions. InSiGHTS
uses species’ presence records from regular sampling within
species’ ranges and pseudo-absence records from regular
sampling outside of species’ ranges on 2827 species of
mammals. MOL uses species land-cover preference infor-
mation and species presence and absence predictions on
20833 species of amphibians, birds, and mammals. In-
SiGHTS and MOL rely on IUCN’s range maps as a base-
line, which are developed based on expert knowledge of
the species habitat preferences and areas of non-occurrence
(Fourcade, 2016). Both models use a hierarchical approach
with two steps: first, a statistical model trained on current
species ranges is used to assess future climate suitability
within species ranges; second, a model detailing associations
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between species and habitat types based on expert opinion is
used to assess the impacts of land use in the climate-suitable
portion of the species range. BIOMOD?2 is an R modeling
package that runs up to nine different algorithms (e.g., ran-
dom forests, logistic regression) of species distribution mod-
els using the same data and the same framework. BIOMOD2
included three taxonomic groups (amphibians, birds, mam-
mals) (see Sect. 7 “Uncertainties”).

4.2 Community-based models of biodiversity

Community-based models predict the assemblage of species
using environmental data and assess changes in commu-
nity composition through species presence and abundance
(D’Amen et al., 2017). Output variables of community-based
models include assemblage-level metrics, such as the pro-
portion of species persisting in a landscape, mean species
abundances (number of individuals per species), and compo-
sitional similarity (pairwise comparison at the species level)
relative to a baseline (typically corresponding to a pristine
landscape).

Three models in BES-SIM - cSAR-iDiv (Martins and
Pereira, 2017), cSAR-IIASA-ETH (Chaudhary et al., 2015),
and BILBI (Hoskins et al., 2018; Ferrier et al., 2004, 2007)
— rely on versions of the species—area relationship (SAR)
to estimate the proportion of species persisting in human-
modified habitats relative to native habitat (i.e., the number
of species in the modified landscape divided by the number
of species in the native habitat). In its classical form, the SAR
describes the relationship between the area of native habi-
tat and the number of species found within that area. The
countryside SAR (cSAR) builds on the classic SAR but ac-
counts for the differential use of both human-modified and
native habitats by different functional species groups. Both
the cSAR-iDiv and cSAR-ITASA-ETH models use habitat
affinities (proportion of area of a habitat type that can be
effectively used by a species group) to weight the areas of
the different habitats in a landscape. The habitat affinities
are calibrated from field studies by calculating the change
in species richness in a modified habitat relative to the native
habitat. The habitat affinities of the cSAR-iDiv model are es-
timated from the PREDICTS dataset (Hudson et al., 2017,
2016) while the habitat affinities of cSAR-ITASA-ETH come
from a previously published database of studies (Chaudhary
et al., 2015). The cSAR-iDiv model considers 9853 species
for one taxonomic group (birds) in two functional groups
(forest species and non-forest species) while cSAR-IIASA-
ETH considers a total of 1 911 583 species for five taxonomic
groups (amphibians, birds, mammals, plants, reptiles) by
ecoregions (these are, however, not 1911 583 unique species
as a species present in two ecoregions will be counted twice).
BILBI couples application of the species—area relationship
with correlative statistical modeling of continuous spatial
turnover patterns in the species composition of communi-
ties as a function of environmental variation. Through space-
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for-time projection of compositional turnover (i.e., change in
species), this coupled model enables the effects of both cli-
mate change and habitat modification to be considered in es-
timating the proportion of species persisting for 254 145 vas-
cular plant species globally.

Three community-based models — PREDICTS, GLOBIO
Aquatic (Alkemade et al., 2009; Janse et al., 2015), and
GLOBIO Terrestrial (Alkemade et al., 2009; Schipper et al.,
2016) — estimate a range of assemblage-level metrics based
on empirical dose—response relationships between pressure
variables (e.g., land-use change and climate change) and bio-
diversity variables (e.g., species richness or mean species
abundance) (Appendix A). PREDICTS uses a hierarchical
mixed-effects model to assess how a range of site-level
biodiversity metrics respond to land use and related pres-
sures, using a global database of 767 studies, including over
32000 sites and 51 000 species from a wide range of taxo-
nomic groups (Hudson et al., 2017, 2016). GLOBIO is an
integrative modeling framework for aquatic and terrestrial
biodiversity that builds upon correlative relationships be-
tween biodiversity intactness and pressure variables, estab-
lished with meta-analyses of biodiversity data retrieved from
the literature on a wide range of taxonomic groups.

