246 research outputs found

    Beyond EICA : understanding post-establishment evolution requires a broader evaluation of potential selection pressures

    Get PDF
    Research on post-establishment evolution in nonnative plant populations has focused almost exclusively on testing the Evolution of Increased Competitive Ability (EICA) hypothesis, which posits that the lack of specialized herbivores in the invaded range drives evolution in nonnative plant populations. Fifteen years of conflicting EICA test results suggest that selection pressures other than specialized herbivory are important in driving post-establishment evolution in invasive species. Alternative hypotheses, such as the Evolution of Reduced Competitive Ability (ERCA) hypothesis, have been proposed but have received little attention or testing. We argue that the lack of consensus across studies that test EICA may be due in part to the lack of consistent definitions and varying experimental design parameters, and that future research in this field would benefit from new methodological considerations. We examined previous work evaluating post-establishment evolution and evaluated the range of study systems and design parameters used in testing the EICA hypothesis. Our goal was to identify where different uses of ecological terms and different study parameters have hindered consensus and to suggest a path forward to move beyond EICA in post-establishment evolution studies. We incorporated these methods into a design framework that will increase data harmony across future studies and will facilitate examinations of any potential selection pressure driving evolution in the invaded range

    Invasion science, ecology and economics : seeking roads not taken

    Get PDF
    As members of the editorial board of Neobiota who, for various reasons, didn’t get our names on the original editorial (Kühn et al. 2011), we would like to add a coda to it. Even though there were 38 bullet points listing areas in invasion science where more work is needed, we would like to mention additional areas that we hope would be addressed in future issues of Neobiota. Like the other editors, we would like this innovative and exciting new journal to lead the way in all areas of invasion science. As the graphs in Gurevitch et al. (2011) and Kühn et al. (2011) show, the literature on invasions has been increasing almost exponentially since the early 1980s and so we cannot expect any list of areas of interest to stay complete and up to date for very long. Three areas that we would like to stress are the interaction between invasion science and economics and the role that invasion science should play in advancing pure ecology in two areas, population dynamics and ecosystem ecology. Neither ecology nor economics appears as a word in the original bullet list, but many of the topics are obviously ecological while none are obviously economic. For economics, we want to point out its relevance to invasion science and the feedback between the two disciplines, particularly in a rapidly changing world with powerful new emerging economies. For ecology, we want to emphasise not what ecology tells us about invasions but what invasions reveal about ecology and evolution at two scales

    \u3cem\u3ePhragmites australis\u3c/em\u3e: It\u27s Not All Bad

    Get PDF

    A conceptual map of invasion biology: Integrating hypotheses into a consensus network

    Get PDF
    Background and aims Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. Results The resulting network was analysed with a link‐clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). Significance The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography

    Invasive Alien Species in an Era of Globalization

    Get PDF
    Globalization facilitates the spread of invasive alien species (IAS) as international commerce develops new trade routes, markets, and products. New technologies increase the pace at which humans and commodities can move around the world. Recent research on IAS at the global scale has examined commerce and travel in order to inform predictions, risk analyses, and policy. Due to limited data, regional-scale studies have primarily focused on invasion patterns rather than impacts. Local-scale experimental research can identify mechanisms and impacts of biological invasions, but the results may not be applicable at larger spatial scales. However, the number of information networks devoted to IAS is increasing globally and may help integrate IAS research at all scales, particularly if data sharing and compatibility can be improved. Integrating ecological and economic factors with trade analysis to explore the effectiveness of different approaches for preventing invasions is a promising approach at the global scale. La globalización facilita la extensión de especies invasoras no-nativas (EIN) por medio del aumento del comercio internacional en nuevas rutas, mercados y productos. Nuevas tecnologías incrementan la tasa de movimiento de seres humanos y sus comodidades alrededor del mundo. Investigaciones recientes sobre las EIN a la escala mundial han examinado el comercio y la transportación para poder informar predicciones, riesgos ecológicos y políticas. Debido a los datos limitados, los estudios a la escala regional se han concentrado en los patrones de invasión de las EIN en lugar de sus impactos. Los estudios experimentales a la escala local pueden identificar mecanismos e impactos de estas invasiones biológicas, pero los resultados no pueden ser aplicados a grandes escalas. Sin embargo, el número de redes de información dedicados a las EIN esta incrementando a nivel mundial y podrán ayudar integrar este tema de investigación a todas las escalas, particularmente si se mejora la accesibili-dad y la compatibilidad de los datos. La integración de factores ecológicos y económicos con el análisis de patrones de comercio es un método prometedor para explorar la eficacia de diferentes estrategias diseñadas para prevenir invasiones a la escala global

    Biosecurity: Moving toward a Comprehensive Approach

    Get PDF
    Biosecurity itself is more than a buzzword; it is the vital work of strategy, efforts, and planning to protect human, animal, and environmental health against biological threats. The primary goal of biosecurity is to protect against the risk posed by disease and organisms; the primary tools of biosecurity are exclusion, eradication, and control, supported by expert system management, practical protocols, and the rapid and efficient securing and sharing of vital information. Biosecurity is therefore the sum of risk management practices in defense against biological threats. (NASDA 2001, p.

    Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes

    Get PDF
    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration

    Ecology of Phragmites australis and responses to tidal restoration

    Get PDF
    Tidal Marsh Restoration provides the scientific foundation and practical guidance necessary for coastal zone stewards to initiate salt marsh tidal restoration programs. The book compiles, synthesizes, and interprets the current state of knowledge on the science and practice of salt marsh restoration, bringing together leaders across a range of disciplines in the sciences (hydrology, soils, vegetation, zoology), engineering (hydraulics, modeling), and public policy, with coastal managers who offer an abundance of practical insight and guidance on the development of programs. The book is an essential work for managers, planners, regulators, environmental and engineering consultants, and others engaged in planning, designing, and implementing projects or programs aimed at restoring tidal flow to tide-restricted or diked salt marshes.https://scholarworks.wm.edu/asbookchapters/1065/thumbnail.jp

    Phragmites australis as a model organism for studying plant invasions

    Get PDF
    © 2016, Springer International Publishing Switzerland. The cosmopolitan reed grass Phragmites australis (Poaceae) is an intensively studied species globally with a substantial focus in the last two decades on its invasive populations. Here we argue that P. australis meets the criteria to serve as a model organism for studying plant invasions. First, as a dominant species in globally important wetland habitats, it has generated significant pre-existing research, demonstrating a high potential for funding. Second, this plant is easy to grow and use in experiments. Third, it grows abundantly in a wide range of ecological systems and plant communities, allowing a broad range of research questions to be addressed. We formalize the designation of P. australis as a model organism for plant invasions in order to encourage and standardize collaborative research on multiple spatial scales that will help to integrate studies on the ecology and evolution of P. australis invasive populations, their response to global environmental change, and implications for biological security. Such an integrative framework can serve as guidance for studying invasive plant species at the population level and global spatial scale
    corecore