13 research outputs found

    Leaky ribosomal scanning in mammalian genomes: significance of histone H4 alternative translation in vivo

    Get PDF
    Like alternative splicing, leaky ribosomal scanning (LRS), which occurs at suboptimal translational initiation codons, increases the physiological flexibility of the genome by allowing alternative translation. Comprehensive analysis of 22 208 human mRNAs indicates that, although the most important positions relative to the first nucleotide of the initiation codon, −3 and +4, are usually such that support initiation (A(−3) = 42%, G(−3) = 36% and G(+4) = 47%), only 37.4% of the genes adhere to the purine (R)(−3)/G(+4) rule at both positions simultaneously, suggesting that LRS may occur in some of the remaining (62.6%) genes. Moreover, 12.5% of the genes lack both R(−3) and G(+4), potentially leading to sLRS. Compared with 11 genes known to undergo LRS, 10 genes with experimental evidence for high fidelity A(+1)T(+2)G(+3) initiation codons adhered much more strongly to the R(−3)/G(+4) rule. Among the intron-less histone genes, only the H3 genes adhere to the R(−3)/G(+4) rule, while the H1, H2A, H2B and H4 genes usually lack either R(−3) or G(+4). To address in vivo the significance of the previously described LRS of H4 mRNAs, which results in alternative translation of the osteogenic growth peptide, transgenic mice were engineered that ubiquitously and constitutively express a mutant H4 mRNA with an A(+1)→T(+1) mutation. These transgenic mice, in particular the females, have a high bone mass phenotype, attributable to increased bone formation. These data suggest that many genes may fulfill cryptic functions by LRS

    Leaky ribosomal scanning in mammalian genomes: significance of histone H4 alternative translation in vivo

    Get PDF
    Like alternative splicing, leaky ribosomal scanning (LRS), which occurs at suboptimal translational initiation codons, increases the physiological flexibility of the genome by allowing alternative translation. Comprehensive analysis of 22 208 human mRNAs indicates that, although the most important positions relative to the first nucleotide of the initiation codon, −3 and +4, are usually such that support initiation (A−3 = 42%, G−3 = 36% and G+4 = 47%), only 37.4% of the genes adhere to the purine (R)−3/G+4 rule at both positions simultaneously, suggesting that LRS may occur in some of the remaining (62.6%) genes. Moreover, 12.5% of the genes lack both R−3 and G+4, potentially leading to sLRS. Compared with 11 genes known to undergo LRS, 10 genes with experimental evidence for high fidelity A+1T+2G+3 initiation codons adhered much more strongly to the R−3/G+4 rule. Among the intron-less histone genes, only the H3 genes adhere to the R−3/G+4 rule, while the H1, H2A, H2B and H4 genes usually lack either R−3 or G+4. To address in vivo the significance of the previously described LRS of H4 mRNAs, which results in alternative translation of the osteogenic growth peptide, transgenic mice were engineered that ubiquitously and constitutively express a mutant H4 mRNA with an A+1→T+1 mutation. These transgenic mice, in particular the females, have a high bone mass phenotype, attributable to increased bone formation. These data suggest that many genes may fulfill cryptic functions by LR

    Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation

    No full text
    Duchenne muscular dystrophy (DMD) is a severe progressive muscle-wasting disorder caused by mutations in the dystrophin gene. Studies have shown that bone marrow cells transplanted into lethally irradiated mdx mice, the mouse model of DMD, can become part of skeletal muscle myofibers. Whether human marrow cells also have this ability is unknown. Here we report the analysis of muscle biopsies from a DMD patient (DMD-BMT1) who received bone marrow transplantation at age 1 year for X-linked severe combined immune deficiency and who was diagnosed with DMD at age 12 years. Analysis of muscle biopsies from DMD-BMT1 revealed the presence of donor nuclei within a small number of muscle myofibers (0.5-0.9%). The majority of the myofibers produce a truncated, in-frame isoform of dystrophin lacking exons 44 and 45 (not wild-type). The presence of bone marrow-derived donor nuclei in the muscle of this patient documents the ability of exogenous human bone marrow cells to fuse into skeletal muscle and persist up to 13 years after transplantation
    corecore