4.3 Ecosystem-based model of biodiversity

The Madingley model (Harfoot et al., 2014b) is a mechanis-
tic individual-based model of ecosystem structure and func-
tion. It encodes a set of fundamental ecological principles to
model how individual heterotrophic organisms with a body
size greater than 10 pg that feed on other living organisms in-
teract with each other and with their environment. The model
is general in the sense that it applies the same set of princi-
ples for any ecosystem to which it is applied, and is applica-
ble across scales from local to global. To capture the ecology
of all organisms, the model adopts a functional trait-based
approach with organisms characterized by a set of categor-
ical traits (feeding mode, metabolic pathway, reproductive
strategy, and movement ability), as well as continuous traits
(juvenile, adult, and current body mass). Properties of eco-
logical communities emerge from the interactions between
organisms, influenced by their environment. The functional
diversity of these ecological communities can be calculated,
as well as the dissimilarity over space or time between com-
munities (Table S2). Madingley uses three functional groups
(trophic levels, metabolic pathways, and reproductive strate-
gies).

4.4 Models of ecosystem functions and services

In order to measure ecosystem functions and services, three
DGVM models — LPJ-GUESS (Lindeskog et al., 2013; Olin
et al., 2015; Smith et al., 2014), LPJ (Poulter et al., 2011;
Sitch et al., 2003), and CABLE (Haverd et al., 2018) — and
three ecosystem services models — InVEST (Sharp et al.,
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2016), GLOBIO (Alkemade et al., 2009, 2014; Schulp et al.,
2012), and GLOSP (Guerra et al., 2016) — were engaged in
this model intercomparison. The DGVMs are process-based
models that simulate responses of potential natural vege-
tation and associated biogeochemical and hydrological cy-
cles to changes in climate and atmospheric CO, and distur-
bance regimes (Prentice et al., 2007). Processes in anthro-
pogenically managed land (cropland, pastures, and managed
forests) are also increasingly being accounted for (Arneth et
al., 2017). DGVMs can project changes in future ecosystem
states (e.g., type of plant functional trait (PFT), relative dis-
tribution of each PFT, biomass, height, leaf area index, water
stress), ecosystem functioning (e.g., moderation of climate,
processing/filtering of waste and toxicants, provision of food
and medicines, modulation of productivity, decomposition,
biogeochemical and nutrient flows, energy, matter, water),
and habitat structure (i.e., amount, composition, and arrange-
ment of physical matter that describe an ecosystem within
a defined location and time); however, DGVMs are limited
in capturing species-level biodiversity change because veg-
etation is represented by a small number of plant functional
types (PFTs) (Bellard et al., 2012; Thuiller et al., 2013).

The InVEST suite includes 18 models that map and mea-
sure the flow and value of ecosystem goods and services
across a landscape or a seascape. They are based on biophys-
ical processes of the structure and function of ecosystems,
and they account for both supply and demand. The GLO-
BIO model estimates ecosystem services based on outputs
from the IMAGE model (Stehfest et al., 2014), the PCRas-
ter Global Water Balance global hydrological model (PCR-
GLOBWSB, van Beek et al., 2011), and the Global Nutrient
Model (Beusen et al., 2015). It is based on correlative re-
lationships between ecosystem functions and services, and
particular environmental variables (mainly land use), quanti-
fied based on literature data. Finally, GLOSP is a 2-D model
that estimates the level of global and local soil erosion, and
protection using the Universal Soil Loss Equation.

5 Output metrics

Given the diversity of modeling approaches, a wide range
of biodiversity and ecosystem services metrics can be pro-
duced by the model set (Table S2). For the biodiversity model
intercomparison analysis, three main categories of common
output metrics were reported over time: extinctions as ab-
solute change in species richness (N, number of species)
or as proportional species richness change (P, % species),
abundance-based intactness (I, % intactness), and mean pro-
portional change in suitable habitat extent across species (H,
% suitable habitat) (Table 4). These metrics were calculated
at two scales: local or grid cell (« scale, i.e., the value of the
metric within the smallest spatial unit of BES-SIM which
is the grid cell) and regional or global scale (y scale, i.e.,
the value of the metric for a set of grid cells comprising a
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Table 4. Selected output indicators for intercomparison of biodiversity and ecosystems models. For species diversity change, both propor-
tional changes in species richness (P) and absolute changes (N) are reported. Some models project the o metrics at the level of the grid cell
(e.g., species-based and SAR based community models) while others average the local values of the metrics across the grid cell weighted by

the area of the different habitats in the cell (e.g., PREDICTS, GLOBIO).

BES-SIM Species diversity change Species diversity change Abundance-based intactness ~ Mean habitat extent change

model at local scale at subregional and global scale at local scale at local and global scale
(Pa and Na) (Py and Ny) (Ia) (Ha and Hy)

Species-based models of biodiversity

AIM-biodiversity * * *

InSiGHTS * * *

MOL kS * *

Community-based models of biodiversity

cSAR-iDiv * *

cSAR-IIASA-ETH * *

BILBI *

PREDICTS *
GLOBIO - Aquatic
GLOBIO - Terrestrial

Ecosystems-based model of biodiversity

Madingley

region). For species richness change, some models project
the o metrics at the grid cell level (e.g., species-based and
SAR-based community models), while others average the lo-
cal point values of the metrics across the grid cell weighted
by the area of the different habitats in the cell (e.g., PRE-
DICTS, GLOBIO). In addition, some models only provided
o values while others provided both & and y values (Table 4).
For the models that can project y metrics, both regional-y for
each IPBES regions (Table 1 in Brooks et al., 2016; UNEP-
WCMC, 2015) and a global-y were reported.

