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Chapter 5

Ecology of Phragmites australis and Responses
to Tidal Restoration

Randolph M. Chambers, Laura A. Meyerson,

and Kimberly L. Dibble

Tidal wetland restoration typically has as one of its primary goals the reestablish-
ment of ecosystem-level functions and services to marsh habitats degraded by re-
ductions in tidal flow. On a fundamental level, reduction or restriction of tidal
flooding alters the wetland environment so dramatically that soils, hydrology, and
vegetation are all impacted, so that wetland function de facto is changed. Luckily,
restoration of tidal flows in many wetlands can reverse some of the functional
changes caused by tidal restriction.

Smith andWarren (chap. 4, this volume) considered the more general topic of
vegetative responses to tidal restoration. This chapter focuses on one notable plant
species—Phragmites australis (common reed)—that has a checkered past with re-
spect to its invasion, spread, and impacts in tidal wetlands. Although a number of
Phragmites haplotypes may be native to North American wetlands, a putative,
nonnative haplotype introduced sometime in the nineteenth century rapidly ex-
panded into tidal wetlands of New England. The nonnative haplotype has since
expanded across the entire continent of North America, wreaked havoc on wet-
land plant diversity, altered animal communities, and changed soil and hydrologic
features of invaded wetlands, to the point where many wetland management
programs specifically target the removal of nonnative Phragmites. Phragmites is
fairly salt tolerant, but the species appears to be better adapted to high marsh and
lower salinity conditions. Whether Phragmites invasion and expansion are causes
or consequences of wetland alteration, restoration of tidal flows is often an ef-
fective tool for replacing the nonnative Phragmites with native vegetation adapted
to more extensive flooding and elevated salinity. Within the broader context of
wetland management in a time of coastal eutrophication and rising sea level,
however, Phragmites-dominated wetlands can contribute valuable ecosystem

81T. Roman and D.M. Burdick (eds.),  C.  Tidal Marsh Restoration: A Synthesis of Science
and Management, The Science and Practice of Ecological Restoration, DOI 10.5822/978-1-61091-229-7_5, 
© 2012 Island Press



functions and services that contribute to human and estuarine welfare. This chap-
ter reviews the ecology of Phragmites australis, its legacy borne out of past alter-
ation of tidal wetland habitats, and its future in a coastal landscape transformed by
anthropogenic and other forces.

Expansion of Phragmites into Tidal Wetlands

A number of prior reviews have summarized the history of Phragmites expansion
into tidal wetlands in North America (Marks et al. 1994; Chambers et al. 1999;
Meyerson et al. 2009). For probably thousands of years prior to the industrial rev-
olution, Phragmites was part of the mixed-plant community in some high marshes
(Orson 1999). In the past two hundred years, however, the species has become
more broadly distributed at local, regional, and national scales, forming extensive
monocultures often extending into lower tidal elevations, especially in oligoha-
line and mesohaline marshes. In the coastal environment, Phragmites tends to
grow densely around urban population centers (New York, NY; Boston, MA; Phil-
adelphia, PA; Wilmington, DE; Baltimore, MD; and New Orleans, LA), suggest-
ing the initial invasion and subsequent spread of a nonnative form of Phragmites
was facilitated by shipping and boat traffic, or that disturbance of intertidal habi-
tats (e.g., mosquito ditching, shoreline alteration) has been greatest in these de-
veloped regions. Phragmites is now extensive in coastal wetlands throughout New
England, the focal region for this book.

Lelong et al. (2007) suggest the “sleeper-weed” phenomenon to describe the
extended period of acclimatization of the introduced form of Phragmites prior to
its recent and sudden appearance and spread into wetland habitats. Plants estab-
lish in a new location via either seedling or rhizome dispersal, then clonal growth
via root and rhizome extension allows Phragmites to displace other species and in-
hibit the growth of competitors.

