221 research outputs found

    The Dwarf Irregular Galaxy UGC 7636 Exposed: Stripping At Work In The Virgo Cluster

    Full text link
    We present the results of optical spectroscopy of a newly discovered H II region residing in the H I gas cloud located between the dwarf irregular galaxy UGC 7636 and the giant elliptical galaxy NGC 4472 in the Virgo Cluster. By comparing UGC 7636 with dwarf irregular galaxies in the field, we show that the H I cloud must have originated from UGC 7636 because (1) the oxygen abundance of the cloud agrees with that expected for a galaxy with the blue luminosity of UGC 7636, and (2) M_{H I}/L_B for UGC 7636 becomes consistent with the measured oxygen abundance of the cloud if the H I mass of the cloud is added back into UGC 7636. It is likely that tides from NGC 4472 first loosened the H I gas, after which ram-pressure stripping removed the gas from UGC 7636.Comment: 12 pages, 2 eps figures (AASTeX 5.0); accepted for publication in ApJ Letter

    Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: III. Emission Line Diagnostics of Ensembles of Evolving HII Regions

    Full text link
    We build, as far as theory will permit, self consistent model HII regions around central clusters of aging stars. These produce strong emission line diagnostics applicable to either individual HII regions in galaxies, or to the integrated emission line spectra of disk or starburst galaxies. The models assume that the expansion and internal pressure of individual HII regions is driven by the net input of mechanical energy from the central cluster, be it through winds or supernova events. This eliminates the ionization parameter as a free variable, replacing it with a parameter which depends on the ratio of the cluster mass to the pressure in the surrounding interstellar medium. These models explain why HII regions with low abundances have high excitation, and demonstrate that at least part of the warm ionized medium is the result of overlapping faint, old, large, and low pressure HII regions. We present line ratios (at both optical and IR wavelengths) which provide reliable abundance diagnostics for both single HII regions or for integrated galaxy spectra, and we find a number that can be used to estimate the mean age of the cluster stars exciting individual HII regions.Comment: 22 pages. 18 figures. Accepted for publication in Astrophysical journal Supplements. Electronic tabular material is available on request to [email protected]

    Recommendations for reporting ion mobility Mass Spectrometry measurements

    Get PDF
    Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method‐dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc

    Effect of Neutrino Heating on Primordial Nucleosynthesis

    Full text link
    We have modified the standard code for primordial nucleosynthesis to include the effect of the slight heating of neutrinos by e±e^\pm annihilations. There is a small, systematic change in the 4^4He yield, ΔY≃+1.5×10−4\Delta Y \simeq +1.5\times 10^{-4}, which is insensitive to the value of the baryon-to-photon ratio η\eta for 10^{-10}\la \eta \la 10^{-9}. We also find that the baryon-to-photon ratio decreases by about 0.5\% less than the canonical factor of 4/11 because some of the entropy in e±e^\pm pairs is transferred to neutrinos. These results are in accord with recent analytical estimates.Comment: 14 pages/4 Figs (upon request

    Effect of Finite Mass on Primordial Nucleosynthesis

    Full text link
    We have calculated the small effect of finite nucleon mass on the weak-interaction rates that interconvert protons and neutrons in the early Universe. We have modified the standard code for primordial nucleosynthesis to include these corrections and find a small, systematic increase in the 4He yield, ήY/Y≃(0.47−0.50)\delta Y / Y \simeq (0.47 - 0.50)% , depending slightly on the baryon-to-photon ratio. The fractional changes in the abundances of the other light elements are a few percent or less for interesting values of the baryon-to-photon ratio.Comment: 15 pages, 8 figures, uses psfig.st

    Evidence for the Hierarchical Formation of the Galactic Spheroid

    Get PDF
    The possibility that the Galactic spheroid was assembled from numerous chemically-distinct, proto-Galactic fragments is investigated using a Monte-Carlo technique designed to simulate the chemical evolution of the Galaxy in hierarchical formation scenarios which involve no gas dissipation. By comparing the observed and simulated metallicity distributions of Galactic globular clusters and halo field stars, we estimate the level of fragmentation in the collapsing proto-Galaxy. Although the formation process is highly stochastic, the simulations often show good agreement with the observed metallicity distributions, provided the luminosity function of proto-Galactic fragments had a power-law form with exponent ~ -2. While this steep slope is strongly at odds with the presently observed luminosity function of the Local Group, it is in close agreement with the predictions of semi-analytic and numerical models of hierarchical galaxy formation. We discuss a number of possible explanations for this discrepancy. These simulations suggest that the Galactic halo and its globular cluster system were assembled via the accretion and disruption of approximately 1000 metal-poor, proto-Galactic fragments by the dominant Galactic building block: a proto-bulge whose own metal-rich globular clusters system has been preferentially eroded by dynamical processes. We argue that the same process (ie, hierarchical growth involving little gas dissipation) is responsible for the formation of both giant elliptical galaxies and the bulge-halo components of spiral galaxies. (ABRIDGED).Comment: 20 pages, 9 postscript figures. Accepted for publication in the ApJ, April 10 2000 issu

    Discovery of Eight New Extremely Metal--Poor Galaxies in the Sloan Digital Sky Survey

