12 research outputs found

    Dysfunction of the Clinical Effect of Levonorgestrel Treatment of Dysfunctional Uterine Bleeding

    Get PDF
    Objective: Study clinical curative effect of levonorgestrel treatment on perimenopausal dysfunctional uterine bleeding. Method: Selected 126 outpatient of dysfunctional uterine bleeding which hospitalize from December 2010 to December 2012 at department of gynaecology to undergo levonorgestrel treatment on the 5‒7 days of menstruation. The endometrial thickness, hemoglobin, and the PBAC score of before and 3, 6, and 12 months after placement were observed and recorded. To observation the adverse reactions after levonorgestrel treatment. Results: After treatment, the thickness of the endometrium, the amount of menstruation and the hemoglobin concentration increased in 126 patients. During the treatment, 21 patients experienced mild dizziness and nausea, but did not affect the drug use and efficacy. Conclusion: Effects of levonorgestrel on intrauterine treatment of perimenopausal dysfunctional uterine bleeding can effectively reduce the amount of menstruation and increase hemoglobin levels. It is economic, simple, less adverse reaction, and widely entrenched in clinical practice

    NCOA5 Haploinsufficiency in Myeloid-Lineage Cells Sufficiently Causes Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma

    Get PDF
    BACKGROUND & AIMS: The nuclear receptor coactivator 5 (NCOA5) is a putative type 2 diabetes susceptibility gene. NCOA5 haploinsufficiency results in the spontaneous development of nonalcoholic fatty liver disease (NAFLD), insulin resistance, and hepatocellular carcinoma (HCC) in male mice; however, the cell-specific effect of NCOA5 haploinsufficiency in various types of cells, including macrophages, on the development of NAFLD and HCC remains unknown. METHODS: Control and myeloid-lineage-specific Ncoa5 deletion (Ncoa5(ΔM/+)) mice fed a normal diet were examined for the development of NAFLD, non-alcoholic steatohepatitis (NASH), and HCC. Altered genes and signaling pathways in the intrahepatic macrophages of Ncoa5(ΔM/+) male mice were analyzed and compared with that of obese human individuals. The role of platelet factor 4 (PF4) in macrophages and the underlying mechanism by which PF4 affects NAFLD/NASH were explored in vitro and in vivo. PF4 expression in HCC patient specimens and prognosis was examined. RESULTS: Myeloid-lineage-specific Ncoa5 deletion sufficiently causes spontaneous NASH and HCC development in male mice fed a normal diet. PF4 overexpression in Ncoa5(ΔM/+) intrahepatic macrophages is identified as a potent mediator to trigger lipid accumulation in hepatocytes by inducing lipogenesis-promoting gene expression. The transcriptome of intrahepatic macrophages from Ncoa5(ΔM/+) male mice resembles that of obese human individuals. High PF4 expression correlated with poor prognosis of HCC patients and increased infiltrations of M2 macrophages, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs) in HCCs. CONCLUSIONS: Our findings reveal a novel mechanism for the onset of NAFLD/NASH and HCC initiated by NCOA5-deficient macrophages, suggesting the NCOA5-PF4 axis in macrophages as a potential target for developing preventive and therapeutic interventions against NAFLD/NASH and HCC

    Hyperpolarization-activated cyclic nucleotide-gated cation channel 3 promotes HCC development in a female-biased manner

    Get PDF
    Sex differences in hepatocellular carcinoma (HCC) development are regulated by sex and non-sex chromosomes, sex hormones, and environmental factors. We previously reported that Ncoa5(+/-) mice develop HCC in a male-biased manner. Here we show that NCOA5 expression is reduced in male patient HCCs while the expression of an NCOA5-interacting tumor suppressor, TIP30, is lower in female HCCs. Tip30 heterozygous deletion does not change HCC incidence in Ncoa5(+/-) male mice but dramatically increases HCC incidence in Ncoa5(+/-) female mice, accompanied by hepatic hyperpolarization-activated cyclic nucleotide-gated cation channel 3 (HCN3) overexpression. HCN3 overexpression cooperates with MYC to promote mouse HCC development, whereas Hcn3 knockout preferentially hinders HCC development in female mice. Furthermore, HCN3 amplification and overexpression occur in human HCCs and correlate with a poorer prognosis of patients in a female-biased manner. Our results suggest that TIP30 and NCOA5 protect against female liver oncogenesis and that HCN3 is a female-biased HCC driver

    Predicting Academic Performance: A Systematic Literature Review

    Get PDF
    The ability to predict student performance in a course or program creates opportunities to improve educational outcomes. With effective performance prediction approaches, instructors can allocate resources and instruction more accurately. Research in this area seeks to identify features that can be used to make predictions, to identify algorithms that can improve predictions, and to quantify aspects of student performance. Moreover, research in predicting student performance seeks to determine interrelated features and to identify the underlying reasons why certain features work better than others. This working group report presents a systematic literature review of work in the area of predicting student performance. Our analysis shows a clearly increasing amount of research in this area, as well as an increasing variety of techniques used. At the same time, the review uncovered a number of issues with research quality that drives a need for the community to provide more detailed reporting of methods and results and to increase efforts to validate and replicate work.Peer reviewe

    Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense

    No full text
    Introduction: Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare. Objectives: We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton. Methods: Through genome assembly of one perennial Gb cotton accession (named Gb_M210936) and comparative genome analysis, variations during Gb cotton domestication were identified by comparing Gb_M210936 with annual Gb accession 3–79 and with wild allotetraploid cotton G. darwinii. Six perennial Gb accessions combining with the resequenced 1,129 cotton accessions were used to conduct population and genetic analysis. Large haplotype blocks (haploblocks), generated from interspecific introgressions and intraspecific inversions, were identified and were used to analyze their effects on population differentiation and agronomic traits of sea-island cotton. Results: One reference genome of perennial sea-island cotton was assembled. Representative SVs in sea-island cotton were identified, and 31 SVs were found to be associated with agronomic traits. Perennial Gb cotton had a closer kinship with the wild-to-landrace continuum Gb cotton from south America where Gb cotton is originally domesticated. Haploblocks were associated with agronomic traits improvement of sea-island cotton, promoted sea-island cotton differentiation into three subgroups, were suffered from breeding selection, and may drive Gb cotton to be adapted to central Asian. Conclusion: Our study made up the lack of perennial Gb cotton genome, and clarified that exotic introgressions improved the traits of sea-island cotton, promoted the population differentiation, and drove sea-island cotton adaptive to central Asia, which will provide new insights for the genetic breeding improvement of sea-island cottons

    Hyperpolarization-activated cyclic nucleotide-gated cation channel 3 promotes HCC development in a female-biased manner

    No full text
    Summary: Sex differences in hepatocellular carcinoma (HCC) development are regulated by sex and non-sex chromosomes, sex hormones, and environmental factors. We previously reported that Ncoa5+/− mice develop HCC in a male-biased manner. Here we show that NCOA5 expression is reduced in male patient HCCs while the expression of an NCOA5-interacting tumor suppressor, TIP30, is lower in female HCCs. Tip30 heterozygous deletion does not change HCC incidence in Ncoa5+/− male mice but dramatically increases HCC incidence in Ncoa5+/− female mice, accompanied by hepatic hyperpolarization-activated cyclic nucleotide-gated cation channel 3 (HCN3) overexpression. HCN3 overexpression cooperates with MYC to promote mouse HCC development, whereas Hcn3 knockout preferentially hinders HCC development in female mice. Furthermore, HCN3 amplification and overexpression occur in human HCCs and correlate with a poorer prognosis of patients in a female-biased manner. Our results suggest that TIP30 and NCOA5 protect against female liver oncogenesis and that HCN3 is a female-biased HCC driver

    Structure–Property Study on Two New D–A Type Materials Comprising Pyridazine Moiety and the OLED Application as Host

    No full text
    In this paper, two new pyridazine based donor–acceptor type materials, i.e., 3CzPyaPy: 9,9â€Č-(3-(6-(9H-carbazol-9-yl)­pyridazin-3-yl)­pyridine-2,6-diyl)­bis­(9H-carbazole) and 4CzPyPyaPy: 3,6-bis­(2,6-di­(9H-carbazol-9-yl)­pyridin-3-yl)­pyridazine, were synthesized with high yields. These two materials exhibited strong absorption/emission with high molar extinction coefficients and moderate photoluminescence quantum yield. The glass transition temperature of 3CzPyaPy was detected to be as high as 131 °C, showing its high thermal stability. Although the absorption energies and oxidation/reduction behaviors of the two materials were similar, the emission from 4CzPyPyaPy with longer effective-conjugation length presented hypsochromic shift both in films and in dilute solutions, contradicting to the common sense. The single crystal structure study disclosed their different space stretching and packing: 3CzPyaPy was twisted in larger angles and adopted dimerlike packing, while 4CzPyPyaPy showed smaller torsion angles and exhibited slipped herringbone packing. The dimerlike packing in 3CzPyaPy is responsible for its bathochromic shift of emission in solid state, while its unsymmetrical molecular structure accounts for that in solution. We believe that the unsymmetrical molecular structure of 3CzPyaPy is partially responsible for its high thermal-stability and also responsible for its HOMO dispersion which renders it slightly more difficult to oxidize. 3CzPyaPy was proved to be a bipolar-transport material and when served as a phosphor host, a green phosphorescent device achieved maximum efficiencies of 54.0 cd A<sup>–1</sup>, 42.4 lm W<sup>–1</sup>, and 17.7%, which are among the best with nonoptimized device structure, demonstrating its great potential for optoelectronic application. Furthermore, the new synthesized pyridazine derivatives and the corresponding structural and molecular-packing influences on material properties give a new insight into molecule tailoring
    corecore