2,304 research outputs found

    Linear stability analysis of resonant periodic motions in the restricted three-body problem

    Full text link
    The equations of the restricted three-body problem describe the motion of a massless particle under the influence of two primaries of masses 1μ1-\mu and μ\mu, 0μ1/20\leq \mu \leq 1/2, that circle each other with period equal to 2π2\pi. When μ=0\mu=0, the problem admits orbits for the massless particle that are ellipses of eccentricity ee with the primary of mass 1 located at one of the focii. If the period is a rational multiple of 2π2\pi, denoted 2πp/q2\pi p/q, some of these orbits perturb to periodic motions for μ>0\mu > 0. For typical values of ee and p/qp/q, two resonant periodic motions are obtained for μ>0\mu > 0. We show that the characteristic multipliers of both these motions are given by expressions of the form 1±C(e,p,q)μ+O(μ)1\pm\sqrt{C(e,p,q)\mu}+O(\mu) in the limit μ0\mu\to 0. The coefficient C(e,p,q)C(e,p,q) is analytic in ee at e=0e=0 and C(e,p,q)=O(e^{\abs{p-q}}). The coefficients in front of e^{\abs{p-q}}, obtained when C(e,p,q)C(e,p,q) is expanded in powers of ee for the two resonant periodic motions, sum to zero. Typically, if one of the two resonant periodic motions is of elliptic type the other is of hyperbolic type. We give similar results for retrograde periodic motions and discuss periodic motions that nearly collide with the primary of mass 1μ1-\mu

    Characterization of A Type 1 Collagen Targeted PET Tracer

    Get PDF
    poster abstractRenal fibrosis occurs in many diseases of the kidney, including chronic kidney disease (CKD). Renal fibrosis is characterized by an excessive accumulation and deposition of extracellular matrix components, mainly type I collagen. Determination of the presence and extent of renal fibrosis may aid in the prediction of the long-term outcome of renal function in CKD. Biopsy is considered the gold standard in the diagnosis of renal fibrosis; however biopsy is inherently invasive and does not easily lend itself to following the disease thru time. A noninvasive technique such as PET would both allow the detection and monitoring of renal fibrosis progression. A type I collagen-specific cyclic peptide, EP-3533, has been identified and used as a contrast agent in MRI after conjugation with three Gd-DOTA chelates (Caravan et al 2007). To explore the potential for imaging with PET, which can provide a quantitative assessment of regional peptide localization, we have prepared an EP-3533 conjugate incorporating the NODAGA chelating agent at its amine terminus, and radiolabeled that conjugate with generator-produced positron-emitting 68Ga (68-minute half-life). In vitro association kinetics binding of the labeled peptide was performed in collagen type 1 coated plates, where 68GaDOTA-EP-3533 exhibited a Kd of 0.2 M for type I collagen. To better characterize the tracer in an animal model, renal fibrosis was induced in male Wistar rats by clamping the renal artery and vein of the left kidney for 50 minutes. Thus providing both a diseased and control kidney in each animal. Approximately 10 weeks after surgery both left (fibrotic) and right (normal) kidneys were resected and frozen and mounted in OTC for cryotomy. Longitudinal sections obtained from each kidney were used for autoradiography. ROI analysis found an approximate two- to four-fold region-dependent increase in binding in fibrotic tissue compared to normal. Collagen and non-collagen protein levels were determined in the same kidney sections that had been used for autoradiography using a commercially available staining assay. This assay yielded a 1.7-fold difference in collagen levels between normal and fibrotic tissue. Additionally, representative slices were stained with Sirius Red for histological evaluation. Preliminary data indicates that 68Ga-NODAGA-EP-3533 binds to collagen-rich tissue, consistent with the literature for Gd-DOTA-EP-3533. In vivo studies in an animal model of fibrosis are needed to further characterize this tracer and its potential for PET tracer detection and monitoring of Renal Fibrosis

    Leaf water δ18O reflects water vapour exchange and uptake by C3 and CAM epiphytic bromeliads in Panama

    Get PDF
    The distributions of CAM and C3 epiphytic bromeliads across an altitudinal gradient in western Panama were identified from carbon isotope (δ13C) signals, and epiphyte water balance was investigated via oxygen isotopes (δ18O) across wet and dry seasons. There were significant seasonal differences in leaf water (δ18Olw), precipitation, stored 'tank' water and water vapour. Values of δ18Olw were evaporatively enriched at low altitude in the dry season for the C3 epiphytes, associated with low relative humidity (RH) during the day. Crassulacean acid metabolism (CAM) δ18Olw values were relatively depleted, consistent with water vapour uptake during gas exchange under high RH at night. At high altitude, cloudforest locations, C3 δ18Olw also reflected water vapour uptake by day. A mesocosm experiment with Tillandsia fasciculata (CAM) and Werauhia sanguinolenta (C3) was combined with simulations using a non-steady-state oxygen isotope leaf water model. For both C3 and CAM bromeliads, δ18Olw became progressively depleted under saturating water vapour by day and night, although evaporative enrichment was restored in the C3 W. sanguinolenta under low humidity by day. Source water in the overlapping leaf base 'tank' was also modified by evaporative δ18O exchanges. The results demonstrate how stable isotopes in leaf water provide insights for atmospheric water vapour exchanges for both C3 and CAM systems

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include

    Phase-Space Volume of Regions of Trapped Motion: Multiple Ring Components and Arcs

    Full text link
    The phase--space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, sudden reductions in the phase-space volume or gaps are observed at specific values of the parameter which tunes the dynamics; these locations are approximated by the stability resonances. The latter are defined by a resonant condition on the stability exponents of a central linearly stable periodic orbit. We show that, for more than two degrees of freedom, these resonances can be excited opening up gaps, which effectively separate and reduce the regions of trapped motion in phase space. Using the scattering approach to narrow rings and a billiard system as example, we demonstrate that this mechanism yields rings with two or more components. Arcs are also obtained, specifically when an additional (mean-motion) resonance condition is met. We obtain a complete representation of the phase-space volume occupied by the regions of trapped motion.Comment: 19 pages, 17 figure

    Improved Holographic QCD

    Full text link
    We provide a review to holographic models based on Einstein-dilaton gravity with a potential in 5 dimensions. Such theories, for a judicious choice of potential are very close to the physics of large-N YM theory both at zero and finite temperature. The zero temperature glueball spectra as well as their finite temperature thermodynamic functions compare well with lattice data. The model can be used to calculate transport coefficients, like bulk viscosity, the drag force and jet quenching parameters, relevant for the physics of the Quark-Gluon Plasma.Comment: LatEX, 65 pages, 28 figures, 9 Tables. Based on lectures given at several Schools. To appear in the proceedinds of the 5th Aegean School (Milos, Greece

    Moderating influences on the firm's strategic orientation-performance relationship

    Get PDF
    This paper is focused on the factors that moderate the relationship between firm's strategic orientation and performance in small and medium-sized firms. Much prior research has focused simply on identifying environmental conditions conducive to the effectiveness of the strategic orientation approach. However, recent research has called for studies focused on investigating internal moderators of the strategic orientation-performance relationship. As a result, we propose a contingency framework, considering how corporate and competitive strategies, top management characteristics, and environmental conditions may moderate this relationship. Based on a survey of 295 small and medium sized enterprises pertaining to seven manufacturing sectors, our study shows that the positive influence of firm's strategic orientation may be moderated by the environment conditions, the previous experience of top management team, and the corporate and competitive strategies developed by the firm

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page
    corecore