2,711 research outputs found

    Marjolin’s ulcer arising from cutaneous lichen planus

    Get PDF
    The association between cutaneous lichen planus and Squamous cell carcinoma has been controversial. The rarity of documented cases, has led some to suggest that it may represent a chance association. Whilst there have been many reports of Marjolin’s ulcer arising from oral lichen planus, reports of Squamous cell carcinoma arising from or associated with cutaneous lichen planus in the literature remains sparse. The aim of this review is to report the case of a patient with a lesion previously diagnosed as cutaneous lichen planus, who developed Marjolin’s ulcer in the same location, in the absence of known exposure to exogenous carcinogens. The development of Marjolin’s ulcer from cutaneous lichen planus is not as rare as previously believed although the pathogenic mechanism for the transformation remains largely unknown.Keywords: Cutaneous lichen planus, Marjolin’s ulcer, Squamous cell carcinom

    Path-Loss Prediction for an Industrial Indoor Environment Based on Room Electromagnetics

    Get PDF

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications

    Associations of Body Composition, Maximum Strength, Power Characteristics With Sprinting, Jumping, and Intermittent Endurance Performance in Male Intercollegiate Soccer Players

    Get PDF
    The purpose of this study was to determine the relationships between body composition, strength, power characteristics, sprinting, jumping, and intermittent endurance performance in collegiate male players. Twenty-three players participated (19.7 ± 1.6 yrs; 71.8 ± 7.1 kg; 176.5 ± 5.1 cm). Measurements of interest in body composition included body fat percentage (BF%), lean body mass (LBM), and body mass (BM). Power characteristics were measured with an unloaded squat jump (SJ0) and loaded SJ at 20 kg (SJ20) and 40 kg (SJ40), and unloaded countermovement jump (CMJ0). Power assessments included peak power (PP) and PP allometrically scaled (PPa). Strength characteristics were assessed using isometric mid-thigh pull. Strength assessment included isometric peak force (IPF) and IPF allometrically scaled (IPFa). Performance measures included 10m and 20 m sprint time, CMJ0 jump-height, and Yo-Yo intermittent endurance test level 1 distance. Significant correlations ranging from moderate to very large were found for LBM and CMJ jump height (CM0 JH) (p = 0.01, r = 0.50); BF% and sprint times at 10 m (p = 0.03, r = 0.44) and 20 m (p = 0.02, r = 0.50). PP and PPa from SJ0 and CMJ0 were significantly correlated to 10m sprint time (p \u3c 0.05, r = −0.45 to −0.53) and 20 m sprint time (p \u3c 0.05, r = −0.40 to −0.49). Our findings agree with previous literature in that body composition and power characteristics are directly related to soccer-related performance

    CNARA: reliability assessment for genomic copy number profiles

    Full text link
    BACKGROUND DNA copy number profiles from microarray and sequencing experiments sometimes contain wave artefacts which may be introduced during sample preparation and cannot be removed completely by existing preprocessing methods. Besides, large derivative log ratio spread (DLRS) of the probes correlating with poor DNA quality is sometimes observed in genome screening experiments and may lead to unreliable copy number profiles. Depending on the extent of these artefacts and the resulting misidentification of copy number alterations/variations (CNA/CNV), it may be desirable to exclude such samples from analyses or to adapt the downstream data analysis strategy accordingly. RESULTS Here, we propose a method to distinguish reliable genomic copy number profiles from those containing heavy wave artefacts and/or large DLRS. We define four features that adequately summarize the copy number profiles for reliability assessment, and train a classifier on a dataset of 1522 copy number profiles from various microarray platforms. The method can be applied to predict the reliability of copy number profiles irrespective of the underlying microarray platform and may be adapted for those sequencing platforms from which copy number estimates could be computed as a piecewise constant signal. Further details can be found at https://github.com/baudisgroup/CNARA . CONCLUSIONS We have developed a method for the assessment of genomic copy number profiling data, and suggest to apply the method in addition to and after other state-of-the-art noise correction and quality control procedures. CNARA could be instrumental in improving the assessment of data used for genomic data mining experiments and support the reliable functional attribution of copy number aberrations especially in cancer research

