1,720 research outputs found
Analysis of IUE observations of hydrogen in comets
The large body of hydrogen Lyman-alpha observations of cometary comae obtained with the International Ultraviolet Explorer satellite has gone generally unanalyzed because of two main modeling complications. First, the inner comae of many bright (gas productive) comets are often optically thick to solar Lyman-alpha radiation. Second, even in the case of a small comet (low gas production) the large IUE aperture is quite small as compared with the immense size of the hydrogen coma, so an accurate model which properly accounts for the spatial distribution of the coma is required to invert the inferred brightnesses to column densities and finally to H atom production rates. Our Monte Carlo particle trajectory model (MPTM), which for the first time provides the realistic full phase space distribution of H atoms throughout the coma was used as the basis for the analysis of IUE observations of the inner coma. The MCPTM includes the effects of the vectorial ejection of the H atoms upon dissociation of their parent species (H2O and OH) and of their partial collisional thermalization. Both of these effects are crucial to characterize the velocity distribution of the H atoms. A new spherical radiative transfer calculation based on our MCPTM was developed to analyze IUE observations of optically thick H comae. The models were applied to observations of comets P/Giacobini-Zinner and P/Halley
The gas production rate of periodic comet d'Arrest
Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus
Deep space experiment to measure
Responding to calls from the National Science Foundation (NSF) for new
proposals to measure the gravitational constant , we offer an interesting
experiment in deep space employing the classic gravity train mechanism. Our
setup requires three bodies: a larger layered solid sphere with a cylindrical
hole through its center, a much smaller retroreflector which will undergo
harmonic motion within the hole and a host spacecraft with laser ranging
capabilities to measure round trip light-times to the retroreflector but
ultimately separated a significant distance away from the sphere-retroreflector
apparatus. Measurements of the period of oscillation of the retroreflector in
terms of host spacecraft clock time using existing technology could give
determinations of nearly three orders of magnitude more accurate than
current measurements here on Earth. However, significant engineering advances
in the release mechanism of the apparatus from the host spacecraft will likely
be necessary. Issues with regard to the stability of the system are briefly
addressed.Comment: 13 pp, 3 figs, accepted CQ
Analysis of IUE Observations of Hydrogen in Comets
The 15-years worth of hydrogen Lyman-alpha observations of cometary comae obtained with the International Ultraviolet Explorer (IUE) satellite had gone generally unanalyzed because of two main modeling complications. First, the inner comae of many bright (gas productive) comets are often optically thick to solar Lyman-alpha radiation. Second, even in the case of a small comet (low gas production) the large IUE aperture is quite small as compared with the immense size of the hydrogen coma, so an accurate model which properly accounts for the spatial distribution of the coma is required to invert the infrared brightnesses to column densities and finally to H atom production rates. Our Monte Carlo particle trajectory model (MCPTM), which for the first time provides the realistic full phase space distribution of H atoms throughout the coma has been used as the basis for the analysis of IUE observations of the inner coma. The MCPTM includes the effects of the vectorial ejection of the H atoms upon dissociation of their parent species (H2O and OH) and of their partial collisional thermalization. Both of these effects are crucial to characterize the velocity distribution of the H atoms. This combination of the MCPTM and spherical radiative transfer code had already been shown to be successful in understanding the moderately optically thick coma of comet P/Giacobini-Zinner and the coma of comet Halley that varied from being slightly to very optically thick. Both of these comets were observed during solar minimum conditions. Solar activity affects both the photochemistry of water and the solar Lyman-alpha radiation flux. The overall plan of this program here was to concentrate on comets observed by IUE at other time during the solar cycle, most importantly during the two solar maxima of 1980 and 1990. Described herein are the work performed and the results obtained
Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter
We report on the Hubble Space Telescope program to observe periodic comet
9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were
to study the generation and evolution of the coma resulting from the impact and
to obtain wide-band images of the visual outburst generated by the impact. Two
observing campaigns utilizing a total of 17 HST orbits were carried out: the
first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a
new, short-lived fan in the sunward direction on June 14. The principal
campaign began two days before impact and was followed by contiguous orbits
through impact plus several hours and then snapshots one, seven, and twelve
days later. All of the observations were made using the Advanced Camera for
Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a
spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact.