The first comprehensive work on genetic diversity of Phragmites in tidal wet-
lands of North America was completed by Saltonstall, who used variation in both
chloroplast and nuclear DNA to identify thirteen haplotypes either native to
North America or introduced in the recent past (Saltonstall 2002; Saltonstall
2003; Meadows and Saltonstall 2007). These two closely related lineages of
Phragmites australis have been designated as subspecies by Saltonstall et al.
(2004). Furthermore, based on past work, multiple introductions of the intro-
duced haplotype M to North America seem likely (Saltonstall et al. 2010). If this
proves indeed to be the case, genetic diversity of introduced Phragmites in North
America may be higher in its introduced range, as is the case for other introduced
grasses such as Phalaris arundinaceae (reed canarygrass) (Lavergne and Molofsky
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2007), potentially contributing to the highly invasive behavior of the introduced
lineage.

Because the native and introduced subspecies are so closely related, it seems
likely that they should be able to interbreed. However, to date no conclusive evi-
dence for this has been detected in wild populations. Various researchers have
speculated that this was due to a phenological barrier, but Meyerson and col-
leagues (2010) have demonstrated overlap of anthesis between multiple native
and introduced populations both in the field and in a common garden experi-
ment. In addition, they have also successfully produced hybrids of the native and
introduced subspecies, although so far all viable offspring have introduced pollen
parents and native seed parents suggesting unidirectional gene flow. Speculation
persists as to why wild hybrids have not thus far been detected in tidal marshes and
include reasons such as undersampling and outbreeding depression (Meyerson et
al. 2010) and salinity constraints on germination and seedling growth (Bart and
Hartman 2003). More recently, dozens of new native populations have been iden-
tified that are within range to interbreed with nonnative populations (Blossey and
Hazelton, pers. comm.). These discoveries increase the possibility that wild hy-
brids will be found.

Introduction of the nonnative strain of Phragmites is considered a prerequisite
for the invasion and spread of this species into tidal wetlands of New England and
Atlantic Canada (Saltonstall 2002). Phragmites exhibits many characteristics of
successful invasive species, summarized by Meyerson et al. (2009). As an early
colonizer of disturbed environments, Phragmites typically establishes in wetlands
that have been recently altered by human activities (Bart et al. 2006; Peterson
and Partyka 2006). Physiologically, the nonnative haplotype exhibits a number
of adaptations to tidal wetland habitats, including effective osmoregulation of
rhizome-started plants in brackish water (Vasquez et al. 2005), tolerance to flood-
ing and to toxic sulfide relative to freshwater species (Chambers et al. 2003),
greater nutrient use efficiency (Saltonstall and Stevenson 2007), greater rates of
photosynthesis and stomatal conductance (Mozdzer and Zieman 2010), greater
rhizome growth (League et al. 2006), and decreased susceptibility to herbivory
relative to native haplotypes (Park and Blossey 2008).

This is the enigma for tidal wetland restoration, in that many wetlands altered
by human intervention—and thus targeted for restoration—have provided the op-
timum conditions to encourage Phragmites invasion and spread (Roman et al.
1984). Indeed, Niering andWarren (1980) considered the presence of Phragmites
a signature of wetland alteration in New England tidal marshes. Even though
Phragmites may become established in apparently pristine wetland sites, it is hu-
man facilitation of Phragmites introduction and spread that is most commonly
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observed (Bart et al. 2006). For much of the twentieth century, Phragmites was
observed invading and spreading into tidal wetlands where some form of physical
disturbance of wetland hydrology, soils, or plant community structure had re-
cently occurred. Much like an early successional species, Phragmites is capable of
exploiting small-scale “safe sites” commensurate with physical habitat disturbance
(Bart and Hartman 2003). Once established, the plant expands primarily via
clonal growth (Amsberry et al. 2000) and quickly becomes a dominant species.

Phragmites is found growing in different wetland types, but this summary fo-
cuses on the incursions of Phragmites into tidal marshes where alterations of tidal
flow have occurred. Implicit in the discussion of the science and management of
tidal flow restoration is the science and management of Phragmites, simply be-
cause the history of Phragmites invasion and spread is tied so closely with wetland
alteration.

