THE

Phragmites australis: It's Not All Bad

Laura A. Meyerson
University of Rhode Island, lameyerson@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution

Meyerson, L.A. (2007). Phragmites australis: It's not all bad. Rhode Island Naturalist, 14(1), 5-7.
Available at: http://v1.rinhs.org/resources/ri-naturalist/\#toc-volume-14--number-1-summer-2007

Rhode Island Naturalist

What's

Inside...

* Phragmites australis: It's Not All Bad
*A Different Sort of Invader: The Second Manatee to Visit Rhode Island
*RINHS Hosts the 31st A.L. Andrews Foray
*Banding Birds at Kingston Wildlife Research Station: The 39-Year Legacy of Douglas Kraus
*Distinguished Naturalist Award
*and lots more...

Phragmites australis: It's Not All Bad

ecological changes-some of which are considered beneficial and others that are not. Therefore, as we learn more about this species, we begin to realize that responsible management is perhaps not as straightforward as once thought.

Phragmites is a robust, perennial emergent grass found on every continent with the exception of Antarctica (Tucker 1990). In North America, introduced Phragmites has a wide range of tolerance for environmental conditions and can grow in fresh, brackish, and salt marsh systems (Marks et al. 1994). It establishes new stands both by seed and dispersal of rhizome fragments, but expansion of existing stands is primarily vegetative. Phragmites can produce large quantities of seeds, but germination rates are variable and generally low (Galinato and van der Valk 1986). The slow decomposition of its detritus can significantly reduce the availability of nutrients, light, and space, making the survival or establishment of other plants unlikely (Meyerson 2000, Figure 2).

Native Phragmites populations that historically were abundant are now rare in the Northeast. The few remnant native Phragmites populations that persist in New England salt marshes are under great threat from the continued expansion of introduced Phragmites. Native Phragmites typically is smaller in stature, grows in mixed-plant communities, and has a lower stem density than introduced Phragmites, although populations with high stem densities can occur (Meadows 2006). Native Phragmites is typically less aggressive and appears to have a lower tolerance for salinity and flooding (Vasquez et al. 2005).

Different studies have found varying impacts of introduced Phragmites on plant and animal communities. For example, the outcomes of several studies suggest that detrimental effects of Phragmites on fish communities are ubiquitous among young-of-the-year residents, with potentially important implications for longterm population sustainability and secondary production. Hunter et al. (2006) found that in the mid-Atlantic, the stage of Phragmites invasion (i.e., early, middle, late) influences habitat quality for Fundulus spp. As an invasion progresses, habitat quality for F. heteroclitus (Common Mummichog) and F. luciae (Spotfin Killifish) appears to decline and may even result in the extirpation of the less common F. luciae in mid-Atlantic coastal marshes. At the same time, adult resident fishes have been documented with the same densities among Phragmites and non-Phragmites stands unless

Figure 2. Introduced Phragmites (right) grows in fresh to very brackish marsh systems. Phragmites is an aggressive competitor and can replace native species like native Typha latifolia (Broadleaf Cattail, left). (Drawing by Elizabeth Farnsworth)
there is demonstrable impact on hydrology and microtopography (Able and Hagan 2000, 2003; Able et al. 2003; Fell et al. 2003; Meyer et al. 2001; Osgood et al. 2003). For coastal marsh restoration, this result implies that physical setting can be restored and food web function can be maintained without needing to completely eradicate Phragmites stands. Other studies have shown little or no effect of Phragmites on animal communities and some even suggest benefits. For example, Mclary (2004) found that the abundance of Ribbed Mussels (Geukensia demissa) was greater in introduced Phragmites than in Spartina alterniflora (Smooth Cordgrass) stands in an urban habitat. Clearly much of the evidence remains open to debate and suggests the need for further study.

Restoration of degraded coastal systems has become increasingly important for habitat protection as pressures mount from development, population growth, and global change. In Narragansett Bay, for example, 65% of remaining coastal wetlands have been identified as candidates for restoration because of ditching and tidal restrictions (Tiner et al. 2003). In general, restoration outcomes for systems invaded by Phragmites have been variable. Some restoration efforts have successfully reached plant community goals or have restored
underlying physical marsh processes, while others have failed to prevent Phragmites reinvasion or have not increased productivity. Furthermore, mitigated and created wetlands frequently serve as unintentional nurseries for introduced Phragmites. Constructed tidal wetlands are engineered to encourage growth of native species, but Phragmites often establishes and spreads to the exclusion of these other species (Havens et al. 2003). As a consequence, wetlands lost to development are replaced by created wetlands dominated by Phragmites. However, there is good news about what can be accomplished by a Phragmites restoration. A recent study suggests that utilization of Phragmites relative to Spartina may vary by trophic group. For example, Phragmites invasions may cause arthropod food webs to become detritusbased instead of plant-based because the herbivore assemblages the arthropods depend on are largely absent. This is reversed, however, once salt marsh vegetation is restored (Gratton and Denno 2005, 2006).

An existing gap in knowledge is whether or not the native and introduced strains of Phragmites can interbreed. In multiple sites, native and introduced Phragmites grow together. Despite this overlap, no evidence has been detected for interbreeding between the native and introduced strains. This is surprising given that they are considered to be the same species. However, recent work indicates the potential for interbreeding in the wild by the two subspecies with overlapping flowering periods, since greenhouse experiments have produced hybrid seed (Meyerson and Viola unpublished data).

