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The treatment of human diploid fibroblasts with tumor necrosis factor (TNF)-a and with lymphotoxin (LT) is associated with induction of interleuk- 
in-6 (IL-6) transcripts with TNF-a being IO-fold more potent than LT. Here we report on the TNF-a/LT-induced signaling mechanisms responsible 
for the regulation of IL-6 gene expression in these cells. Run-on assays demonstrated that both TNF-a and LT increase IL-6 mRNA levels by 
transcriptional activation of this gene. Stability studies of IL-6 transcripts in fibroblasts showed that TNF-a delayed IL-6 mRNA decay but not 
LT. The induction of IL-6 transcripts by TNF-a and LT was not inhibited by the isoquinoline sulfonamide derivative H7. Similarly, depletion 
of protein kinase C (PKC) by 12-O-tetradecanoyl-phorbol 13-acetate (TPA) did not change the ability of TNF-a and LT to induce IL-6 transcripts, 
demonstrating that stimulation by these agents may not be mediated by activation of PKC. Stimulation of IL-6 transcripts in fibroblasts did also 
not require new protein synthesis as exposure to the protein synthesis inhibitor cycloheximide (CHX) enhanced accumulation of IL-6 mRNA in 

the presence or absence of TNF-a or LT. 

1. INTRODUCTION 

Tumor necrosis factor (TNF)-(r is a cytokine produc- 
ed by inflammatory cells including activated 
monocytes/macrophages [ 1,2], polymorphonuclear 
leukocytes [3], T-, and B-lymphocytes [ 1,4]. By induc- 
ing secretion of colony stimulating factors (CSFs) in 
mesenchymal cells [5-71 and monocytes/macrophages 
[8,9], TNF-(r stimulates development and functioning 
of hematopoietic cells. Although sharing with TNF-a! 
the same receptor [lo], lymphotoxin (LT) is less potent 
as a CSF-inducer [9,11,12]. To further understand the 
role of TNF-a and LT in hematopoietic development 
and activation, the ability to induce secretion of 
another cytokine stimulatory to hematopoiesis, 
interleukin-6 (IL-6), was investigated. IL-6 synergizes 
with CSFs to enhance growth of self-renewing blast 
cells [7,13] and also acts as a differentiation inducing 
factor [14]. Using primary human fibroblasts which 
constitute a major element of the bone marrow stroma, 
we show that TNF-alpha and LT increase the expres- 
sion of IL-6. At maximum stimulatory concentrations, 
TNF-CY was about IO-fold more potent than LT and has 
enhanced the expression of IL-6 by increasing its rate of 
transcription and mRNA stability, whereas LT had no 
effect on half-life of IL-6 mRNA. The action of TNF-a 
and LT was independent of synthesis of new proteins 
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and did not require stimulation through the protein 
kinase C (PKC) pathway. 

2. MATERIALS AND METHODS 

2.1. Cytokines and DNA probes 
Recombinant (E. coli-derived) human (rh) TNF-o! (specific activity 

of 5 x 10’ Wmg of protein) and recombinant (E. co/i-derived) 
human LT (specific activity of 1 x lOa U/mg of protein) were kindly 
provided by Genentech, San Francisco, CA, through Dr. G.R. Adolf, 
Ernst Boehringer Institute for Drug Research, Vienna, Austria. Puri- 
ty of TNF-CY and LT was > 99% by SDS-PAGE and RP-HPLC. En- 
dotoxin content of both preparations was < 50 pg/mg as assessed by 
the limulus amoebocyte assay. Mouse monoclonal antibodies (mo 
Abs) to rhTNF-o (lot 3314-16) and a rabbit antiserum to rhLT (lot 
2970-14 B) were provided by Dr. G.R. Adolf. The neutralizing capaci- 
ty of the anti-TNF-a! mo Ab was 6000 U TNF-ol/pg and of the an- 
tiserum to LT 2.9 x 10’ U/ml. Human IL-6 cDNA (TuqVBanII frag- 
ment) was derived from the plasmid PBS F2.38 and was kindly pro- 
vided by Drs. T. Hirano and T. Kishimoto, Institute for Molecular 
and Cellular Biology, Osaka University, Osaka, Japan. The 2.0 kb 
PstI fragment of the chicken @-actin gene was derived from the pAI- 
plasmid (kindly provided by Dr. J. Ramadori, Dept. of Medicine, 
University of Mainz, Mainz, FRG). The probes were “P-labeled by 
random priming [15]. The specific activity was 4 to 8 x 10’ cpm/pg. 