    Full text link
    We report the discovery of eight new extremely metal-poor galaxies (XMPGs; 12+log(O/H) < 7.65) and the recovery of four previously known or suspected XMPGs (IZw18, HS0822+3542, HS0837+4717 and A1116+517) using Sloan Digital Sky Survey (SDSS) spectroscopy. These new objects were identified after an analysis of 250,000 galaxy spectra within an area of ~3000 deg^2 on the sky. Our oxygen abundance determinations have an accuracy of ≀\le 0.1 dex and are based on the temperature-sensitive [O {\sc iii}] λ\lambda4363 \AA line and on the direct calculation of the electron temperature. We briefly discuss a new method of oxygen abundance determinations using the [O {\sc ii}] λ\lambda7319,7330 \AA\ lines, which is particularly useful for SDSS emission-line spectra with redshifts ≀\le~0.024 since the [O {\sc ii}] λ\lambda3727 \AA emission line falls outside of the SDSS wavelength range. We detect XMPGs with redshifts ranging from 0.0005 to 0.0443 and MgM_g luminosities from −-12\fm4 to −-18\fm6. Our eight new XMPGs increase the number of known metal-deficient galaxies by approximately one quarter. The estimated surface density of XMPGs is 0.004 deg−2^{-2} for rr ≀\le 17\fm77.Comment: To appear in August 20 issue of ApJ Letters, 6 pages, 2 figure

    Dusty, Radiation Pressure Dominated Photoionization. I. Model Description, Structure And Grids

    Full text link
    We present the implementation of dusty, radiation pressure dominated photoionization models applicable to the Narrow Line Regions (NLRs) of Active Galactic Nuclei, using the \mapiii code. We give a grid of the predicted intensities of the most commonly used diagnostic spectral lines in the UV, optical and IR, covering a wide range of density, metallicity, the power-law index characterizing the photoionizing source and photoionization parameter, for use in the diagnosis of NLRs. We examine the temperature, density and ionization structure of these models, investigating the effect of variation of these parameters in order to gain a better understanding of NLR clouds themselves.Comment: Accepted by ApJS, full pdf including figures can be found at http://www.mso.anu.edu.au/~bgroves/Papers/ApJS1.pd

    Precision Prediction for the Big-Bang Abundance of Primordial Helium

    Full text link
    Within the standard models of particle physics and cosmology we have calculated the big-bang prediction for the primordial abundance of \he to a theoretical uncertainty of less than 0.1 \pct (ÎŽYP<±0.0002)(\delta Y_P < \pm 0.0002), improving the current theoretical precision by a factor of 10. At this accuracy the uncertainty in the abundance is dominated by the experimental uncertainty in the neutron mean lifetime, τn=885.4±2.0sec\tau_n = 885.4 \pm 2.0 sec. The following physical effects were included in the calculation: the zero and finite-temperature radiative, Coulomb and finite-nucleon-mass corrections to the weak rates; order-α\alpha quantum-electrodynamic correction to the plasma density, electron mass, and neutrino temperature; and incomplete neutrino decoupling. New results for the finite-temperature radiative correction and the QED plasma correction were used. In addition, we wrote a new and independent nucleosynthesis code designed to control numerical errors to be less than 0.1\pct. Our predictions for the \EL[4]{He} abundance are presented in the form of an accurate fitting formula. Summarizing our work in one number, YP(η=5×10−10)=0.2462±0.0004(expt)±<0.0002(theory) Y_P(\eta = 5\times 10^{-10}) = 0.2462 \pm 0.0004 (expt) \pm < 0.0002 (theory). Further, the baryon density inferred from the Burles-Tytler determination of the primordial D abundance, ΩBh2=0.019±0.001\Omega_B h^2 = 0.019\pm 0.001, leads to the prediction: YP=0.2464±0.0005(D/H)±<0.0002(theory)±0.0005(expt)Y_P = 0.2464 \pm 0.0005 (D/H) \pm < 0.0002 (theory) \pm 0.0005 (expt). This ``prediction'' and an accurate measurement of the primeval \he abundance will allow an important consistency test of primordial nucleosynthesis.Comment: Replaced fitting formulas - new versions differ by small but significant amount. Other minor changes. 30 pages, 17 figures, 5 table

    Chemical and Photometric Evolution of Extended Ultraviolet Disks: Optical Spectroscopy of M83 (NGC5236) and NGC4625

    Get PDF
    We present the results from the analysis of optical spectra of 31 Halpha-selected regions in the extended UV (XUV) disks of M83 (NGC5236) and NGC4625 recently discovered by GALEX. The spectra were obtained using IMACS at Las Campanas Observatory 6.5m Magellan I telescope and COSMIC at the Palomar 200-inch telescope, respectively for M83 and NGC4625. The line ratios measured indicate nebular oxygen abundances (derived from the R23 parameter) of the order of Zsun/5-Zsun/10. For most emission-line regions analyzed the line fluxes and ratios measured are best reproduced by models of photoionization by single stars with masses in the range 20-40 Msun and oxygen abundances comparable to those derived from the R23 parameter. We find indications for a relatively high N/O abundance ratio in the XUV disk of M83. Although the metallicities derived imply that these are not the first stars formed in the XUV disks, such a level of enrichment could be reached in young spiral disks only 1 Gyr after these first stars would have formed. The amount of gas in the XUV disks allow maintaining the current level of star formation for at least a few Gyr.Comment: 52 pages, 8 tables, 7 figures, accepted for publication in Ap
    • 

    corecore