Baseline images of the comet, made prior to impact, photometrically resolved
the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement
with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following
the impact, the HRC images illustrate the temporal and spatial evolution of the
ejecta cloud and allow for a determination of its expansion velocity
distribution. One day after impact the ejecta cloud had passed out of the
field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus
special issue on Deep Impac
GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact
GALEX observations of comet 9P/Tempel 1 using the near ultraviolet (NUV)
objective grism were made before, during and after the Deep Impact event that
occurred on 2005 July 4 at 05:52:03 UT when a 370 kg NASA spacecraft was
maneuvered into the path of the comet. The NUV channel provides usable spectral
information in a bandpass covering 2000 - 3400 A with a point source spectral
resolving power of approximately 100. The primary spectral features in this
range include solar continuum scattered from cometary dust and emissions from
OH and CS molecular bands centered near 3085 and 2575 A, respectively. In
particular, we report the only cometary CS emission detected during this event.
The observations allow the evolution of these spectral features to be tracked
over the period of the encounter. In general, the NUV emissions observed from
Tempel 1 are much fainter than those that have been observed by GALEX from
other comets. However, it is possible to derive production rates for the parent
molecules of the species detected by GALEX in Tempel 1 and to determine the
number of these molecules liberated by the impact. The derived quiescent
production rates are Q(H2O) = 6.4e27 molecules/s and Q(CS2) = 6.7e24
molecules/s, while the impact produced an additional 1.6e32 H2O molecules and
1.3e29 CS2 molecules, a similar ratio as in quiescent outgassing.Comment: 15 pages, 4 figures, accepted for publication in the Astrophysical
Journa
Secular variation of activity in comets 2P/Encke and 9P/Tempel 1
We compare production rates of H20 derived from International Ultraviolet Explorer (IUE) spectra from multiple apparitions of 2 comets, 2P/Encke and 9P/Tempel 1, whose orbits are in near-resonance with that of the Earth. Since model-induced errors are primarily a function of observing geometry, the close geometrical matches afforded by the resonance condition results in the cancellation of such errors when taking ratios of production rates. Giving careful attention to the variation of model parameters with solar activity, we find marginal evidence of change in 2P/Encke: a 1-sigma pre-perihelion decrease averaging 4%/revolution over 4 apparitions from 1980-1994, and a 1-sigma post-perihelion increase of 16%/revolution for 2 successive apparitions in 1984 and 1987. We find for 9P/Tempel 1, however, a 7-sigma decrease of 29%/revolution over 3 apparitions from 1983-1994, even after correcting for a tracking problem which made the fluxes systematically low. We speculate on a possible association of the character of long-term brightness variations with physical properties of the nucleus, and discuss implications for future research
Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment
If the Standard Model is correct, and fundamental fermions exist only in the
three generations, then the CKM matrix should be unitary. However, there
remains a question over a deviation from unitarity from the value of the
neutron lifetime. We discuss a simple space-based experiment that, at an orbit
height of 500 km above Earth, would measure the kinetic-energy, solid-angle,
flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at
this altitude). The difference between the energy spectrum of neutrons that
come up from the Earth's atmosphere and that of the undecayed neutrons that
return back down to the Earth would yield a measurement of the neutron
lifetime. This measurement would be free of the systematics of laboratory
experiments. A package of mass kg could provide a 10^{-3} precision in
two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio
The Nature and Frequency of the Gas Outbursts in Comet 67P/Churyumov-Gerasimenko observed by the Alice Far-ultraviolet Spectrograph on Rosetta
Alice is a far-ultraviolet imaging spectrograph onboard Rosetta that, amongst
multiple objectives, is designed to observe emissions from various atomic and
molecular species from within the coma of comet 67P/Churyumov-Gerasimenko. The
initial observations, made following orbit insertion in August 2014, showed
emissions of atomic hydrogen and oxygen spatially localized close to the
nucleus and attributed to photoelectron impact dissociation of H2O vapor.
Weaker emissions from atomic carbon were subsequently detected and also
attributed to electron impact dissociation, of CO2, the relative H I and C I
line intensities reflecting the variation of CO2 to H2O column abundance along
the line-of-sight through the coma. Beginning in mid-April 2015, Alice
sporadically observed a number of outbursts above the sunward limb
characterized by sudden increases in the atomic emissions, particularly the
semi-forbidden O I 1356 multiplet, over a period of 10-30 minutes, without a
corresponding enhancement in long wavelength solar reflected light
characteristic of dust production. A large increase in the brightness ratio O I
1356/O I 1304 suggests O2 as the principal source of the additional gas. These
outbursts do not correlate with any of the visible images of outbursts taken
with either OSIRIS or the navigation camera. Beginning in June 2015 the nature
of the Alice spectrum changed considerably with CO Fourth Positive band
emission observed continuously, varying with pointing but otherwise fairly
constant in time. However, CO does not appear to be a major driver of any of
the observed outbursts.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical
Journal Letter
- …