209 research outputs found
Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy
Drawing of Object No. 4
Estimating and comparing adverse event probabilities in the presence of varying follow-up times and competing events
Safety analyses in terms of adverse events (AEs) are an important aspect of
benefit-risk assessments of therapies. Compared to efficacy analyses AE
analyses are often rather simplistic. The probability of an AE of a specific
type is typically estimated by the incidence proportion, sometimes the
incidence density or the Kaplan-Meier estimator are proposed. But these
analyses either do not account for censoring, rely on a too restrictive
parametric model, or ignore competing events. With the non-parametric
Aalen-Johansen estimator as the gold-standard, these potential sources of bias
are investigated in a data example from oncology and in simulations, both in
the one-sample and in the two-sample case. As the estimators may have large
variances at the end of follow-up, the estimators are not only compared at the
maximal event time but also at two quantiles of the observed times. To date,
consequences for safety comparisons have hardly been investigated in the
literature. The impact of using different estimators for group comparisons is
unclear, as, for example, the ratio of two both underestimating or
overestimating estimators may or may not be comparable to the ratio of the
gold-standard estimator. Therefore, the ratio of the AE probabilities is also
calculated based on different approaches. By simulations investigating constant
and non-constant hazards, different censoring mechanisms and event frequencies,
we show that ignoring competing events is more of a problem than falsely
assuming constant hazards by use of the incidence density and that the choice
of the AE probability estimator is crucial for group comparisons.Comment: 27 pages, 5 figure
Differential regulation of interleukin-6 expression in human fibroblasts by tumor necrosis factor-α and lymphotoxin
AbstractThe treatment of human diploid fibroblasts with tumor necrosis factor (TNP)-α and with lymphotoxin (LT) is associated with induction of interleuk-in-6 (IL-6) transcripts with TNF-α being 10-fold more potent than LT. Here we report on the TNF-α/LT-induced signaling mechanisms responsible for the regulation of IL-6 gene expression in these cells. Run-on assays demonstrated that both TNF-α and LT increase IL-6 mRNA levels by transcriptional activation of this gene. Stability studies of IL-6 transcripts in fibroblasts showed that TNF-α delayed IL-6 mRNA decay but not LT. The induction of IL-6 transcripts by TNF-α and LT was not inhibited by the isoquinoline sulfonamide derivative H7. Similarly, depletion of protein kinase C (PKC) by 12-O-tetradecanoyl-phorbol 13-acetate (TPA) did not change the ability of TNF-α and LT to induce IL-6 transcripts, demonstrating that stimulation by these agents may not be mediated by activation of PKC. Stimulation of IL-6 transcripts in fibroblasts did also not require new protein synthesis as exposure to the protein synthesis inhibitor cycloheximide (CHX) enhanced accumulation of IL-6 mRNA in the presence or absence of TNF-α or LT
Similar efficacy outcomes with peripheral blood stem cell versus bone marrow for autologous stem cell transplantation in acute myeloid leukemia: Long-term follow-up of the EORTC-GIMEMA randomized AML-10 trial
we report here the long-term follow-up of the only prospective randomized trial of autologous hematopoietic stem cell transplantation (auto-HSCT) with peripheral blood stem cells (APBSCT) versus auto-HSCT with bone marrow (ABMT) in acute myeloid leukemia (AML) patients in first remission (CR). we observed that among patients alive and still in CR 5 years after planned auto-HSCT, approximately 10% of the patients died in the following 10 years. This stresses the need for long-term close surveillance of AML patients after auto-HSCT. further, long-term follow-up of the trial confirms that APBSCT was comparable to ABMT in term of disease-free-survival and overall survival
The value of hepatic resection in metastasic renal cancer in the era of Tyrosinkinase Inhibitor Therapy
Background: The value of liver-directed therapy (LDT) in patients with metastasic renal cell carcinoma (MRCC) is still an active field of research, particularly in the era of tyrosinkinase inhibitor (TKI) therapy. Methods: The records of 35 patients with MRCC undergoing LDT of metastasic liver lesions between 1992 and 2015 were retrospectively analyzed. Immediate postoperative TKI was given in a subgroup of patients after LDT for metastasic lesions. Uni- and multivariate models were applied to assess overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS). Results: Following primary tumor (renal cell cancer) resection and LDT, respectively, median OS was better for a total of 16 patients (41 %) receiving immediate postoperative TKI with 151 and 98 months, when compared to patients without TKI therapy with 61 (p = 0.003) and 40 months (p = 0.032). Immediate postoperative TKI was associated with better median PFS (47 months versus 19 months; p = 0.023), whereas in DFS only a trend was observed (51 months versus 19 months; p = 0.110). Conclusions: LDT should be considered as a suitable additive tool in the era of TKI therapy of MRCC to the liver. In this context, postoperative TKI therapy seems to be associated with better OS and PFS, but not DFS
Clinical Relevance of Elevated Soluble ST2, HSP27 and 20S Proteasome at Hospital Admission in Patients with COVID-19
Although, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents one of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood. Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in the so-called “cytokine storm”, with subsequent development of microthrombosis, disseminated intravascular coagulation, and multiorgan-failure. Therefore, we reasoned those elevated inflammatory molecules might act as prognostic factors. Here, we analyzed 245 serum samples of patients with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27 (HSP27), soluble suppressor of tumorigenicity-2 (sST2) and 20S proteasome at hospital admission and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover, we investigated their association with the risk of ventilation. We demonstrated that increased serum sST2 was uni- and multivariably associated with all endpoints. Furthermore, we also identified 20S proteasome as independent prognostic factor for in-hospital mortality (sST2, AUC = 0.73; HSP27, AUC = 0.59; 20S proteasome = 0.67). Elevated sST2, HSP27, and 20S proteasome levels at hospital admission were univariably associated with higher risk of invasive ventilation (OR = 1.8; p < 0.001; OR = 1.1; p = 0.04; OR = 1.03, p = 0.03, respectively). These findings could help to identify high-risk patients early in the course of COVID-19
DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts.
Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs). Using immunopeptidomics, we demonstrate the human leukocyte antigen (HLA) presentation of 45 spectra-validated treatment-induced neopeptides (t-neopeptides) arising from TINPATs. We illustrate the potential of the identified t-neopeptides to elicit a T-cell response to effectively target cancer cells. We further verify the presence of t-neopeptides in AML patient samples after in vivo treatment with the DNMT inhibitor Decitabine. Our findings highlight the potential of ERV-derived neoantigens in epigenetic and immune therapies
- …