2,914 research outputs found
Shade and leaf retention: an aspect of effective Coffee Leaf Rust management
Coffee Leaf Rust (CLR) has been reported in over 50 coffee growing countries causing significant economic losses in Arabica coffee. The aim of this study was to determine the effect of shade on leaf life span in relation to severity of coffee leaf rust. To achieve this objective, three shade levels (shaded, partial shade, unshaded) were applied in three agro-ecological zones (AEZ) i.e. Upper-Midland (UM) I, II and III. Each treatment was replicated 4 times in 7 farms in each AEZ. All the farms had similar agronomic management levels. Infected leaves were counted per tree and disease severity was scored every month, between January and September, 2014 which is the peak period for CLR. Yields per plot were estimated using the method of Cilas and Descroix, 2004. The results showed that shaded trees retained the infected leaves 8 weeks longer than the unshaded in all the agro-ecological zones. Similarly, yield estimate from the shaded coffee (1521kg/ha clean coffee) was significantly higher than the unshaded (1050kg/ha clean coffee). Although leaves remain longer on shaded trees, allowing more time for the disease to develop and progress, severity level of shaded trees remains lower (12.8%) than unshaded (19.0%), suggesting the expression of regulation mechanism under the control of shade. Moreover, full shade generated by dense canopy, such as the one from mango or avocado tree best manages CLR across all the tested three agro-ecological zones
Full-wave electromagnetic modes and hybridization in nanoparticle dimers
The plasmon hybridization theory is based on a quasi-electrostatic approximation of the Maxwell’s equations. It does not take into account magnetic interactions, retardation effects, and radiation losses. Magnetic interactions play a dominant role in the scattering from dielectric nanoparticles. The retardation effects play a fundamental role in the coupling of the modes with the incident radiation and in determining their radiative strength; their exclusion may lead to erroneous predictions of the excited modes and of the scattered power spectra. Radiation losses may lead to a significant broadening of the scattering resonances. We propose a hybridization theory for non-Hermitian composite systems based on the full-Maxwell equations that, overcoming all the limitations of the plasmon hybridization theory, unlocks the description of dielectric dimers. As an example, we decompose the scattered field from silicon and silver dimers, under different excitation conditions and gap-sizes, in terms of dimer modes, pinpointing the hybridizing isolated-sphere modes behind them
Lagrangian Variational Framework for Boundary Value Problems
A boundary value problem is commonly associated with constraints imposed on a
system at its boundary. We advance here an alternative point of view treating
the system as interacting "boundary" and "interior" subsystems. This view is
implemented through a Lagrangian framework that allows to account for (i) a
variety of forces including dissipative acting at the boundary; (ii) a
multitude of features of interactions between the boundary and the interior
fields when the boundary fields may differ from the boundary limit of the
interior fields; (iii) detailed pictures of the energy distribution and its
flow; (iv) linear and nonlinear effects. We provide a number of elucidating
examples of the structured boundary and its interactions with the system
interior. We also show that the proposed approach covers the well known
boundary value problems.Comment: 41 pages, 3 figure
Ablation of smooth muscle myosin heavy chain SM2 increases smooth muscle contractility and results in postnatal death in mice
The smooth muscle myosin heavy chains (SMHC) are motor proteins powering smooth muscle contraction. Alternate splicing of SHMC gene at the C-terminus produces SM1, and SM2 myosin isoforms; SM2 (200 kDa) contains a unique 9-amino-acid sequence at the carboxyl terminus, whereas SM1 (204 kDa) has a 43 amino acid non-helical tail region. To date the functional difference between C-terminal isoforms has not been established; therefore, we used an exon-specific gene targeting strategy and generated a mouse model specifically deficient in SM2. Deletion of exon-41 of the SMHC gene resulted in a complete loss of SM2 in homozygous (_SM2^-/-^_) mice, accompanied by a concomitant down-regulation of SM1 in bladders. While heterozygous (_SM2^+/-^_) mice appeared normal and fertile, _SM2^-/-^_ mice died within 30 days after birth. The peri-mortal _SM2^-/-^_ mice showed reduced body weight, distention of the bladder and alimentary tract, and end-stage hydronephrosis. Interestingly, strips from _SM2^-/-^_ bladders showed increased contraction to K^+^ depolarization or M3 receptor activation. These results suggest that SM2 myosin has a distinct functional role in smooth muscle, and the deficiency of SM2 increases smooth muscle contractility, and causes dysfunctions of smooth muscle organs, including the bladder that leads to the end-stage hydronephrosis and postnatal death
