2,296 research outputs found

    In vitro formation of adventitious buds on mature embryos of Pinus elliottii Engelm. × P. caribaea Morelet hybrids

    Get PDF
    Four nutrient media and several growth regulator concentrations were used to formulate a nutrient medium for the in vitro production of adventitious buds on mature embryos of Pinus elliottii×P. caribaea hybrids. A modified medium of Gresshoff and Doy supported adventitious bud production on mature embryos better than modified media of Murashige and Skoog, Risser and White or Schenk and Hildebrandt. Benzyladenine (5μM) with 1μM indolebutyric acid was more effective than either 5μM zeatin or 5μM kinetin to induce adventitious buds on mature embryos. Adventitious shoots elongated on half-strength Gresshoff and Doy medium with 5μM kinetin. Shoots rooted best on half-strength Gresshoff and Doy medium supplemented with 32μM indolebutyric acid. Plants were successfully transferred to soil and hardened under mist spray. Differences were observed in the morphogenic potential of embryos, growth and rooting of adventitious shoots of different P. elliottii×P. caribaea hybrid seed families

    Entanglement Dynamics in 1D Quantum Cellular Automata

    Full text link
    Several proposed schemes for the physical realization of a quantum computer consist of qubits arranged in a cellular array. In the quantum circuit model of quantum computation, an often complex series of two-qubit gate operations is required between arbitrarily distant pairs of lattice qubits. An alternative model of quantum computation based on quantum cellular automata (QCA) requires only homogeneous local interactions that can be implemented in parallel. This would be a huge simplification in an actual experiment. We find some minimal physical requirements for the construction of unitary QCA in a 1 dimensional Ising spin chain and demonstrate optimal pulse sequences for information transport and entanglement distribution. We also introduce the theory of non-unitary QCA and show by example that non-unitary rules can generate environment assisted entanglement.Comment: 12 pages, 8 figures, submitted to Physical Review

    Unifying Nucleon and Quark Dynamics at Finite Baryon Number Density

    Get PDF
    We present a model of baryonic matter which contains free constituent quarks in addition to bound constituent quarks in nucleons. In addition to the common linear sigma-model we include the exchange of vector-mesons. The percentage of free quarks increases with baryon density but the nucleons resist a restoration of chiral symmetry.Comment: 8 pages LaTeX, 3 postscript figures, submitted to Phys. Lett.

    The pharmacology of recombinant hirudin, a new anticoagulant

    Get PDF
    A new anticoagulant, recombinant hirudin, was given to healthy volunteers (5 per test dose) in single .intravenous doses of 0,01, 0,02, 0,04, 0,07 and 0,1 mg/kg to study its anticoagulant effects, how it was tolerated and its pharmacokinetics. Hirudin proved to be a potent anticoagulant with important effects on thrombin (increase in thrombin time and partial thromboplastin time). The maximum pharmacodynamic effect was achieved with the 0,07 mg/kg dose, and upwards. All doses of the compound were tolerated without sideeffects. The mean elimination half-life is about 1 hour. Mean total clearance and volume of distribution are approximately 190 ml/min and 14 I, respectively. Hirudin obeys first-order pharmacokinetics

    Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms

    Full text link
    This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1

    First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen

    Full text link
    Using density-functional theory in combination with a thermodynamic formalism we calculate the relative stability of various structural models of the polar O-terminated (000-1)-O surface of ZnO. Model surfaces with different concentrations of oxygen vacancies and hydrogen adatoms are considered. Assuming that the surfaces are in thermodynamic equilibrium with an O2 and H2 gas phase we determine a phase diagram of the lowest-energy surface structures. For a wide range of temperatures and pressures we find that hydrogen will be adsorbed at the surface, preferentially with a coverage of 1/2 monolayer. At high temperatures and low pressures the hydrogen can be removed and a structure with 1/4 of the surface oxygen atoms missing becomes the most stable one. The clean, defect-free surface can only exist in an oxygen-rich environment with a very low hydrogen partial pressure. However, since we find that the dissociative adsorption of molecular hydrogen and water (if also the Zn-terminated surface is present) is energetically very preferable, it is very unlikely that a clean, defect-free (000-1)-O surface can be observed in experiment.Comment: 10 pages, 4 postscript figures. Uses REVTEX and epsf macro
    corecore