2.2. Chemical reagents 
I-(5isoquinolinylsulfonyl)-2-methylpiperazine (H7), 12-O-tetrade- 

canoylphorbol-13-acetate (TPA), cycloheximide (CHX), 2-mercapto- 
ethanol, actinomycin-D, trypsin and EDTA were purchased from 
Sigma Chemicals, Munich, FRG. 

2.3. Cell Cultures 
Diploid human fibroblasts (strain FH 109) were isolated from em- 

bryonic lung tissue by proteolytic dispersion [16]. Cultures were 
established and cells were passaged by methods detailed elsewhere 
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[17]. In all experiments cells from passages 5-8 were used. Cultures 
were performed in alpha medium supplemented with low endotoxin 
FCS (Boehringer, Mannheim, FRG), 100 Cg/ml penicillin, 100 pg/ml 
streptomycin, 1 mM L-glutamine, 1 mM sodium pyruvate (Gibco 
Laboratories, Heidelberg, FRG) in a humidified atmosphere, 7% 
CO2 at 37°C. The culture period was 2-72 h. Conditioned medium 
(CM) from cultures of fibroblasts that were incubated with TNF-(r (1 
to 5 x 10’ U/ml) or LT (lo-lo4 U/ml) was collected, filtered through 
low protein binding millipore filters and stored at - 20°C until use. 
In some experiments cultures received H7 (25 CM), TPA (8-24 nM), 
actinomycin-D (5 pg/ml), or CHX (20 pg/ml). 

2.4. IL-6 bioassay 
For measurements of IL-6 activity, the ILd-dependent hybridoma 

cell line B13.29 (subline B9) was cultured at 5 x lcu’ cells/ml in 
Iscove’s modified Dulbecco’s medium (Gibco) supplemented with 50 
FM 2-mercaptoethanol, 5% FCS, 100 pg/ml penicillin, 100 pg/ml 
streptomycin for 48 h [18]. Six hours before harvesting, all cultures 
were pulsed with 1 mCi/ml = 37 kBq/ml of tritiated thymidine 
(Amersham Buchler, Braunschweig, FRG). The cells were harvested 
on glass filter papers by an automated cell harvester. The radioactivity 
was measured by a liquid scintillation counter (Beckmann In- 
struments, Munich, FRG). The results are expressed as U/ml of 
triplicate cultures. RhIL-6 (kindly provided by Drs. T. Hirano and T. 
Kishimoto) was used as an internal standard. B9 cells do not pro- 
liferate in response to any of the inducing agents investigated. 

2.5. RNA extraction, Northern blot and transcriptional ran-on assay 
Total cellular RNA was isolated by lysing FH 109 cells in 

guanidinium isothiocyanate followed by recovery of RNA by cen- 
trifugation through cesium chloride [19]. After denaturation at 6O”C, 
RNA was electrophoresed in an agarose formaldehyde gel (1.2%) and 
transferred on to synthetic membranes (Schleicher and Schuell, 
Dassel, FRG). Filters were hybridized with labeled probe for 12-24 h 
at 42°C in 50% formamide, 2 x SSC, 5 x Denhardts, 0.1% SDS, 
10% dextran sulfate and 100 pg/ml salmon sperm. Filters were wash- 
ed to a stringency of 0.1% SSC, 65°C for 12 min and exposed to 
Kodak X-omat X-ray films with intensifying screens. To exclude in- 
complete RNA transfer in single lanes, all filters were reprobed with 
beta-actin cDNA. Alterations in levels of IL-6 transcripts were quan- 
titated by laser densitometry as described [20]. The ratio of IL-a/& 
actin transcripts in unstimulated cultures was compared to the ratio of 
experimental cultures. Changes of IL-6 mRNA from base line levels 
were calculated by multiplication of the ratio of density of IL-6//3- 
actin transcripts by the reciprocal of the ratio of base line levels. 
Nuclear run-on transcription assays were performed as previously 
described [19]. Nascent RNA chains were allowed to elongate in the 
presence of “P-uridine triphosphate. The “P-labeled nuclear RNA 
was treated with DNAse and proteinase K digestion and purified by 
phenol/chloroform extraction and ethanol precipitation. Equivalent 
amounts of TCA-precipitable “P-labeled RNAs were hybridized to 
vector DNA, p-actin and IL-6 probes immortalized on nitrocellulose 
filters. The “P-labeled RNA bound to the filters was visualized by 
autoradiography at - 70°C by using intensifying screens. 

