23 research outputs found
Small molecule glucagon release inhibitors with activity in human islets
PurposeType 1 diabetes (T1D) accounts for an estimated 5% of all diabetes in the United States, afflicting over 1.25 million individuals. Maintaining long-term blood glucose control is the major goal for individuals with T1D. In T1D, insulin-secreting pancreatic islet β-cells are destroyed by the immune system, but glucagon-secreting islet α-cells survive. These remaining α-cells no longer respond properly to fluctuating blood glucose concentrations. Dysregulated α-cell function contributes to hyper- and hypoglycemia which can lead to macrovascular and microvascular complications. To this end, we sought to discover small molecules that suppress α-cell function for their potential as preclinical candidate compounds. Prior high-throughput screening identified a set of glucagon-suppressing compounds using a rodent α-cell line model, but these compounds were not validated in human systems. ResultsHere, we dissociated and replated primary human islet cells and exposed them to 24 h treatment with this set of candidate glucagon-suppressing compounds. Glucagon accumulation in the medium was measured and we determined that compounds SW049164 and SW088799 exhibited significant activity. Candidate compounds were also counter-screened in our InsGLuc-MIN6 β-cell insulin secretion reporter assay. SW049164 and SW088799 had minimal impact on insulin release after a 24 h exposure. To further validate these hits, we treated intact human islets with a selection of the top candidates for 24 h. SW049164 and SW088799 significantly inhibited glucagon release into the medium without significantly altering whole islet glucagon or insulin content. In concentration-response curves SW088799 exhibited significant inhibition of glucagon release with an IC50 of 1.26 µM. ConclusionGiven the set of tested candidates were all top hits from the primary screen in rodent α-cells, this suggests some conservation of mechanism of action between human and rodents, at least for SW088799. Future structure-activity relationship studies of SW088799 may aid in elucidating its protein target(s) or enable its use as a tool compound to suppress α-cell activity in vitro
Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis
SNARE complex assembly and mobilization of GLUT4 vesicles is coordinated through direct targeting of Munc18c by the insulin receptor tyrosine kinase
Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies
SAT074 Induction Of Insulin Hypersecretion Uncovers Distinctions Between Adaptive And Maladaptive Endoplasmic Reticulum Stress Response In Beta Cells
Pancreatic islet β-cells release insulin to maintain glucose homeostasis. β-cells must translate, package, and secrete large amounts of insulin. During this process the unfolded protein response of the endoplasmic reticulum (UPRER) is induced to maintain these functions. However, stimuli that force β-cell to secrete insulin at enhanced rates and for prolonged durations risk inducing the terminal UPRER and eventual apoptosis. In a chemical screen for insulin secretion modulators, we discovered SW016789 which caused hypersecretion of insulin and led to a transient induction of the UPRER, but not apoptosis. In contrast, SERCA2 ER Ca2+ pump inhibitor thapsigargin induces the terminal UPRER. We hypothesized that SW016789 can be used as a tool compound to discover genes involved in β-cell adaptation to hypersecretion-induced stress. We performed time course transcriptomics in MIN6 β-cells exposed to SW016789 (5 µM) or thapsigargin (100 nM) from 0-24 h. Unbiased analyses using a Dirichlet process Gaussian process (DPGP) method revealed clusters of genes temporally co-regulated and the genes within these clusters were distinct between SW016789 and thapsigargin treatments. In particular, after 6 h of SW016789-induced hypersecretion we found a highly induced cluster of genes (SW cluster 3) enriched in adaptive UPRER factors (e.g. Manf). Conversely, most of the thapsigargin-induced genes clustered at 24 h and were enriched for terminal UPRER factors (e.g. Txnip). Pathway analysis of SW cluster 3 indicated that genes involved in in regulation of mRNA methylation and ER-associated degradation were also induced by SW016789 sooner and with greater amplitude than by thapsigargin, suggesting distinct differences in the handling of protein translation and degradation. From the SW cluster 3 genes we selected proteins known to be ER-associated or secreted and generated stable transgenic or CRISPR knockout MIN6 β-cell lines for each. Our data suggest altered expression of these factors may impair glucose-stimulated insulin secretion responses and alter cell viability in presence or absence of ER stressors including cytokines, thapsigargin, and tunicamycin. In conclusion, we have successfully shown that pharmacological induction of insulin hypersecretion can induce a distinct transcriptional outcome from that of canonically-induced UPRER and that we can take advantage of this property to discover new β-cell regulatory pathways and targets. We envision this dataset as a resource for the secretory biology and islet biology communities
Small molecule glucagon release inhibitors with activity in human islets
Purpose:
Type 1 diabetes (T1D) accounts for an estimated 5% of all diabetes in the United States, afflicting over 1.25 million individuals. Maintaining long-term blood glucose control is the major goal for individuals with T1D. In T1D, insulin-secreting pancreatic islet β-cells are destroyed by the immune system, but glucagon-secreting islet α-cells survive. These remaining α-cells no longer respond properly to fluctuating blood glucose concentrations. Dysregulated α-cell function contributes to hyper- and hypoglycemia which can lead to macrovascular and microvascular complications. To this end, we sought to discover small molecules that suppress α-cell function for their potential as preclinical candidate compounds. Prior high-throughput screening identified a set of glucagon-suppressing compounds using a rodent α-cell line model, but these compounds were not validated in human systems.