Impacts of Phragmites in Tidal Wetlands

Once established, dense stands of Phragmites may grow to heights exceeding 3 to
4 meters and physically prevent or displace native marsh vegetation, including
Spartina alterniflora (smooth cordgrass), S. patens (salt meadow cordgrass), Dis-
tichlis spicata (spikegrass), Juncus romerianus (black needlerush), and other high
marsh species, via competitive dominance for light and nutrients (Windham and
Meyerson 2003; Meyerson et al. 2009) and perhaps allelopathy (Bains et al.
2009). Some of these changes in plant community structure are driven both by
the presence of Phragmites and by the initial alteration of the wetland via re-
stricted tidal flows. Phragmites modifies the biotic environment both at the soil
surface and aboveground, effectively excluding potential competitors (Minchin-
ton et al. 2006) and reducing species diversity (Lambert and Casagrande 2007; Le-
long et al. 2007). Beyond the obvious changes in vegetation, however, Phragmites-
dominated wetlands are significantly different from other tidal marshes in other
ways.

Soil Structure

Phragmites invests a tremendous amount of carbon storage belowground, both as
roots and as rhizomes. Bulk soil organic matter is tied up in both live and dead
Phragmites tissues that effectively form a mat 5 to 20 centimeters thick. The
Phragmites mat and accumulated litter sit atop the wetland soils; combined with
enhanced sediment trapping, the wetland surface in a Phragmites-dominated tidal
marsh tends to grow higher in elevation (Rooth et al. 2003). Further, the root and
rhizome mat creates a more uniform surface elevation of the marsh, yielding less
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variation in microtopography and reducing the density of incipient channel for-
mation (Lathrop et al. 2003). Interestingly, Phragmites is also capable of extending
deep roots through shallow, saltier marsh pore water to plumb deeper freshwater
lenses (Burdick et al. 2001).

In many wetlands where tidal flows have been reduced, however, decreased
tidal flooding and, as a consequence, decreased salinity tend to encourage the in-
troduction and expansion of Phragmites. These same, reduced flow conditions
also tend to oxidize previously deposited wetland peat, so that soil elevation de-
creases relative to sea level. These wetlands with restricted tidal flows experience
both subsidence associated with peat oxidation (Anisfeld, chap. 3, this volume)
and increasing surface elevation associated with Phragmites root and rhizome
deposition.

Hydrology

Especially in tidal wetlands where the flow of saline water has been inhibited,
Phragmites is capable of establishing and expanding (Burdick and Konisky 2003).
Beyond this initial human facilitation, however, Phragmites “engineers” wetland
hydrology in a number of ways. First, because Phragmites grows in dense stands,
movement of tidal water across wetland surfaces is slowed, and hydroperiods are
decreased as a consequence. Not only is the time of inundation typically reduced
in wetlands where Phragmites has been introduced; the depth of flooding is also
shallower. As a result, the Phragmites rhizosphere remains oxidized in even saline
wetlands for extended periods of time. During neap tidal phases, Phragmites-
dominated tidal wetlands may not flood at all (Chambers et al. 2003). These
long periods of rhizosphere exposure are apparently sufficient to offset oxygen or
carbon stress during more extensive periods of inundation during spring tidal
phases.

In many tidal wetlands Phragmites competes with Spartina spp. that are C4

plants adapted to reducing water loss in a hypersaline environment. As a C3 plant,
evapotranspirative fluxes by Phragmites pull more water from the soils than C4

plants and tend to draw down the water table. Water evaporated from the leaf sur-
faces is replaced by root uptake of soil water below the soil surface; in turn, soil wa-
ter is replaced by infiltration. Relative to C4-dominated wetlands, the turnover of
pore water is much faster in Phragmites-dominated wetlands, which may facilitate
both the flushing of toxins and the delivery of nutrient- and oxygen-rich water into
the rhizosphere. Collectively, these hydrologic characteristics appear to create
positive feedbacks of decreased flooding stress and increased plant growth that al-
low Phragmites to establish and thrive in wetlands with reduced or restricted tidal
flooding.
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Animals