The species diversity change metrics measured as ab-
solute number or percentage change in species richness
show species persistence and extinction in a given time and
place. Absolute changes in species richness and proportional
species richness change are interrelated and may be calcu-
lated from reporting species richness over time, as N; =
S; — S;0 and P = N;/S;0, where S; is the number of species
at time ¢. Most models reported one or both types of species
richness metrics (Table 4). The abundance-based intactness
(1) measures the mean species abundance in the current com-
munity relative to the abundances in a pristine community.
This metric is available only for two community-based mod-
els: GLOBIO (where intactness is estimated as the arith-
metic mean of the abundance ratios of the individual species,
whereby ratios > 1 are set to 1) and PREDICTS (where in-
tactness is estimated as the ratios of the sum of species abun-
dances). The habitat change (H) measures cell-wise changes
in available habitat for the species. It represents the changes
in the suitable habitat extent of each species relative to a
baseline, i.e., (E;; — E;:0)/Ei 10, where E;; is the suitable
habitat extent of species i at time ¢ within the unit of anal-
ysis. It is reported by averaging across species occurring in
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each unit of analysis (grid cell, region, or globe), and is pro-
vided by the species-level models (i.e., AIM-biodiversity, In-
SiGHTS, MOL) (Table 4). The baseline year, g, used to cal-
culate changes for the extinction and habitat extent metrics,
was the first year of the simulation (in most cases #o = 1900;
see Table 5).

For ecosystem functions and services, each model’s output
metrics were mapped onto the new classification of Nature’s
Contributions to People (NCP) published by the IPBES sci-
entific community (Dfaz et al., 2018). Among the 18 possi-
ble NCPs, the combination of models participating in BES-
SIM was able to provide measures for 10 NCPs, including
regulating metrics on pollination (e.g., proportion of agri-
cultural lands whose pollination needs are met, % agricul-
tural area), climate (e.g., vegetation carbon, total carbon up-
take and loss, MgC), water quantity (e.g., monthly runoff,
Pgmonth™!), water quality (e.g., nitrogen and phosphorus
leaching, PgN's~!), soil protection (e.g., erosion protection,
0-100 index), hazards (e.g., costal vulnerability, unitless
score; flood risk, number of people affected) and detrimental
organisms (e.g., fraction of cropland potentially protected by
the natural pest relative to all available cropland, kmz), and
material metrics on bioenergy (e.g., bioenergy—crop produc-
tion, PgCyr~!), food and feed (e.g., total crop production,
10% KCal) and materials (e.g., wood harvest, KgC) (Table 6).
Some of these metrics require careful interpretation in the
context of NCPs (e.g., an increase in flood risk can be caused
by climate change and/or by a reduction of the capacity of
ecosystems to reduce flood risk) and additional translation of
increasing or declining measures of ecosystem functions and
services (e.g., food and feed, water quantity) into contextu-
ally relevant information (i.e., positive or negative impacts)
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Table S. Scenario (forcing data) for models in BES-SIM.
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Future land-use change or climate (2050)

BES-SIM
model

Historical Land use only,

climate held constant at 2015

land use held constant at 2015

Land use and climate
(SSP1xRCP2.6, SSP3xRCP6.0,

Climate change only,

(SSP1, SSP3, SSP5) (RCP2.6, RCP6.0, RCP8.5) SSP5xRCP8.5)
Species-based models of biodiversity
AIM-biodiversity * * *
InSiGHTS * % "
MOL *
Community-based models of biodiversity
cSAR-iDiv * *
cSAR-ITASA-ETH * *
BILBI * * *
PREDICTS * *
GLOBIO - Aquatic *
GLOBIO - Terrestrial * * * *
Ecosystems-based model of biodiversity
Madingley * *
Models of ecosystem functions and services
LPJ-GUESS * * *
LPJ * * *
CABLE * * *
GLOBIO-ES *
InVEST * *
GLOSP *

on human well-being and quality of life. Given the disparity
of metrics across models within each NCP category, names
of the metrics are listed in Table 6, and units, definitions, and
methods are provided in Table S3.