Results:
Here, we dissociated and replated primary human islet cells and exposed them to 24 h treatment with this set of candidate glucagon-suppressing compounds. Glucagon accumulation in the medium was measured and we determined that compounds SW049164 and SW088799 exhibited significant activity. Candidate compounds were also counter-screened in our InsGLuc-MIN6 β-cell insulin secretion reporter assay. SW049164 and SW088799 had minimal impact on insulin release after a 24 h exposure. To further validate these hits, we treated intact human islets with a selection of the top candidates for 24 h. SW049164 and SW088799 significantly inhibited glucagon release into the medium without significantly altering whole islet glucagon or insulin content. In concentration-response curves SW088799 exhibited significant inhibition of glucagon release with an IC50 of 1.26 µM.
Conclusion:
Given the set of tested candidates were all top hits from the primary screen in rodent α-cells, this suggests some conservation of mechanism of action between human and rodents, at least for SW088799. Future structure-activity relationship studies of SW088799 may aid in elucidating its protein target(s) or enable its use as a tool compound to suppress α-cell activity in vitro
RIPK3 promotes islet amyloid-induced β-cell loss and glucose intolerance in a humanized mouse model of type 2 diabetes
Objective: Aggregation of human islet amyloid polypeptide (hIAPP), a β-cell secretory product, leads to islet amyloid deposition, islet inflammation and β-cell loss in type 2 diabetes (T2D), but the mechanisms that underlie this process are incompletely understood. Receptor interacting protein kinase 3 (RIPK3) is a pro-death signaling molecule that has recently been implicated in amyloid-associated brain pathology and β-cell cytotoxicity. Here, we evaluated the role of RIPK3 in amyloid-induced β-cell loss using a humanized mouse model of T2D that expresses hIAPP and is prone to islet amyloid formation. Methods: We quantified amyloid deposition, cell death and caspase 3/7 activity in islets isolated from WT, Ripk3−/−, hIAPP and hIAPP; Ripk3−/− mice in real time, and evaluated hIAPP-stimulated inflammation in WT and Ripk3−/− bone marrow derived macrophages (BMDMs) in vitro. We also characterized the role of RIPK3 in glucose stimulated insulin secretion (GSIS) in vitro and in vivo. Finally, we examined the role of RIPK3 in high fat diet (HFD)-induced islet amyloid deposition, β-cell loss and glucose homeostasis in vivo. Results: We found that amyloid-prone hIAPP mouse islets exhibited increased cell death and caspase 3/7 activity compared to amyloid-free WT islets in vitro, and this was associated with increased RIPK3 expression. hIAPP; Ripk3−/− islets were protected from amyloid-induced cell death compared to hIAPP islets in vitro, although amyloid deposition and caspase 3/7 activity were not different between genotypes. We observed that macrophages are a source of Ripk3 expression in isolated islets, and that Ripk3−/− BMDMs were protected from hIAPP-stimulated inflammatory gene expression (Tnf, Il1b, Nos2). Following 52 weeks of HFD feeding, islet amyloid-prone hIAPP mice exhibited impaired glucose tolerance and decreased β-cell area compared to WT mice in vivo, whereas hIAPP; Ripk3−/− mice were protected from these impairments. Conclusions: In conclusion, loss of RIPK3 protects from amyloid-induced inflammation and islet cell death in vitro and amyloid-induced β-cell loss and glucose intolerance in vivo. We propose that therapies targeting RIPK3 may reduce islet inflammation and β-cell loss and improve glucose homeostasis in the pathogenesis of T2D
Chromomycin A2 potently inhibits glucose-stimulated insulin secretion from pancreatic β cells.
Modulators of insulin secretion could be used to treat diabetes and as tools to investigate β cell regulatory pathways in order to increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is cosecreted with insulin in MIN6 β cells to perform a high-throughput screen of natural products for chronic effects on glucose-stimulated insulin secretion. In this study, using multiple phenotypic analyses, we found that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion by at least three potential mechanisms: disruption of Wnt signaling, interference of β cell gene expression, and partial suppression of Ca2+ influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even after washout, but it did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx that may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. By querying the FUSION bioinformatic database, we revealed that the phenotypic effects of CMA2 cluster with a number of Wnt-GSK3 pathway-related genes. Furthermore, CMA2 consistently decreased GSK3β phosphorylation and suppressed activation of a β-catenin activity reporter. CMA2 and a related compound, mithramycin, are known to have DNA interaction properties, possibly abrogating transcription factor binding to critical β cell gene promoters. We observed that CMA2 but not mithramycin suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt β cell function through both noncytotoxic and cytotoxic mechanisms. Future therapeutic applications of CMA2 and similar aureolic acid analogues should consider their potential effects on pancreatic islet function