We use the mean-field dynamo equations to show that an incoherent alpha
effect in mirror-symmetric turbulence in a shearing flow can generate a large
scale, coherent magnetic field. We illustrate this effect with simulations of a
few simple systems. In accretion disks, this process can lead to axisymmetric
magnetic domains whose radial and vertical dimensions will be comparable to the
disk height. This process may be responsible for observations of dynamo
activity seen in simulations of dynamo-generated turbulence involving, for
example, the Balbus-Hawley instability. In this case the magnetic field
strength will saturate at ∼(h/r)2 times the ambient pressure in real
accretion disks. The resultant dimensionless viscosity will be of the same
order. In numerical simulations the azimuthal extent of the simulated annulus
should be substituted for r. We compare the predictions of this model to
numerical simulations previously reported by Brandenburg et al. (1995). In a
radiation pressure dominated environment this estimate for viscosity should be
reduced by a factor of (Pgas/Pradiation)6 due to magnetic buoyancy.Comment: 23 pages, uses aaste