Somewhat ironically, after extensive resources have been devoted to controlling and eradicating introduced Phragmites, there is a groundswell to protect the remaining stands of native Phragmites, particularly in areas such as the northeastern U.S. A reasoned, science-based debate is urgently needed on this issue so that better management can be undertaken. Because current knowledge on the ecology of native Phragmites is limited, management strategies that would promote the growth of native Phragmites over the introduced form cannot yet be implemented. The rhizomes of native Phragmites tend to be small relative to the introduced type, are more sparsely distributed, and can undergo intense competition from the high diversity of wetland plants in oligohaline and tidal freshwater marsh systems-all factors which are likely to inhibit the natural spread of native Phragmites. To date, native Phragmites has not been used in marsh restoration efforts so its ability to survive and prosper in restored systems is unknown. More basically, we do not yet understand which native populations should be used in marsh restoration, which habitats are most suited for native Phragmites, and what other native plants would best suit a marsh system that was intended to encourage the growth of
native Phragmites. In the absence of growth information on native Phragmites, the precautionary principle should be applied to prioritize preservation of remaining stands of native Phragmites.

Although introduced Phragmites is an aggressive invader and managing these invasions is a high priority, the impacts of this species are still not fully understood and warrant further study. Native populations of Phragmites are rare and many are in need of protection so that we do not lose our native strains. Identification of native Phragmites requires a small amount of training and sharp-eyed naturalists, and ultimately confirmation of the plant's genetics through testing. Learning to distinguish between these two strains is key to responsible management and to preserving our native biological diversity.

Literature Cited

Able, K.W., and S.M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans. Estuaries 23:633-646.
Able, K.W., and S.M. Hagan. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development and larval abundance of mummichog (Fundulus heteroclitus). Estuaries 26:40-50.
Able, K.W., S.M. Hagan, and S.A. Brown. 2003. Mechanisms of marsh habitat alteration due to Phragmites: Response of young of the year mummichog (Fundulus heteroclitus) to treatment for Phragmites removal. Estuaries 26:484-494.
Fell, P.E., R.S. Warren, J.K. Light, R.L. Rawson, and S.M. Fairley. 2003. Comparison of fish and macroinvertebrate use of Typha angustifolia, Phragmites australis, and treated Phragmites marshes along the lower Connecticut River. Estuaries 26:534-551.
Galinato, M.I., and A.G. van der Valk. 1986. Seed germination traits of annuals and emergents recruited during drawdowns in the Delta Marsh, Manitoba, Canada. Aquatic Botany 26:89-102.
Gratton, C., and R. F. Denno. 2005. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restoration Ecology 13:358-372.
Gratton, C., and R.F. Denno. 2006. Arthropod food web restoration following removal of an invasive wetland plant. Ecological Applications 16:622-631.
Havens, K. J., H. Berquist, and W.I. Priest. 2003. Common reed grass, Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future? Estuaries 26:417-422.

Hunter, K.L., D.A. Fox, L.M. Brown, and K.W. Able. 2006. Responses of resident marsh fishes to stages of Phragmites australis invasion in three Mid-Atlantic estuaries. Estuaries and Coasts 29:487-498.
Marks, M.B., B. Lapin, and J. Randall. 1994. Phragmites australis (P. communis): Threats, management, and monitoring. Natural Areas Journal 14:285-294.
Mclary, M., Jr. 2004. Spartina alterniflora and Phragmites australis as habitat for the ribbed mussel, Genkensia demissa (Dillwyn), in Saw Mill Creek of New Jersey's Hackensack Meadowlands. Urban Habitats 2:83-90.
Meadows, R.E. 2006. Aboveground competition between native and introduced Phragmites in two tidal marsh basins in Delaware. M.S. thesis. Department of Biology, Delaware State University, Dover, DE.
Meyer, D.L., J.M. Johnson, and J. W. Gill. 2001. Comparison of nekton use of Phragmites australis and S. alterniflora marshes in the Chesapeake Bay, USA. Marine Ecology Progress Series 209:71-84.
Meyerson, L.A. 2000. Ecosystem-level effects of invasive species: A Phragmites case study in two freshwater tidal marsh ecosystems on the Connecticut River. Ph.D. dissertation. Yale University, New Haven, CT.
Meyerson, L.A., K. Saltonstall, and R.M. Chambers. In press. Phragmites australis in eastern North America: a historical and ecological perspective. In B.R. Silliman, E. Grosholz, and M. D. Bertness (Eds). Salt Marshes Under Global Siege. University of California Press, Berkeley, CA.
Osgood, D.T., D.J. Yozzo, R.M. Chambers, D. Jacobson, T. Hoffman, and J. Wnek. 2003. Tidal hydrology and habitat utilization by resident nekton in Phragmites and non-Phragmites marshes. Estuaries 26:522-533.
Tiner, R.W., I.J. Huber, T. Nuerminger, and A.L. Mandeville. 2003. An Inventory of Coastal Wetlands, Potential Restoration Sites, Wetland Buffers, and Hardened Shorelines for the Narragansett Bay Estuary. National Wetlands Inventory Cooperative Interagency Report. U.S. Fish and Wildlife Service, Northeast Region, Hadley, MA.
Tucker, G.C. 1990. The genera of Arundinoideae (Graminae) in the southeastern United States. Journal of the Arnold Arboretum 71:145-177.
Vasquez, E.A., E.P. Glenn, J. J. Brown, G.R. Guntenspergen, and S.G. Nelson. 2005. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Marine Ecology Progress Series 298:1-8.

Laura Meyerson is an Assistant Professor of Habitat Restoration Ecology in the URI Department of Natural Resources Science.