6 Core simulations

The simulations for BES-SIM required a minimum of two
outputs from the modeling teams: present (2015) and future
(2050). Additionally, a past projection (1900) and a further
future projection (2070) were also provided by several mod-
eling teams. Some models projected further into the past and
also at multiple time points from the past to the future (Ap-
pendix A). Models that simulated a continuous time series
of climate change impacts provided 20-year averages around
these mid-points to account for inter-annual variability. The
models ran simulations at their original spatial resolutions
(Appendix A), and upscaled results to 1° grid cells using
arithmetic means. In order to provide global or regional aver-
ages of the « or grid cell metrics, the arithmetic mean values
across the cells of the globe or a certain region were calcu-
lated, as well as percentiles of those metrics. Both 1° rasters
and a table with values for each IPBES region and the globe
were provided by each modeling team for each output metric.

www.geosci-model-dev.net/11/4537/2018/

To measure the individual and synergistic impacts of land-
use and climate change on biodiversity and ecosystem ser-
vices, models accounting for both types of drivers were run
three times: with land-use change only, with climate change
only, and with both drivers combined. For instance, to mea-
sure the impact of land use alone, the projections into 2050
were obtained while retaining climate data constant from
the present (2015) to the future (2050). Similarly, to mea-
sure the impact of climate change alone, the climate projec-
tions into 2050 (or 2070) were obtained while retaining the
land-use data constant from the present (2015) to the future
(2050). Finally, to measure the impact of land-use and cli-
mate change combined, models were run using projections
of both land-use and climate change into 2050 (or 2070).
When models required continuous climate time-series data to
hindcast to 1900, data from years in the time period 1951 to
1960 were randomly selected to fill the data missing for years
1901 to 1950 from the ISIMIP 2a IPSL dataset. Models that
used multi-decadal climate averages from WorldClim (i.e.,
InSiGHTS, BILBI) assumed no climate impacts for 1900.

7 Uncertainties

Reporting uncertainty is a critical component of model inter-
comparison exercises (IPBES, 2016). Within BES-SIM, un-
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Table 6. Selected output indicators for inter-comparison of ecosystem functions and services models, categorized based on the classification of Nature’s Contributions to People (Diaz

etal., 2018).

BES-SIM model  NCP 2. NCP 4. NCP 6. NCP 7. NCP 8. NCP 9. NCP 10. NCP 11. NCP 12. NCP 13.
Pollination and Regulation of Regulation of Regulation of Formation, pro- Regulation of Regulation of Energy Food and feed Materials, com-
dispersal of  climate freshwater quan-  freshwater and tection and de- hazards and ex- detrimental or- panionship  and
seeds and other tity, location and  coastal water  contamination of  treme events ganisms and labor
propagules timing quality soils and sedi- biological  pro-

ments cesses
LPJ-GUESS Total carbon Monthly runoff Nitrogen leach- Bioenergy—crop Harvested carbon  Wood  harvest
Vegetation ing production in croplands that (LUH2 extrac-
carbon are used for food  tion)
production
LPJ Total carbon Monthly runoff
Vegetation
carbon
CABLE Total carbon Monthly runoff Above-ground Wood harvest
Vegetation Total runoff carbon removed
carbon from  cropland
and pastures as a
result of harvest
and grazing

GLOBIO-ES fraction of Total carbon Water  scarcity Nitrogen in wa-  Erosion protec- Flood risk: num-  Pest control: Total crop pro-
cropland index ter tion: fraction ber of people fraction of duction
potentially pol- Phosphorus  in  with low risk exposed to river cropland poten- Total grass pro-
linated, relative water relative to the flood risk tially protected, duction
to all available area that needs relative to all
cropland protection available  crop-

land

InVEST Proportion of Nitrogen export Coastal vulnera- Caloric produc-
agricultural Nitrogen ex- bility tion per hectare
lands  whose port x capita Coastal vulnera- on the current
pollination bility x capita landscape for
needs are met each crop type

GLOSP Soil protection
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certainties were explored by each model reporting the mean
values of its metrics, and where possible the 25th, 50th, and
75th percentiles based on the parameterization set specific
to each model, which can be found in each model’s key
manuscripts describing the modeling methods. When com-
bining the data provided by the different models, the av-
erage and the standard deviations of the common metrics
were calculated (e.g., intermodel average and standard de-
viation of Py). In a parallel exercise to inform BES-SIM,
the BIOMOD?2 model was used in assessing the uncertainty
in modeling changes in species ranges arising from using dif-
ferent RCP scenarios, different GCMs, a suite of species dis-
tribution modeling algorithms (e.g., random forest, logistic
regression), and different species dispersal hypotheses.

8 Conclusions

The existing SSP and RCP scenarios provide a consistent set
of past and future projections of two major drivers of ter-
restrial and freshwater biodiversity change — land use and
climate. However, we acknowledge that these projections
have certain limitations. These include limited consideration
of biodiversity-specific policies in the storylines (only the
SSP1 baseline emphasizes additional biodiversity policies)
(O’Neill et al., 2016; Rosa et al., 2017), coarse spatial resolu-
tion, and land-use classes that are not sufficiently detailed to
fully capture the response of biodiversity to land-use change
(Harfoot et al., 2014a; Titeux et al., 2016, 2017). The het-
erogeneity of models and their methodological approaches,
as well as additional harmonization of metrics of ecosystem
functions and services (Tables 6, S3), are areas for further
work. In the future, it will also be important to capture the
uncertainties associated with input data, with a focus on un-
certainty in land-use and climate projections resulting from
differences among IAMs and GCMs on each scenario (Popp
et al., 2017). The gaps identified through BES-SIM and fu-
ture directions for research and modeling will be published
separately, as well as analyses of the results on the model
intercomparison and on individual models.
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As a long-term perspective, BES-SIM is expected to pro-
vide critical foundation and insights for the ongoing devel-
opment of nature-centred, multiscale Nature Futures sce-
narios (Rosa et al., 2017). Catalyzed by the IPBES Ex-
pert Group on Scenarios and Models, this new scenario
and modeling framework will shift traditional ways of fore-
casting impacts of society on nature to more integrative,
biodiversity-centred visions and pathways of socio-economic
and ecological systems. A future round of BES-SIM could
use these biodiversity-centred storylines to project dynam-
ics of biodiversity and ecosystem services and associated
consequences for socio-economic development and human
well-being. This will help policymakers and practitioners to
collectively identify pathways for sustainable futures based
on alternative biodiversity management approaches and as-
sist researchers in incorporating the role of biodiversity into
socio-economic scenarios.