3. RESULTS 

3.1. Induction of IL-6 release by TNF-CY and L T 
IL-6 release was negligible in untreated confluent 

human fibroblasts (Fig. 1). However, exposure of 
fibroblasts to TNF-a! resulted in a dose- and time- 
dependent increase in levels of IL-6 protein detectable 
in culture supernatants by biologic assay. Maximum 
IL-6 release was seen, when fibroblasts were exposed to 
lo3 U/ml of TNF-a for 48 h. Although time- 
dependence of IL-6 release by LT stimulated fibroblasts 
was comparable to that of TNF-a stimulation, LT was 
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Fig. 1. Release of IL-6 from confluent fibroblasts monolayers by 
rhTNF-o and rhLT. Duplicate monolayers were incubated with 
various concentrations of TNF-(Y and LT for 48 h (A), or were treated 
with maximum stimulatory concentrations (B) of TNF-(r (lo3 U/ml) 
or LT (lo4 U/ml). IL-6 activity in the supernatants was quantitated in 
the B9 proliferation assay and standardized in U/ml against serial 
dilutions of rhIL-6. Data represent values (*SD) of three 

independent experiments. 

less potent (ten-fold) in inducing IL-6 release in a dose 
range of 10’ to 5 x lo3 U/ml. At maximum stimulatory 
concentrations of LT (104 U/ml), however, fibroblast- 
CM contained the same amount of IL-6 as compared to 
IL-6 present in cultures maximally stimulated with 
TNF-o. Endotoxin at a dose equivalent to that detec- 
table in lo5 U of TNF-a or LT failed to stimulate release 
of IL-6 protein (data not shown). 

3.2. Time- and dose-dependent effect of TNF-alpha 
and LT on accumulation of IL-6 mRNA 

Fibroblasts that were exposed to maximum stimula- 
tory concentration of TNF-(r or LT (10’ U/ml and lo4 
U/ml, respectively) contained mRNA coding for IL-6, 
whereas unstimulated cells (passages 4-8) had undetec- 
table IL-6 levels (Fig. 2A). Following stimulation with 
TNF-a, a maximum stimulation of IL-6 mRNA was 
observed after 8 h. Levels had decreased after 12 h. LT- 
stimulated fibroblasts displayed maximum levels of 
IL-6 mRNA after 4 h of exposure and had decreased 
after 8 h. Maximum levels of IL-6 mRNA were achieved 
after treatment with lo3 U/ml TNF-(r. Further increase 
in TNF-a concentrations did not result in higher con- 
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Fig. 2. (A) Time-dependent effect of TNF-(r and LT on levels of IL-6 
mRNA in fibroblasts. Fibroblasts (7 x lO’/ml) were incubated in the 
presence or absence of TNF-a (lo3 U/ml) or LT (Icy’ U/ml) for 
various periods of time. Cytoplasmic RNA (20 pgcg/lane) was 
sequentially hybridized with IL-6 and @-actin cDNA. (B) Dose- 
dependent effect of TNF-fl and LT on levels of IL-6 mRNA in 
fibroblasts. Fibroblasts (7 x lO’/ml) were incubated in the presence 
or absence of various concentrations of TNF-a! for 8 h or in the 
presence or absence of various concentrations of LT for 4 h. 
Cytoplasmic RNA (20 pg/lane) was sequentially hybridized with IL-6 

(1.6 kb) and @-actin cDNA (2.1 kb). 

centrations of IL-6 mRNA (Fig. 2B). Similarly, LT 
stimulated IL-6 mRNA accumulation in fibroblasts in a 
dose-dependent fashion. Maximum hybridization 
signals were detected in fibroblasts stimulated with lo4 
U/ml of LT, being 50% less intense than with TNF-CY. 
Again, endotoxin at dose equivalents to those present in 
10’ U of TNF-a or LT failed to induce transcripts of 
IL-6 (data not shown). 