    Robust Control Synthesis and Verification for Wire-Borne Underactuated Brachiating Robots Using Sum-of-Squares Optimization

    Full text link
    Control of wire-borne underactuated brachiating robots requires a robust feedback control design that can deal with dynamic uncertainties, actuator constraints and unmeasurable states. In this paper, we develop a robust feedback control for brachiating on flexible cables, building on previous work on optimal trajectory generation and time-varying LQR controller design. We propose a novel simplified model for approximation of the flexible cable dynamics, which enables inclusion of parametric model uncertainties in the system. We then use semidefinite programming (SDP) and sum-of-squares (SOS) optimization to synthesize a time-varying feedback control with formal robustness guarantees to account for model uncertainties and unmeasurable states in the system. Through simulation, hardware experiments and comparison with a time-varying LQR controller, it is shown that the proposed robust controller results in relatively large robust backward reachable sets and is able to reliably track a pre-generated optimal trajectory and achieve the desired brachiating motion in the presence of parametric model uncertainties, actuator limits, and unobservable states.Comment: 8 pages, 12 figures, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey

    Get PDF
    Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are shaped by the distribution of gas in the host galaxy and by the geometry of the circumnuclear obscuration, and thus they can be used to test the AGN unification model. In this work, we quantify the morphologies of the narrow-line regions in 308 nearby AGNs (z=0−0.14z=0-0.14, \lbol ∼1042.4−44.1\sim 10^{42.4-44.1} \erg{}) from the MaNGA survey. Based on the narrow-line region maps, we find that a large fraction (81\%) of these AGN have bi-conical NLR morphology. The distribution of their measured opening angles suggests that the intrinsic opening angles of the ionization cones has a mean value of 85--98∘^\circ with a finite spread of 39-44∘^\circ (1-σ\sigma). Our inferred opening angle distribution implies a number ratio of type I to type II AGN of 1:1.6--2.3, consistent with other measurements of the type I / type II ratio at low AGN luminosities. Combining these measurements with the WISE photometry data, we find that redder mid-IR color (lower effective temperature of dust) corresponds to stronger and narrower photo-ionized bicones. This relation is in agreement with the unification model that suggests that the bi-conical narrow-line regions are shaped by a toroidal dusty structure within a few pc from the AGN. Furthermore, we find a significant alignment between the minor axis of host galaxy disks and AGN ionization cones. Together, these findings suggest that obscuration on both circumnuclear (∼\sim pc) and galactic (∼\sim kpc) scales are important in shaping and orienting the AGN narrow-line regions.Comment: 14 pages, 7 figures, and 1 table, accepted for publication in MNRA

    arrayMap 2014: an updated cancer genome resource

    Get PDF
    Somatic copy number aberrations (CNA) represent a mutation type encountered in the majority of cancer genomes. Here, we present the 2014 edition of arrayMap (http://www.arraymap.org), a publicly accessible collection of pre-processed oncogenomic array data sets and CNA profiles, representing a vast range of human malignancies. Since the initial release, we have enhanced this resource both in content and especially with regard to data mining support. The 2014 release of arrayMap contains more than 64 000 genomic array data sets, representing about 250 tumor diagnoses. Data sets included in arrayMap have been assembled from public repositories as well as additional resources, and integrated by applying custom processing pipelines. Online tools have been upgraded for a more flexible array data visualization, including options for processing user provided, non-public data sets. Data integration has been improved by mapping to multiple editions of the human reference genome, with the majority of the data now being available for the UCSC hg18 as well as GRCh37 versions. The large amount of tumor CNA data in arrayMap can be freely downloaded by users to promote data mining projects, and to explore special events such as chromothripsis-like genome pattern

    Atrial fibrillation and electrophysiology in transgenic mice with cardiac-restricted overexpression of FKBP12

    Get PDF
    Cardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation
    • …
    corecore