Code and data availability. The output data from this model inter-
comparison will be downloadable from the website of the IPBES
Expert Group on Scenarios and Models in the future (https:
/Iwww.ipbes.net/deliverables/3c-scenarios-and-modelling, last ac-
cess: 8 November 2018). The LUH2 land-use data used for model
runs are available at http://luh.umd.edu/data.shtml (Hurtt et al.,
2017). The climate datasets used in BES-SIM can be downloaded
from the respective websites (https://www.isimip.org/outputdata/
(Inter-sectoral Impact Model Intercomparison Project Output Data,
2017), http://worldclim.org/version1, Hijmans et al., 2017).
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Table A1. Description of biodiversity and ecosystem functions and services models in BES-SIM.

BES-SIM Brief model description Defining features and Model modification Spatial ~ Time steps ~ Taxonomic  Key
model key processes resolu- or func-  reference
tion tional
scope

Species-based models of biodiversity

AIM- A species distribution model  Distribution of suitable habitat Please see Table S2 for de- 0.5° 1900, 2015, Amphibians, Ohashi et

biodiversity that estimates biodiversity- (land) estimated from climate tailed methodology. 2050, 2070  birds, al. (2018)

(Asia-Pacific loss-based projected shift of and land-use data using a statis- mammals,

Integrated species range under the condi-  tical model on species presence plants,

Model — biodi- tions of land-use and climate and climate and land-use classi- reptiles

versity) change. fications, calibrated by historical

data.

InSiGHTS A high-resolution, cell-wise, ~Bioclimatic envelope models fit-  Increased number of modeled ~ 0.25° 1900, 2015, Mammals Rondinini et
species-specific hierarchical ted based on ecologically current  species and new scenarios for 2050, 2070 al. (2011),
species distribution model reference bioclimatic variables. climate and land use. Visconti et
that estimates the extent of Species’ presence and pseudo- al. (2016)
suitable habitat (ESH) for absence records from sampling
mammals accounting for land ~ within and outside of species’
and climate suitability. ranges. Forecasted layers of land

use/land cover reclassified ac-
cording to expert-based species-
specific suitability indexes.

MOL An expert map-based species Expert maps for terrestrial am- Inductive species distribution  0.25° 2015,2050, Amphibians, Jetz et

(Map of Life) distribution ~ model that  phibians, birds and mammals as  modeling was built using 2070 birds, al. (2007),
projects potential losses in a baseline for projections, com-  point process models to delin- mammals Merow et
species  occurrences and bined with downscaled layers eate niche boundaries. Binary al. (2013)
geographic range sizes given for current climate. A penalized maps of climatically suitable
changes in suitable conditions  point process model estimated cells were rescaled (to [0,1])
of climate and land-cover individual species niche bound- based on the proportion of
change. aries, which were projected into  the cell within a species

2050 and 2070 to estimate range  land-cover preference.
loss. Species habitat preference-

informed land-cover associations

were used to refine the propor-

tion of suitable habitat in climat-

ically suitable cells with present

and future land-cover-based pro-

jections.

BIOMOD2 An R package that allows one  BIOMOD?2 is based on species 100km  2015,2050, Amphibians, Thuiller (2004),

(BIOdiversity to run up to nine different al-  distribution models that link 2070 birds, Thuiller et

MODelling) gorithms of species distribu- observed or known presence— mammals al. (2009,
tion models using the same absence data to environmental 2011)
data and the same framework.  variables (e.g., climate). Each
An ensemble could then be model is cross-validated several
produced allowing a full treat-  times (a random subset of 70 %
ment of uncertainties given of the data are used for model
the data, algorithms, climate calibration, while 30 % are held
models, and climate scenar- out for model evaluation). Mod-
io0s. els are evaluated using various

metrics.