3.3. Stimulation of IL-6 mRNA accumulation does not 
require PKC activation 

To evaluate the effects of the inhibitor of PKC (H7) 
on IL-6 mRNA accumulation induced by TNF-ar and 
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Fig. 3. Effect of PKC depletion by prolonged exposure of TPA on 
levels of IL-6 mRNA induced by TNF-(r and LT. Fibroblasts (7 x 
105/ml) were treated with TPA (24 nM) for 24 h, washed and 
reexposed to TPA (8 nM) without, and with TNF-(r (lo3 U/ml), or LT 
(lo4 U/ml), for additional 4 h. Cytoplasmic RNA (20 kg/lane) was 

sequentially hybridized with IL-6 and fl-actin-specific cDNA. 

LT, fibroblasts were stimulated with TNF-a or LT in 
presence of H7 (25 PM). The induction of IL-6 
transcript was not abrogated by H7, suggesting that the 
action of TNF-o and LT is independent of PKC 
stimulation (data not shown). In addition, depletion of 
PKC by prolonged exposure of fibroblasts to TPA [21], 
failed to prevent subsequent enhancement of IL-6 
mRNA accumulation by TNF-(r or LT (Fig. 3). Treat- 
ment of fibroblasts for 24 h with TPA (24 nM) and 
subsequent incubation of these cells for 4 h in fresh 
medium induced IL-6 mRNA accumulation. The IL-6 
mRNA levels had decreased by 55% when culture had 
been treated with TPA (8 nM), for 4 h. In contrast, in 
cultures of fibroblasts incubated with TNF-CY and LT 
for 4 h a reexpression of IL-6 transcripts is stimulated 
(Fig. 3). 

3.4. Induction of IL-6 transcripts by TNF--(r or L T does 
not require de novo protein synthesis 

Exposure of fibroblasts to CHX has induced the ac- 
cumulation of IL-6 mRNA (data not shown). Cells 
previously cultured in the presence of CHX, and subse- 
quently treated with TNF-alpha for 4 h have shown 
about 50-fold and three-fold higher IL-6 mRNA levels 
compared to cultures treated with CHX and TNF-CY on- 
ly, respectively. Similarly, the response of LT was at 
least 20-fold enhanced by pretreatment with CHX. 
Two-fold higher levels of IL-6 transcripts were achieved 
by sequential CHX/LT treatment compared to cultures 
stimulated with LT only. 

3.5. Enhancement of IL-6 gene transcription by TNF- 
alpha and LT 

To evaluate the transcriptional regulation of expres- 
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Fig. 4. Stability of base-line IL-6 mRNA levels in fibroblasts treated 
with TNF-alpha or LT. Fibroblasts (7 x lO’/ml) were cultured in the 
presence or absence of TNF-cx (10’ U/ml) or LT (104 U/ml) for 7 h 
and 4 h, respectively, and then actinomycin D (5 pg/ml) was added to 
the cultures for 0, 1, 2, 4 h. Cytoplasmic RNA (40 pg/lane in cells 
cultured in medium alone, 20 pg/lane in cells exposed to TNF-o or 
LT) was sequentially hybridized to IL-6 and fi-actin-specific cDNA. 

sion of IL-6 mRNA, nuclear run-on assays were per- 
formed. Transcription of the IL-6 gene was enhanced to 
a comparable extent in fibroblasts after treatment with 
TNF-a and LT (data not shown). In order to determine 
if the increase of IL-6 mRNA by TNF-a and LT was 
also dependent on mRNA stabilization, mRNA half- 
life studies using actinomycin-D were performed. Aged 
FH 109 fibroblasts (passages 12-14), which con- 
stitutively accumulate IL-6 mRNA were treated with 
either without, with TNF-(r, or LT at maximum 
stimulatory concentrations and then exposed to 
actinomycin-D (Fig. 4). After 0.5, 1,2 and 4 h cells were 
harvested. The half-life of IL-6 mRNA in untreated 
cells was about 50 min and remained unchanged after 
stimulation with LT. However, stimulation of 
fibroblasts with TNF-alpha resulted in elevated IL-6 
mRNA stability. 

