383 research outputs found

    Two-body Photodisintegration of 4^{4}He with Full Final State Interaction

    Full text link
    The cross sections of the processes 4^4He(γ,p\gamma,p)3^3H and 4^4He(γ,n\gamma,n)3^3He are calculated taking into account the full final state interaction via the Lorentz integral transform (LIT) method. This is the first consistent microscopic calculation beyond the three--body breakup threshold. The results are obtained with a semirealistic central NN potential including also the Coulomb force. The cross sections show a pronounced dipole peak at 27 MeV which lies within the rather broad experimental band. At higher energies, where experimental uncertainties are considerably smaller, one finds a good agreement between theory and experiment. The calculated sum of three-- and four--body photodisintegration cross sections is also listed and is in fair agreement with the data.Comment: 18 pages, 6 figure

    Insights into the Binding of Phenyltiocarbamide (PTC) Agonist to Its Target Human TAS2R38 Bitter Receptor

    Get PDF
    Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs). Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC) and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38) by means of structural bioinformatics and molecular docking. The predictions are validated by site-directed mutagenesis experiments that involve specific residues located in the putative binding site and trans-membrane (TM) helices 6 and 7 putatively involved in receptor activation. Based on our measurements, we suggest that (i) residue N103 participates actively in PTC binding, in line with previous computational studies. (ii) W99, M100 and S259 contribute to define the size and shape of the binding cavity. (iii) W99 and M100, along with F255 and V296, play a key role for receptor activation, providing insights on bitter taste receptor activation not emerging from the previously reported computational models

    Probenecid Inhibits the Human Bitter Taste Receptor TAS2R16 and Suppresses Bitter Perception of Salicin

    Get PDF
    Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad specificity bitter blockers to improve nutrition and medical compliance

    Evaluation of Mucociliary Clearance by Three Dimension Micro-CT-SPECT in Guinea Pig: Role of Bitter Taste Agonists

    Get PDF
    Different image techniques have been used to analyze mucociliary clearance (MCC) in humans, but current small animal MCC analysis using in vivo imaging has not been well defined. Bitter taste receptor (T2R) agonists increase ciliary beat frequency (CBF) and cause bronchodilation but their effects in vivo are not well understood. This work analyzes in vivo nasal and bronchial MCC in guinea pig animals using three dimension (3D) micro-CT-SPECT images and evaluates the effect of T2R agonists. Intranasal macroaggreggates of albumin-Technetium 99 metastable (MAA-Tc99m) and lung nebulized Tc99m albumin nanocolloids were used to analyze the effect of T2R agonists on nasal and bronchial MCC respectively, using 3D micro-CT-SPECT in guinea pig. MAA-Tc99m showed a nasal mucociliary transport rate of 0.36 mm/min that was increased in presence of T2R agonist to 0.66 mm/min. Tc99m albumin nanocolloids were homogeneously distributed in the lung of guinea pig and cleared with time-dependence through the bronchi and trachea of guinea pig. T2R agonist increased bronchial MCC of Tc99m albumin nanocolloids. T2R agonists increased CBF in human nasal ciliated cells in vitro and induced bronchodilation in human bronchi ex vivo. In summary, T2R agonists increase MCC in vivo as assessed by 3D micro-CT-SPECT analysis

    Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs.</p> <p>Methods</p> <p>We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP).</p> <p>Results</p> <p>Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways.</p> <p>Conclusions</p> <p>Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.</p

    Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography

    Get PDF
    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7 +/- 34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2 +/- 56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC
    corecore