Community-based models of biodiversity

c¢SAR (Coun- A  countryside  species— Proportional species richness of Two functional groups of 0.25° 1900-2010  Birds Martins ~ and

tryside Species area  relationship model each species group is a power bird species: (1) forest birds; (10-year (forest, Pereira (2017)

Area Relation- that estimates the number function of the sum of the areas (2) non-forest birds. Habitat interval), non-forest,

ship) -iDiv of species persisting in a of each habitat in a landscape, affinities retrieved from the 2015,2050, all)
human-modified landscape, weighted by the affinity of each PREDICTS database. 2070, 2090

accounting for the habitat
preferences  of  different
species groups.

species group with each habi-
tat type. Species richness is cal-
culated by multiplying the pro-
portional species richness by the
number of species known to oc-
cur in the area. The total number
of species in a landscape is the
sum of the number of species for
each species group.

Geosci. Model Dev., 11, 4537-4562, 2018
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Table A1l. Continued.
BES-SIM Brief model description Defining features and Model modification Spatial ~ Time steps ~ Taxonomic  Key
model key processes resolu- or func-  reference
tion tional
scope
cSAR-IIASA- A countryside species area  Extends concept of the SAR Refined link between 0.25° 1500-1900  Amphibians, Chaudhary
ETH relationship model that es-  to mainland environment where ~LULCC and habitat (gross (100-year birds, et
timates the impact of time the habitat size depends not transitions between LULC interval), mammals, al. (2015),
series of spatially explicit only on the extent of the orig- classes at each time) and 1900-2090  plants, UNEP (2016)
land-use and land-cover inal pristine habitat, but also better accounting of time (10-year reptiles
changes on community- on the extent and taxon-specific ~ dynamics of converted interval)
level measures of terrestrial  affinity of the other non-pristine ~ LULC classes.
biodiversity. land uses and land covers
(LULC) of conversion. Affini-
ties derived from field records.
Produces the average habi-
tat suitability, regional species
richness, and loss of threatened
and endemic species for five
taxonomic groups.
BILBI ~ (Bio- A modeling framework that ~ The potential effects of climate  Please see Table S3 for de- 1km 1900, 2015,  Vascular Ferrier et
geographic couples application of the scenarios on beta-diversity tailed methodology. (30 arc- 2050 plants al. (2004,
modelling species—area  relationship  patterns are estimated through sec) 2007)
Infrastructure with correlative generalized ~ space-for-time projection of
for Large-scale  dissimilarity modeling  compositional-turnover models
Biodiversity (GDM)-based modeling of fitted to present-day biolog-
Indicators) continuous patterns of spa- ical and environmental data.
tial and temporal turnover These projections are then
in the species composition combined with downscaled
of communities (applied in  land-use scenarios to estimate
this study to vascular plant the proportion of species ex-
species globally). pected to persist within any
given region. This employs
an extension of species—area
modeling designed to work
with biologically scaled envi-
ronments varying continuously
across space and time.
PREDICTS The hierarchical mixed- Models employ data from PREDICTS LU classes 0.25° 900-2100 All Newbold et
(Projecting effects model that estimates the PREDICTS database en- recurated for LUH2. Abun- al. (2016),
Responses how four measures of site- compassing 767 studies from dance rescaled  within Purvis et
of Ecologi- level terrestrial biodiversity ~over 32000 sites on over each study. Baseline of al. (2018)
cal Diversity -  overall abundance, 51000 species. Models assess minimally used primary
In  Changing  within-sample species  how alpha diversity is affected  vegetation. Compositional
Terrestrial richness, abundance-based by land use, land-use intensity, similarity = models  in-
Systems) compositional  similarity and human population density. cluded human population.
and richness-based com- Model coefficients are com- Study-level mean human
positional ~ similarity — bined with past, present and population and agricultural
respond to land use and future maps of the pressure suitability used as control
related pressures. data to make global projections  variables. Proximity to road
of response variables, which omitted.
are combined to yield the
variants of the Biodiversity
Intactness Index (an indicator
first proposed by Scholes and
Biggs, 2005).
GLOBIO A modeling framework Comprises a set of (mostly cor- 0.5° 2015,2050 Al Janse et
(GLObal BIO- that quantifies the impacts  relative) relationships between al. (2015,
diversity) — of land use, eutrophica- anthropogenic drivers and bio- 2016)
Aquatic tion, climate change, and diversity/ES of rivers, lakes and

hydrological  disturbance
on freshwater biodiver-
sity, quantified as the
mean species abundance
(MSA) and ecosystem
functions/services.

wetlands. Based on the catch-
ment approach; i.e., the pres-
sures on the aquatic ecosystems
are based on what happens in
their catchment. Based on the
literature.