4. DISCUSSION 

In the present study we confirm that not only TNF-(r 
is a potent inducer of IL-6 in fibroblasts but also LT. In 
addition, we explore some mechanisms involved in the 
regulation of IL-6 expression by TNF-alpha and LT. 
We found that TNF-a was more potent than LT in in- 
ducing IL-6 mRNA accumulation and protein secre- 
tion. lo2 U/ml of TNF-(I! had nearly the same 
stimulatory effect as 5 x lo3 U/ml of LT. These fin- 
dings confirm several recent reports demonstrating that 
certain cell types responsive to TNF-a are either partial- 
ly or totally refractive to LT [9,11,12,22]. This predicts 
different receptors for the two proteins. Indeed, it has 
recently been shown that the cross-linking of the recep- 
tor of rhLT revealed two distinct bands at M, of 100 
kDa and 120 kDa, whereas affinity cross-linking with 
rhTNF-a provided only a single band with Mr of 100 
kDa [23]. 

In this study we have used non-glycosylated LT, 
whereas the natural LT is glycosylated. Nevertheless, 
experimental evidence suggests that E. co&derived 
rhLT lacking carbohydrate is not equipotent to mam- 
malian cell-derived rhLT for cell binding [23]. In addi- 
tion, we show that TNF-a! augments IL-6 mRNA ac- 
cumulation by increasing the rate of gene transcription 
and enhancing the stability of IL-6 mRNA, whereas LT 
had only an effect on transcription of IL-6. In this 
regard the recent observation of the ability of TNF-a! to 
activate G-binding proteins [24] and to induce genes by 
prolonged activation of the jun/AP-1 system [24] is in- 
teresting. Moreover, the IL-6 gene possesses recogni- 
tion elements for G-binding proteins and AP-1 [25]. 
Current experiments therefore address whether the ac- 
tion of LT on the induction of IL-6 is associated with c- 
fos/jun induction and whether inhibitors of G-binding 
proteins will prevent LT mediated induction of IL-6. 
The findings that IL-6 gene activation occurs in the 
absence of protein synthesis (as discussed below) and 
thus must involve the modification of preexisting 
cellular factors needs further investigation. Modifica- 
tion of preexisting cellular factors has been shown as a 
mechanism responsible for c-fos expression [26]. 
Similar to c-fos, IL-6 is expressed by a variety of dif- 
ferent cells and induced by different agents. It would 
therefore be of interest to determine if different 
transcription factors regulate IL-6 expression, as 
already shown for c-fos [27], and if these factors are 
specific for cell type and inducer. Previous studies have 
shown that induction of IL-6 by TNF-a requires 
enhancement of CAMP levels and protein kinase activi- 
ty [28]. Now we show that PKC activation does not play 
a role in induction of IL-6 expression by TNF-a and 
LT. Induction of IL-6 by both compounds was not 
prevented by PKC inhibitor H7 and fibroblasts that 
became refractory to TPA which activates PKC con- 
tinued to be inducible to express IL-6 by TNF-a and 
LT. 

We also demonstrate that induction of IL-6 by TNF- 
alpha-and by LT does not require synthesis of new pro- 
teins, as the inhibitor of protein synthesis CHX failed to 
downregulate TNF-(r- and LT-inducible accumulation 
of IL-6 mRNA. Stimulation of IL-6 mRNA accumula- 
tion by CHX suggests that the IL-6 gene is apparently 
negatively regulated by repressor proteins, a situation 
that may facilitate the rapid modulation of its expres- 
sion. Again, the same observation applies to c-fos [29]. 
Interestingly the c-fos serum responsive element (SRE) 
was identified within the conserved region of the IL-6 
promotor and it has been shown that IL-6 inducibility 
by IL-l involves this c-fos SRE [30]. A number of 
rapidly inducible genes involved in inflammation, 
acute-phase response, and development of 
hematopoiesis have AT-rich sequences in their 

3 ‘untranslated regions [25,30,31] that are involved in 
the degradation of the respective mRNA by RNase. Our 
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experiments demonstrating increase of IL-6 mRNA 
levels by CHX are consistent with decrease of RNase ac- 
tivity. 

Fibroblasts also produce granulocyte-macrophage 
colony-stimulating factors when exposed to TNF-alpha 
[32] or LT [33], and mechanisms of the regulation of 
this expression are similar to those shown here for IL-6 
[32]. Therefore, the capacity of TNF-o/LT to regulate 
expression of different classes of proteins central to in- 
flammation, acute-phase response and hematopoiesis, 
may represent a pivotal tool to coordinate host defense. 
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