Numerous studies have examined the possible change in habitat function and
value as introduced Phragmites expands through tidal-marsh ecosystems. Some
have reported declines in juvenile and larval habitat as the Phragmites invasion
progresses, especially for Fundulus heteroclitus (mummichog; Able et al. 2003;
Able and Hagan 2003; Osgood et al. 2003; Hunter et al. 2006). F. heteroclitus is
the most abundant species in these habitats and is considered a major conduit for
transfer of marsh, epibenthic, and water column production to higher trophic lev-
els (Kneib 1986). In Phragmites-dominated tidal marshes, fish species and crus-
taceans may not be reduced in terms of diversity and total abundance (Warren et
al. 2001). Fell et al. (2003) suggested Phragmites might be a better nursery habitat
for fish and macroinvertebrates relative to oligohaline marshes vegetated by other
plant species. Similarities in nekton abundance have also been shown for Phrag-
mites and non-Phragmites marshes at similar elevation and flooding frequency
(Osgood et al. 2006), suggesting the change in faunal community structure in
tidally restricted wetlands is not driven by Phragmites per se but more by reduc-
tion in tidal flooding. Carbon, nitrogen, and sulfur from Phragmites wetlands is
detected in estuarine food webs (Wainright et al. 2000; Wozniak et al. 2006) and
contributes to the production of marine resident and transient species (Weinstein
et al. 2000), but the relative importance of Phragmites plant detritus in supporting
secondary production in adjacent estuaries has not been quantified.

Phragmites-dominated tidal wetlands in Connecticut have been shown to ex-
hibit fewer birds overall and fewer state-listed species relative to short-grass
marshes dominated by Spartina and other species (Benoit and Askins 1999). In a
recent study in Rhode Island, foraging egrets were never observed in Phragmites
stands (Trocki and Paton 2006). Another study found that neither blue herons nor
egrets nested in Phragmites stands, but that Phragmites patches were critical nest-
ing habitat for some wading birds and also provided a buffer from human distur-
bance (Parsons 2003). As one component of a wetland matrix including other veg-
etation, mudflats, and tidal creeks, Phragmites stands appear to serve as valuable
avian habitat for numerous species, including some marsh specialists. In many de-
graded wetlands with restricted tidal flow, however, Phragmites monocultures are
not utilized as extensively, an outcome related both to the loss of other habitat
types in Phragmites monocultures and perhaps to the absence of tidal exchange.

Biogeochemistry/Nutrient Cycling

Phragmites is a colonizing, early successional species, but it exhibits some charac-
teristics typical of a mature, climax species. So, for example, nutrients tend to be
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recycled fairly tightly in Phragmites stands, and most nutrients are stored in or-
ganic form in the mass of live and standing dead material (Windham and Meyer-
son 2003). The total standing stock of nitrogen in a Phragmites-dominated wet-
land is very large; thus the nitrogen requirements for the plant are large (Meyerson
et al. 2000). Silliman and Bertness (2004) were first to associate local nitrogen en-
richment from shoreline development with Phragmites invasion. Since then, a
number of studies have verified the association of Phragmites establishment and
spread with local nitrogen enrichment from adjacent upland environments.
Wigand andMcKinney (2007) used stable isotopic analysis of plant tissue to show
that Phragmites incorporates nitrogen derived from different types of shoreline de-
velopment. King et al. (2007) found positive correlations between coastal urban-
ization and nitrogen content of Phragmites, a proxy for nitrogen availability/
uptake. Chambers et al. (2008) found that Phragmites occurrence along the
shoreline of Chesapeake Bay was correlated with agriculture in the adjacent up-
lands. Although other mechanisms are plausible, collectively these studies indi-
cate that nutrients derived from upland sources may supplement the limiting pool
of available nitrogen in wetlands. Especially if these high marsh locations have ex-
perienced localized disturbance such as peat disturbance and rhizome burial
(Bart et al. 2006), the combination with nutrient enrichment may facilitate the in-
vasion and spread of Phragmites.

Phragmites appears to exploit forms of nitrogen that are not as readily available
to other wetland species. Mozdzer et al. (2010) found that both Phragmites and
Spartina alterniflora were able to incorporate dissolved organic nitrogen species,
but that the introduced Phragmites had significantly greater urea assimilation
rates than either native Phragmites or S. alterniflora. Ecophysiological differences
including larger nitrogen demands and overall greater photosynthetic rates may
contribute to the success of the introduced haplotype in North American tidal
wetlands, especially in areas of nitrogen enrichment (Mozdzer and Zieman
2010). To this end, watershed-derived nitrogen from freshwater runoff, groundwa-
ter discharge, and atmospheric deposition all may contribute to satisfying nitrogen
demand and facilitate Phragmites establishment and spread in coastal wetlands.

