40,464 research outputs found

    On the role of physisorption states in molecular scattering: A semi-local density-functional theory study on O2/Ag(111)

    Get PDF
    We simulate the scattering of O2_2 from Ag(111) with classical dynamics simulations performed on a six-dimensional potential energy surface calculated within semi-local density-functional theory (DFT). The enigmatic experimental trends that originally required the conjecture of two types of repulsive walls, arising from a physisorption and chemisorption part of the interaction potential, are fully reproduced. Given the inadequate description of the physisorption properties in semi-local DFT, our work casts severe doubts on the prevalent notion to use molecular scattering data as indirect evidence for the existence of such states.Comment: 5 pages, 4 figure

    Coupling of non-crossing wave modes in a two-dimensional plasma crystal

    Get PDF
    We report an experimental observation of coupling of the transverse vertical and longitudinal in-plane dust-lattice wave modes in a two-dimensional complex plasma crystal in the absence of mode crossing. A new large diameter rf plasma chamber was used to suspend the plasma crystal. The observations are confirmed with molecular-dynamics simulations. The coupling manifests itself in traces of the transverse vertical mode appearing in the measured longitudinal spectra and vice versa. We calculate the expected ratio of the trace to the principal mode with a theoretical analysis of the modes in a crystal with finite temperature and find good agreement with the experiment and simulations.Comment: 4 figures, 5 pages, accepted for publication in PRL Nov 201

    Harnack Inequality and Regularity for a Product of Symmetric Stable Process and Brownian Motion

    Full text link
    In this paper, we consider a product of a symmetric stable process in Rd\mathbb{R}^d and a one-dimensional Brownian motion in R+\mathbb{R}^+. Then we define a class of harmonic functions with respect to this product process. We show that bounded non-negative harmonic functions in the upper-half space satisfy Harnack inequality and prove that they are locally H\"older continuous. We also argue a result on Littlewood-Paley functions which are obtained by the α\alpha-harmonic extension of an Lp(Rd)L^p(\mathbb{R}^d) function.Comment: 23 page

    Two-temperature coronal flow above a thin disk

    Full text link
    We extended the disk corona model (Meyer & Meyer-Hofmeister 1994; Meyer, Liu, & Meyer-Hofmeister 2000a) to the inner region of galactic nuclei by including different temperatures in ions and electrons as well as Compton cooling. We found that the mass evaporation rate and hence the fraction of accretion energy released in the corona depend strongly on the rate of incoming mass flow from outer edge of the disk, a larger rate leading to more Compton cooling, less efficient evaporation and a weaker corona. We also found a strong dependence on the viscosity, higher viscosity leading to an enhanced mass flow in the corona and therefore more evaporation of gas from the disk below. If we take accretion rates in units of the Eddington rate our results become independent on the mass of the central black hole. The model predicts weaker contributions to the hard X-rays for objects with higher accretion rate like narrow-line Seyfert 1 galaxies (NLS1s), in agreement with observations. For luminous active galactic nuclei (AGN) strong Compton cooling in the innermost corona is so efficient that a large amount of additional heating is required to maintain the corona above the thin disk.Comment: 17 pages, 6 figures. ApJ accepte

    A Local One-Zone Model of MHD Turbulence in Dwarf Nova Disks

    Get PDF
    The evolution of the magnetorotational instability (MRI) during the transition from outburst to quiescence in a dwarf nova disk is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted for the analysis, so that the efficiency of angular momentum transport is studied in a small local patch of the disk: this is usually referred as to a one-zone model. To take account of the low ionization fraction of the disk, the induction equation includes both ohmic dissipation and the Hall effect. We induce a transition from outburst to quiescence by an instantaneous decrease of the temperature. The evolution of the MRI during the transition is found to be very sensitive to the temperature of the quiescent disk. As long as the temperature is higher than a critical value of about 2000 K, MHD turbulence and angular momentum transport is sustained by the MRI. However, MHD turbulence dies away within an orbital time if the temperature falls below this critical value. In this case, the stress drops off by more than 2 orders of magnitude, and is dominated by the Reynolds stress associated with the remnant motions from the outburst. The critical temperature depends slightly on the distance from the central star and the local density of the disk.Comment: 20 pages, 2 tables, 6 figures, accepted for publication in Ap

