20 research outputs found

    FUS Immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy

    Get PDF
    Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of alpha-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the 'loosely aggregated cytoplasmic inclusions,' 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer 'compact cytoplasmic inclusions' and 'tangled twine ball inclusions' were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of Ξ²-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible Ξ²-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS

    Get PDF
    A combination of yeast genetics and protein biochemistry define how the fused in sarcoma (FUS) protein might contribute to Lou Gehrig's disease

    Pathogenic cysteine mutations affect progranulin function and production of mature granulins

    No full text
    Frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U) can be caused by mutations in the progranulin gene (GRN). Progranulin (PGRN) is a cysteine-rich growth factor, which is proteolytically cleaved by elastase to produce several granulins (GRNs). All FTLD-U mutations in GRN characterized to date result in reduced secreted PGRN protein. We recently reported a Spanish family with progressive non-fluent aphasia and dementia in which a novel C521Y mutation segregates with disease. A second cysteine mutation (C139R) has also been reported to be disease specific. Allele-specific mRNA expression assays in brain reveal that the C521Y mutant allele is expressed at similar levels to the wild-type allele. Furthermore, plasma PGRN levels in C521Y carriers are comparable with non-carrier family relatives, suggesting that the mutation does not affect PGRN protein expression and secretion in vivo. Despite normal PGRN levels C521Y and C139R mutant GRNs show reduced neurite growth-stimulating activity in vitro. Further study revealed that these mutations also cause impaired cleavage of PGRN by elastase. Our data suggest that these mutations affect the function of full-length PGRN as well as elastase cleavage of PGRN into GRNs, leading to neurodegeneration.status: publishe

    Data_Sheet_2_Effects of inhaled cannabis high in Ξ”9-THC or CBD on the aging brain: A translational MRI and behavioral study.xlsx

    No full text
    With the recent legalization of inhaled cannabis for medicinal and recreational use, the elderly represents one of the newest, rapidly growing cohorts of cannabis users. To understand the neurobiological effects of cannabis on the aging brain, 19–20 months old mice were divided into three groups exposed to vaporized cannabis containing ~10% Ξ”9-THC, ~10% CBD, or placebo for 30 min each day. Voxel based morphometry, diffusion weighted imaging, and resting state functional connectivity data were gathered after 28 days of exposure and following a two-week washout period. Tail-flick, open field, and novel object preference tests were conducted to explore analgesic, anxiolytic, and cognitive effects of cannabis, respectively. Vaporized cannabis high in Ξ”9-THC and CBD achieved blood levels reported in human users. Mice showed antinociceptive effects to chronic Ξ”9-THC without tolerance while the anxiolytic and cognitive effects of Ξ”9-THC waned with treatment. CBD had no effect on any of the behavioral measures. Voxel based morphometry showed a decrease in midbrain dopaminergic volume to chronic Ξ”9-THC followed but an increase after a two-week washout. Fractional anisotropy values were reduced in the same area by chronic Ξ”9-THC, suggesting a reduction in gray matter volume. Cannabis high in CBD but not THC increased network strength and efficiency, an effect that persisted after washout. These data would indicate chronic use of inhaled cannabis high in Ξ”9-THC can be an effective analgesic but not for treatment of anxiety or cognitive decline. The dopaminergic midbrain system was sensitive to chronic Ξ”9-THC but not CBD showing robust plasticity in volume and water diffusivity prior to and following drug cessation an effect possibly related to the abuse liability of Ξ”9-THC. Chronic inhaled CBD resulted in enhanced global network connectivity that persisted after drug cessation. The behavioral consequences of this sustained change in brain connectivity remain to be determined.</p

    FUS Immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy

    No full text
    Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of alpha-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the 'loosely aggregated cytoplasmic inclusions,' 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer 'compact cytoplasmic inclusions' and 'tangled twine ball inclusions' were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations

    Data_Sheet_1_Effects of inhaled cannabis high in Ξ”9-THC or CBD on the aging brain: A translational MRI and behavioral study.xlsx

    No full text
    With the recent legalization of inhaled cannabis for medicinal and recreational use, the elderly represents one of the newest, rapidly growing cohorts of cannabis users. To understand the neurobiological effects of cannabis on the aging brain, 19–20 months old mice were divided into three groups exposed to vaporized cannabis containing ~10% Ξ”9-THC, ~10% CBD, or placebo for 30 min each day. Voxel based morphometry, diffusion weighted imaging, and resting state functional connectivity data were gathered after 28 days of exposure and following a two-week washout period. Tail-flick, open field, and novel object preference tests were conducted to explore analgesic, anxiolytic, and cognitive effects of cannabis, respectively. Vaporized cannabis high in Ξ”9-THC and CBD achieved blood levels reported in human users. Mice showed antinociceptive effects to chronic Ξ”9-THC without tolerance while the anxiolytic and cognitive effects of Ξ”9-THC waned with treatment. CBD had no effect on any of the behavioral measures. Voxel based morphometry showed a decrease in midbrain dopaminergic volume to chronic Ξ”9-THC followed but an increase after a two-week washout. Fractional anisotropy values were reduced in the same area by chronic Ξ”9-THC, suggesting a reduction in gray matter volume. Cannabis high in CBD but not THC increased network strength and efficiency, an effect that persisted after washout. These data would indicate chronic use of inhaled cannabis high in Ξ”9-THC can be an effective analgesic but not for treatment of anxiety or cognitive decline. The dopaminergic midbrain system was sensitive to chronic Ξ”9-THC but not CBD showing robust plasticity in volume and water diffusivity prior to and following drug cessation an effect possibly related to the abuse liability of Ξ”9-THC. Chronic inhaled CBD resulted in enhanced global network connectivity that persisted after drug cessation. The behavioral consequences of this sustained change in brain connectivity remain to be determined.</p

    FUS Immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy

    No full text
    Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of alpha-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the 'loosely aggregated cytoplasmic inclusions,' 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer 'compact cytoplasmic inclusions' and 'tangled twine ball inclusions' were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations
    corecore