The combination of restricted tidal flows and Phragmites growth tends to draw
down the water table; thus the soils are relatively oxidized. Oxidation of reduced
sulfur compounds (iron monosulfide and pyrite) in Phragmites-dominated marsh
soils can create slight to moderate acidity in the rhizosphere. Metal oxides and
manganese and iron plaques may form on the roots and rhizomes of Phragmites
where phosphorus may be immobilized. These plaques do not seem to limit plant
growth (Batty et al. 2002), although Packett and Chambers (2006) measured high
foliar N:P molar ratios of over 50:1 in Phragmites marshes, suggestive of phospho-
rus limitation. In Phragmites marshes with restricted tidal flows, the physical
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growth form of Phragmites (Windham and Meyerson 2003; Minchinton et al.
2006) and apparent sequestration of a large nutrient pool together are sufficient to
exclude most other plant species.

Responses of Phragmites to Tidal Restoration

Implicit in tidal marsh restoration is a relative increase in the exposure of marsh
soils to flooding by saline water, accomplished via larger culverts, breaching of
dikes, or ditch-plugging (Konisky et al. 2006). Simenstad et al. (2006) ask what we
are restoring to, noting that shifts in both the restoring landscape and external
forcing functions shaping that landscape have to be considered along with the
goals of restoration. With respect to Phragmites, the object of most tidal restora-
tion efforts is to eliminate the nonnative species while encouraging reestablish-
ment of a tidal wetland dominated by native marsh vegetation. Unfortunately, res-
toration pathways are not simply the reverse of prior degradation pathways (Zedler
and Kercher 2005); that is, a hysteretic effect exists for which the wetland may fail
to return to its original state once the external force (in this case, the tidal restric-
tion or invasive species Phragmites) is removed (Valega et al. 2008). To some ex-
tent, tidal wetlands will self-organize when tidal flows are restored and Phragmites
dies back, but some constraints may exist associated with respect to factors both
within and external to the wetland. So, for example, wetland soil structure may be
altered so dramatically that the “restored” vegetation community is different from
that prior to Phragmites invasion. The plant community outcome after reflooding
may be a unique result of species interactions involving the relative stress toler-
ance to physical factors and competitive strength (Konisky and Burdick 2004). In
this study, for example, Phragmites continued growing even in higher-salinity
zones with regular flooding. Finally, the wetland ecosystem may exhibit sufficient
heterogeneity that only some portions successfully “restore” (Callaway 2005). The
surrounding upland watershed and regional environment may have changed to
the extent that the “before Phragmites” wetland type cannot be a realistic end
point for restoration (Warren et al. 2002).

Nevertheless, success stories documenting restoration of tidal flows leading to
reduced or eliminated growth of introduced Phragmites are common. Despite its
remarkable success in degraded polyhaline and even some euhaline marshes,
Phragmites is a brackish marsh species typically occurring in the high marsh.
Phragmites owes its success in degraded marshes to the reduction in tidal flows
that converts a flooded salt marsh to a more exposed brackish marsh. In this sense,
restoration of tidal flows does offer opportunity to allow tidal water, salt, and sul-
fide to stress the invader and encourage native halophytic vegetation (Chambers
et al. 2003; Konisky and Burdick 2004). More saltwater tends to eliminate many of
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the advantages Phragmites has in wetlands with restricted tidal flow, and the spe-
cies moves to higher elevations (Smith et al. 2009). Warren et al. (2002) summa-
rized twenty years of science and management of marsh restoration in Connecti-
cut, noting that “recovery rates”—assessed in part as reduction in various plant
parameters related to Phragmites vigor and coverage—varied more with restora-
tion hydroperiod than with the salinity of the tidal water. Phragmites reduction
was more rapid in wetlands with lower elevation, longer hydroperiod, and higher
water table. Low marsh habitats invaded by Phragmites tended to restore to S. al-
terniflora wetlands in just a few years after reintroduction of tidal flows, whereas
reduction in Phragmites expanse in higher marsh habitats took one to two de-
cades. Return of marsh invertebrates, fish, and avian fauna was variable and did
not always parallel the rates of recovery of native vegetation (Brawley et al. 1998).