    Wavelets: mathematics and applications

    Full text link
    The notion of wavelets is defined. It is briefly described {\it what} are wavelets, {\it how} to use them, {\it when} we do need them, {\it why} they are preferred and {\it where} they have been applied. Then one proceeds to the multiresolution analysis and fast wavelet transform as a standard procedure for dealing with discrete wavelets. It is shown which specific features of signals (functions) can be revealed by this analysis, but can not be found by other methods (e.g., by the Fourier expansion). Finally, some examples of practical application are given (in particular, to analysis of multiparticle production}. Rigorous proofs of mathematical statements are omitted, and the reader is referred to the corresponding literature.Comment: 16 pages, 5 figures, Latex, Phys. Atom. Nuc

    The Nature of the Giant Outbursts in the Bursting Pulsar GRO J 1744-28

    Get PDF
    We investigate the possible role of an accretion disk instability in producing the giant outbursts seen in GRO J1744-28. Specifically, we study the global, time dependent evolution of the Lightman-Eardley instability which can develop near the inner edge of an accretion disk when the radiation pressure becomes comparable to the gas pressure. Broadly speaking, our results are compatible with earlier works by Taam \& Lin and by Lasota \& Pelat. The uniqueness of GRO J1744-28 appears to be associated with the constraint that, in order for outbursts to occur, the rate of accretion at the inner edge must be within a narrow range just above the critical accretion rate at which radiation pressure is beginning to become significant.Comment: 11 pages in .tex file, 4 Postscript figures, .tex file uses aasms.sty; Ap. J. L. 1996, in pres

    The Bulk Channel in Thermal Gauge Theories

    Get PDF
    We investigate the thermal correlator of the trace of the energy-momentum tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral function in that channel, whose low-frequency part determines the bulk viscosity. We focus on the thermal modification of the spectral function, ρ(ω,T)ρ(ω,0)\rho(\omega,T)-\rho(\omega,0). Using the operator-product expansion we give the high-frequency behavior of this difference in terms of thermodynamic potentials. We take into account the presence of an exact delta function located at the origin, which had been missed in previous analyses. We then combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean correlator to determine the intervals of frequency where the spectral density is enhanced or depleted by thermal effects. We find evidence that the thermal spectral density is non-zero for frequencies below the scalar glueball mass mm and is significantly depleted for mω3mm\lesssim\omega\lesssim 3m.Comment: (1+25) pages, 6 figure

    An Incoherent αΩ\alpha-\Omega Dynamo in Accretion Disks

    Full text link
    We use the mean-field dynamo equations to show that an incoherent alpha effect in mirror-symmetric turbulence in a shearing flow can generate a large scale, coherent magnetic field. We illustrate this effect with simulations of a few simple systems. In accretion disks, this process can lead to axisymmetric magnetic domains whose radial and vertical dimensions will be comparable to the disk height. This process may be responsible for observations of dynamo activity seen in simulations of dynamo-generated turbulence involving, for example, the Balbus-Hawley instability. In this case the magnetic field strength will saturate at (h/r)2\sim (h/r)^2 times the ambient pressure in real accretion disks. The resultant dimensionless viscosity will be of the same order. In numerical simulations the azimuthal extent of the simulated annulus should be substituted for rr. We compare the predictions of this model to numerical simulations previously reported by Brandenburg et al. (1995). In a radiation pressure dominated environment this estimate for viscosity should be reduced by a factor of (Pgas/Pradiation)6(P_{gas}/P_{radiation})^6 due to magnetic buoyancy.Comment: 23 pages, uses aaste

    Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    Get PDF
    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure
    corecore