www.geosci-model-dev.net/11/4537/2018/
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Table A1. Continued.
BES-SIM Brief model description Defining features and Model modification Spatial ~ Time steps ~ Taxonomic  Key
model key processes resolu- or  func- reference
tion tional
scope
GLOBIO - A modeling framework Based on a set of correlative Improved land-use alloca- 10 arc- 2015,2050  All Schipper et
Terrestrial that quantifies the impacts  relationships between biodiver-  tion routine, improved re- sec (~ al. (2016)
of multiple anthropogenic  sity (MSA) on the one hand and  sponse relationships for en- 300 m)
pressures on local biodiver-  anthropogenic pressures on the  croachment (hunting)
sity (MSA). other, quantified based on meta-
analyses of biodiversity data re-
ported in the literature. Geo-
referenced layers of the pres-
sure variables are then com-
bined with the response rela-
tionships to quantify changes in
biodiversity.
Ecosystems-based model of biodiversity
Madingley An integrated process- Grouped by heterotroph co- Incorporation of temporally — 1° 1901, Three Harfoot et
based, mechanistic, general ~ horts, organisms are defined changing climate, and nat- 1915-2070  functional al. (2014b)
ecosystem model that uses by functional traits rather than ural and human-impacted (5-year groups
a unified set of fundamental ~ the taxonomy. Heterotrophs, plant stocks, to better rep- interval)
ecological concepts and defined by categorical (trophic  resent the LUHv2 land-use
processes to predict the group; thermoregulation strat- projections. Calculation of
structure and function of egy; reproductive strategy) functional diversity and dis-
the ecosystems at various and quantitative (current body similarity to represent com-
levels of organization for mass; mass at birth; and mass  munity changes
marine or terrestrial. at reproductive maturity) traits,
are modeled as individuals
dynamically. Simulates the
autotroph ecological processes
of growth and mortality; and
heterotroph metabolism, eating,
reproduction, growth, mortal-
ity, and dispersal. Dispersal is
determined by the body mass.
Models of ecosystem functions and services
LPJ-GUESS A process-based “demog-  Vegetation dynamics result The model version used 0.5° 1920, 1950, Lindeskog
(Lund- raphy enabled” dynamic from growth and competition here has some updates to 1970, 2015, et
Potsdam- global vegetation model for light, space, and soil re- the fire model compared 2050, 2070 al. (2013),
Jena  General that computes vegetation sources among woody plant to Knorr et al. (2016); see Olin et
Ecosystem and soil state and function, individuals and herbaceous un- also Rabin et al. (2017). al. (2015),
Simulator) as well as distribution of derstorey. A suite of simulated  Simulations also accounted Smith et
vegetation units dynam-  patches per grid cell represents  for wood harvest, using the al. (2014)

ically in space and time
in response to climate
change, land-use change
and N-input.

stochastic processes of growth
and mortality (succession).
Individuals for woody PFTs
are identical within an age
cohort. Processes such as
photosynthesis, respiration,
and stomatal conductance are
simulated daily. Net primary
production (NPP) accrued at
the end of each simulation year
is allocated to leaves, fine roots,
and, for woody PFTs, sapwood,
resulting in height, diameter
and biomass growth.

modeled recommendations
from LUH2.

Geosci. Model Dev., 11, 4537-4562, 2018
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Table A1. Continued.
BES-SIM Brief model description Defining features and Model modification Spatial ~ Time steps ~ Taxonomic  Key
model key processes resolu- or func-  reference
tion tional
scope
LPJ A big leaf model that sim- Hierarchical representation of LPJ represents the full set 0.5° 1920, 1950, Poulter et
(Lund- ulates the coupled dynam- the land surface — tiles repre- of states and transitions 1970, 2015, al. (2011),
Potsdam-Jena) ics of biogeography, bio- sent land use with various plant represented in LUHv2 and 2050, 2070 Sitch et
geochemistry and hydrol- or crop functional types. Im- improved estimate of car- al. (2003)
ogy under varying climate, plements establishment, mor- bon fluxes from land-cover
atmospheric CO, concen- tality, fire, carbon allocation, change.
trations, and land-use land- and land-cover change on an-
cover change practices to nual time steps, and calculates
represent demography of  photosynthesis, autotrophic res-
grasses and trees in a scale  piration, and heterotrophic res-
from individuals to land- piration on daily time steps.
scapes. Fully prognostic, meaning that
PFT distributions and phenol-
ogy are simulated based on
physical principles within a nu-
merical framework.
CABLE A “demography enabled” Combines biophysics (coupled 1° 1920, 1950, Haverd et
(Community global terrestrial biosphere  photosynthesis, stomatal con- 1970, 2015, al. (2018)
Atmosphere model that computes veg- ductance, canopy energy bal- 2050, 2070
Biosphere Land  etation and soil state and ance) with daily biogeochemi-
Exchange) function dynamically in cal cycling of carbon and nitro-
space and time in response  gen (CASA-CNP) and annual
to climate change, land-use  patch-based representation of
change and N-input. vegetation structural dynamics
(POP). Accounts for gross land-
use transitions and wood har-
vest, including effects on patch
age distribution in secondary
forest.
Simulates co-ordination of rate-
limiting processes in C3 photo-
synthesis, as an outcome of fit-
ness maximization.
GLOBIO —  The model simulates the in-  Quantifies a range of provi- Relationships between land ~ 0.5° 2015, 2050, Alkemade
Ecosystem fluence of various anthro-  sioning services (e.g., crop pro- use and the presence of 2070 et al. (2009,
Services pogenic drivers on ecosys-  duction, grass and fodder pro-  pollinators and predators 2014),
tem functions and services.  duction, wild food), regulat- updated through additional Schulp et
ing services (e.g., pest control,  peer review papers. al. (2012)

pollination, erosion risk reduc-
tion, carbon sequestration), and
culture services (e.g., nature-
based tourism) and other mea-
sures (e.g., water availability,
food risk reduction, harmful
algal blooms). Derived from
various models, including the
Integrated Model to Assess
the Global Environment (IM-
AGE) model and PCRaster
Global Water Balance (PCR-
GLOBWB), and from empiri-
cal studies using meta-analysis.