Konisky et al. (2006) reported monitoring results from thirty-six tidal salt marsh
restoration projects in Maine and found that replacement of brackish species in-
cluding Phragmites and recovery of halophytes was typically observed three or
more years following restoration. Restoration of tidal flushing in a salt marsh in
Ipswich, Massachusetts, led to variable decreases in Phragmites vigor after four
years (Buchsbaum et al. 2006). In Rhode Island, Roman et al. (2002) found that
restoration of tidal flow in a restricted marsh significantly decreased Phragmites
abundance and height after just one year, and that the entire vegetation commu-
nity was converging toward that of an adjacent, unrestricted tidal marsh. Tidal ex-
change has been enhanced at over sixty-five wetland sites along the Connecticut
coast, with reduction or elimination of Phragmites one of the major outcomes
(Warren et al. 2002; Rozsa, chap. 8, this volume). Based on these studies, restora-
tion of full wetland functionality for higher trophic levels including fish and birds
may take decades (Fell et al. 2000). Further, restoration of tidal flows and elimi-
nation of Phragmites may yield other unintended consequences, as found in a
Rhode Island marsh where greater nest failure by sharp-tailed sparrows initially
was observed owing to flooding of the nests (DeQuinzio et al. 2002).

Restoration success of tidal marshes invaded by Phragmites has primarily been
measured by changes in both plant and nekton communities. Marshes with re-
stricted tidal flow may support large numbers of nekton, but the restrictions limit
contributions of those nekton to estuarine productivity (Eberhardt et al. 2011).
Reducing restrictions and enhancing tidal flooding typically increase the abun-
dance and diversity of fishes and crustaceans (Roman et al. 2002; Jivoff and Able
2003; Able et al. 2004), and increase the support of the estuarine food web (Woz-
niak et al. 2006). In fact, nekton use of the restored marsh surface may occur be-
fore Phragmites is replaced (James-Pirri et al. 2001), with restoration of the most
restricted wetland sites exhibiting the most dramatic shift in nekton assemblages
(Raposa and Roman 2003). In other studies, however, changes in nekton could
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not be demonstrated as a result of tidal restoration and reduction in growth of
Phragmites (Buchsbaum et al. 2006; Raposa 2008), suggesting that nekton abun-
dance and diversity are not directly tied to the presence or vigor of Phragmites.

Most successful tidal restoration programs in polyhaline wetlands have also
been successful Phragmites removal efforts, but many tidally restricted salt
marshes have been opened to tidal flow already; that is, fewer opportunities for res-
toration of restricted salt marshes remain in New England. For oligohaline and
mesohaline wetlands, the timescale for Phragmites removal postrestoration of
tidal flow is variable (Buchsbaum et al. 2006) and may be on the order of decades,
if at all (Warren et al. 2002). Nationally, more opportunities exist for restoring tidal
flows to wetlands in which Phragmites has not yet fully invaded (e.g., the extensive
diked tidelands along the southeastern US coast). In these marshes, tidal restora-
tion can perhaps prevent, rather than cure, invasion of nonnative Phragmites.

Future of Phragmites

As most scientists and managers realize, the objective of tidal wetland restoration
is not necessarily to eliminate Phragmites but to control its dominance. The gen-
eral tidal marsh restoration goal is to restore specific functions and services, some
of which may be provided by Phragmites. Invasion and spread of Phragmites his-
torically have been viewed in a negative sense because the functions and ecosys-
tem services of “pre-Phragmites“ wetlands are deemed more valuable (Hershner
and Havens 2008), yet some Phragmites wetlands do provide important ecosystem
services, including shoreline stabilization in a time of rising sea level, energy dis-
sipation during storm surges, and rapid nutrient uptake during a time of coastal
eutrophication (Ludwig et al. 2003). None of these services are provided by native
Phragmites that historically has been a minor component of tidal wetland com-
munities; beyond the argument for maintaining native diversity, its future in New
England tidal marshes is in doubt. Given the ongoing transformation of the
coastal landscape driven by an expanding human population, global climate
change, and other environmental pressures, the nonnative haplotype of Phrag-
mites may become more valued in New England and Atlantic Canada tidal
marshes during the twenty-first century.
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