164 research outputs found

    The Role of Bacteria and Fungi on Forage Degradation \u3ci\u3ein Vitro\u3c/i\u3e

    Get PDF
    The study was conducted to evaluate the interactive role of bacteria and fungi on forage degradation in vitro. Samples of Cynodon spp. were incubated in a 48-h in vitro gas assay with incubation medium containing or not antimicrobial substances. Treatments were: antibiotic (Ab), antifungal (Af), negative control (i.e. without antimicrobials) or positive control (i.e. with both Ab and Af). Three replicate assays were conducted and, in each assay the gas volume was measured at 3, 6, 9, 12, 24, 36 and 48 h of incubation. Data of cumulative gas production in each flask in each assay was fitted to a one-pool logistic model which generated three kinetic parameters: total gas production, rate of gas production and lag time. For statistical analysis, data of triplicates in each run were averaged and each run was considered a replicate. All variables were significantly affected by treatments (P \u3c 0.05). Compared to negative control treatment, Ab decreased total gas production and the rate of gas production by 26 and 13 %, respectively, and increased the lag time by 5.5 hours. The inclusion of Af also decreased total gas production and the rate of gas production by 5 and 29%, respectively, whereas decreased the lag time by 1 hour. When both Ab and Af were included in the incubation medium, gas production was almost completely inhibited and no convergent data of fermentation parameters was generated. In conclusion, bacteria had a major role on forage degradation what, however, was increased by fungi activity. The mechanisms by which fungi interact with bacteria for degrading forage into the rumen needs to be elucidated

    RESVERATROL INCLUSION COMPLEX WITH β-CYCLODEXTRIN (RCD): CHARACTERIZATION AND EVALUATION OF TOXICITY IN WISTAR RATS

    Get PDF
    Objective: The aim of this study was to characterise the resveratrol inclusion complex with β-cyclodextrin (RCD) and evaluate their toxicity in wistar rats.Methods: The RCD were prepared in ultra-turrax. For characterization of the RCD were used: Fourier transform infra-red Spectroscopy, Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimetry (DSC) and X-ray powder diffraction. The RCD and others 4 treatments were performed by the chronic oral administration in 35 rats during 60 ds. After the treatments they were euthanized and the serum blood were collected to analyzed some hemogram and biochemical parameters including aspartyl aminotransferase (AST); alanine aminotransferase (AST); phosphatase alkaline (ALP); total bilirubin (TB); direct bilirubin (DB); total protein (TP); total cholesterol (TC), triacylglycerol (TAG), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), calcium, iron and phosphate using fully automated biochemistry analyzer.Results: The characterization results indicated a successful formation of the RCD. All hematological parameters analysed were within the normal values in all the groups. Furthermore, the hemogram and biochemical parameters were significantly (P>0.05) similar to the control group.Conclusion: The daily oral administration during 60 d of RCD are not harmful on blood parameters of Wistar rats. Thus, RCD can be used safely for treatment of some metabolic diseases

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    Get PDF
    There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
    corecore