www.geosci-model-dev.net/11/4537/2018/
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Table A1l. Continued.
BES-SIM Brief model description Defining features and Model modification Spatial ~ Time steps ~ Taxonomic  Key
model key processes resolu- or func-  reference
tion tional
scope

InVEST A suite of geographic infor- 18 models for distinct ecosys- The crop-production 300 m 2015, 2050 Arkema et

(Integrated mation system (GIS) based tem services designed for ter- model was simplified from and al. (2013),

Valuation of spatially explicit models restrial, freshwater, marine and 175 crops to the 5 crop 5 ar- Chaplin-

Ecosystem used to map and value the coastal ecosystems. Based on types reported in LUH2. cmin Kramer et

Services and ecosystem goods and ser-  production functions that define  Other models have minor al. (2014),

Tradeoffs) vices in biophysical or eco-  how changes in an ecosystem’s  simplifications; see Ta- Guannel et

nomic terms. structure and function are likely ~ bles S2 and S3 for more al. (2016),

to affect the flows and values detail. Johnson et
of ecosystem services across a al. (2014,
landscape or a seascape. Ac- 2016),
counts for both service supply Redhead et
and the location and activities al. (2018),
of demand. Modular and se- Sharp et
lectable. al. (2016)

GLOSP A 2-D soil erosion model Protected soil (Ps) is defined as  Please see Table S3 for de-  0.25° 2015, 2050 Guerra et

(GLObal based on the Universal Soil  the amount of soil that is pre-  tailed methodology. al. (2016)

Soil Protection)

Loss Equation that uses cli-
mate and land-use projec-
tions to estimate global and
local soil protection.

vented from being eroded (wa-
ter erosion) by the mitigating
effect of available vegetation.
Ps is calculated from the differ-
ence between soil erosion (Se)
and potential soil erosion (Pse)
based on the integration of the
joint effect of slope length, rain-
fall erosivity, and soil erodibil-
ity. Soil protection is given by
the value of fractional vegeta-
tion cover calculated as a func-
tion of land use, altitude, pre-
cipitation, and soil properties.

Geosci. Model Dev., 11, 4537-4562, 2018
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Appendix B: List of acronyms

AIM
BES-SIM
BIOMOD
BILBI
CABLE
CMIP
cSAR
DGVM
EBV

ESMs
GBIF

GBO
GCMs
GEO
GLOBIO
GLOSP
1AM
IMAGE
InVEST
IPBES
IPCC
IPSL-CM5A-LR
ISI-MIP
LPJ
LPJ-GUESS
LUH2

MA
MAgPIE
MIP

MOL

NCP
REMIND
PREDICTS
RCM
RCPs
PCR-GLOBWB
SAR

SR

SSPs

www.geosci-model-dev.net/11/4537/2018/

Asia-pacific Integrated Model

Biodiversity and Ecosystem Services Scenario-based Intercomparison of Models
BIOdiversity MODelling

Biogeographic modelling Infrastructure for Large-scale Biodiversity Indicators
Community Atmosphere Biosphere Land Exchange

Climate Model Inter-comparison Project

Countryside Species Area Relationship

Dynamic global vegetation model

Essential biodiversity variable

Earth system models

Global Biodiversity Information Facility

Global Biodiversity Outlooks

General circulation models

Global Environmental Outlook

GLObal BIOdiversity

GLObal Soil Protection

Integrated Assessment Models

Integrated Model to Assess the Global Environment

Integrated Valuation of Ecosystem Services and Tradeoffs

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
Intergovernmental Panel on Climate Change

Institut Pierre-Simon Laplace-Climate Model SA-Low Resolution
Inter-Sectoral Impact Model Intercomparison Project

Lund-Potsdam-Jena

Lund-Potsdam-Jena General Ecosystem Simulator

Land Use Harmonization Project version 2

Millennium Ecosystem Assessment

The Model of Agricultural Production and its Impact on the Environment
Model Intercomparison Project

Map of Life

Nature’s Contributions to People

Regionalized Model of Investments and Development

Projecting Responses of Ecological Diversity In Changing Terrestrial Systems
Regional Climate Models

Representative Concentration Pathways

PCRaster Global Water Balance

Species—area relationship

Species richness

Shared Socio-economic Pathways

Geosci. Model Dev., 11, 4537-4562, 2018
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-11-4537-2018-supplement.
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