Anomalous electromagnetic coupling via entanglement at the nanoscale
This is the final version of the article. Available from IoP Publishing via the DOI in this record.Understanding unwanted mutual interactions between devices at the nanoscale is crucial for the study of the electromagnetic compatibility in nanoelectronic and nanophotonic systems. Anomalous electromagnetic coupling (crosstalk) between nanodevices may arise from the combination of electromagnetic interaction and quantum entanglement. In this paper we study in detail the crosstalk between two identical nanodevices, each consisting of a quantum emitter (atom, quantum dot, etc), capacitively coupled to a pair of nanoelectrodes. Using the generalized susceptibility concept, the overall system is modeled as a two-port within the framework of the electrical circuit theory and it is characterized by the admittance matrix. We show that the entanglement changes dramatically the physical picture of the electromagnetic crosstalk. In particular, the excitation produced in one of the ports may be redistributed in equal parts between both the ports, in spite of the rather small electromagnetic interactions. Such an anomalous crosstalk is expected to appear at optical frequencies in lateral GaAs double quantum dots. A possible experimental set up is also discussed. The classical concepts of interference in the operation of electronic devices, which have been known since the early days of radio-communications and are associated with electromagnetic compatibility, should then be reconsidered at the nanoscale.This research was supported in part by the EU Horizon 2020 project H2020-MSCA-RISE-2014-644076 CoExAN and EU FP7 projects, FP7-PEOPLE-2012-IRSES-316432 QOCaN and FP7-PEOPLE-2013-IRSES-612285 CANTOR. Discussions of the basic ideas underlying this work with Dr S Starobinets and Dr D Mogilevtsev are acknowledged
Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth
Ellagic acid (EA) is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A), an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376) by in vitro proliferation tests (measuring metabolic and foci forming activity), invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1), an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer
Quantum entanglement in electric circuits: From anomalous crosstalk to electromagnetic compatibility in nano-electronics
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record..We show that the electromagnetic coupling at the nanoscale may be accompanied by another coupling mechanism, related to quantum entanglement. Consequently, a combined 'electromagnetic-quantum' coupling is created, which stipulates long-distance and long-living interactions in electric circuits. Manifestation of this effect in electromagnetic compatibility (EMC) is discussed. An efficient theoretical framework for EMC analysis in nanoelectronics is developed based on the generalized theory of electric circuits. It is shown that the action of quantum entanglement is equivalent to an addition of the supplementary elements in electric circuit with the effective admittances defined as general susceptibilities that can be calculated using the Kubo-technique.This work was supported in part by EU grants FP7-PEOPLE-2009-IRSES-
247007 CACOMEL and FP7-PEOPLE-2013-IRSES- 612285 CANTOR
RF assisted switching in magnetic Josephson junctions
We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications
A δ-free approach to quantization of transmission lines connected to lumped circuits
The quantization of systems composed of transmission lines connected to lumped circuits poses significant challenges, arising from the interaction between continuous and discrete degrees of freedom. A widely adopted strategy, based on the pioneering work of Yurke and Denker, entails representing the lumped circuit contributions using Lagrangian densities that incorporate Dirac δ-functions. However, this approach introduces complications, as highlighted in the recent literature, including divergent momentum densities, necessitating the use of regularization techniques. In this work, we introduce a δ-free Lagrangian formulation for a transmission line capacitively coupled to a lumped circuit without the need for a discretization of the transmission line or mode expansions. This is achieved by explicitly enforcing boundary conditions at the line ends in the principle of least action. In this framework, the quantization and the derivation of the Heisenberg equations of the network are straightforward. We obtain a reduced model for the lumped circuit in the quantum Langevin form, which is valid for any coupling strength between the line and the lumped circuit. We apply our approach to an analytically solvable network consisting of a semi-infinite transmission line capacitively coupled to an LC circuit and study the behavior of the network as the coupling strength varies
- …
