3,401 research outputs found

    Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    Get PDF
    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration

    Theorizing through metaphorical transfer in OM/SCM research: Divorce as a metaphor for strategic buyerĂą supplier relationship dissolution

    Full text link
    Operations Management and Supply Chain Management (OM/SCM), as a discipline, can benefit from proper theorizing to address persistent urgings for better and new theories. This paper hopes to inspire more theorizing engagements through the formal process of metaphorical transfer. Metaphorical transfer transforms casuallyĂą invoked metaphors in everyday language into theoryĂą constitutive metaphors. This transformation process first mandates theorizing to ensure equivalence between the domain of the metaphor and that of a target phenomenon or research problem of interest. Second, theorizing during metaphorical transfer occurs when abstracted insights intended to govern both the metaphor and target phenomenon materialize. Finally, metaphorical transfer supports borrowing of theories from outside of OM/SCM for testing within OM/SCM by safeguarding against common mistakes. This paper demonstrates metaphorical transfer via the example of divorce and strategic buyerĂą supplier relationship dissolution and concludes by highlighting other metaphors that may be invoked for a number of exemplary supply chain relationship phenomena.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147073/1/joom579.pd

    A Multiobjective Branch-and-Bound Method for Planning Wastewater and Residual Management Systems

    Get PDF
    A multiobjective branch-and-bound algorithm is proposed for use in analysing multiobjective fixed-charge network-flow problems which are found commonly in water resources planning situations. Also proposed is a multiobjective imputed value analysis which makes use of the branch-and-bound tree structure and allows the comparison of the importance of facilities in the network as represented by individual arcs or sets of arcs. The mathematical formulation and the analysis procedure of the method are described, and the potential usefulness of the method is demonstrated using two hypothetical example problems dealing with regional wastewater treatment and residual management systems. A FORTRAN program for implementing the algorithm is available from the first author

    Selective dorsal rhizotomy for treatment of spasticity after hemispherectomy in children: A case report

    Get PDF
    Performing a hemispherotomy or hemispherectomy is known to treat medically intractable epilepsy successfully, yet contralateral hemiparesis and increased muscle tone follow the epilepsy surgery. Spasticity and coexisting dystonia presumably cause the increased muscle tone in the lower extremity on the opposite side of epilepsy surgery. However, the extent of the role of spasticity and dystonia in high muscle tone is unknown. A selective dorsal rhizotomy is performed to reduce spasticity. If a selective dorsal rhizotomy is performed in the affected patient and muscle tone is reduced, the high muscle tone is not due to dystonia. Two children, who previously underwent a hemispherectomy or hemispherotomy, had a selective dorsal rhizotomy (SDR) performed in our clinic. Both children underwent orthopedic surgery to treat heel cord contractures. To study the extent of the role of spasticity and dystonia in high muscle tone, the mobility of the two children was examined pre- and post-SDR. The children had follow-ups 12 months and 56 months after SDR to study long-term effects. Before SDR, both children showed signs of spasticity. The SDR procedure removed spasticity, and muscle tone in the lower extremity became normal. Importantly, dystonia did not surface after SDR. Patients started independent walking less than two weeks after SDR. Sitting, standing, walking, and balance improved. They could walk longer distances while experiencing less fatigue. Running, jumping, and other more vigorous physical activities became possible. Notably, one child showed voluntary foot dorsiflexion that was absent before SDR. The other child showed improvement in voluntary foot dorsiflexion that was present before SDR. Both children maintained the progress at the 12 and 56-month follow-up visits. The SDR procedure normalized muscle tone and improved ambulation by removing spasticity. The high muscle tone following the epilepsy surgery was not due to dystonia

    Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Get PDF
    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO)

    An Exploratory Study of Lecturers' Views of Out-of-class Academic Collaboration Among Students

    Full text link
    This article reports an exploratory study of lecturers' perceptions of out-of-class academic collaboration (OCAC) among students at a large Singapore university. Two types of OCAC were investigated: collaboration initiated by students, e.g., groups decide on their own to meet to prepare for exams, and collaboration required by teachers, e.g., teachers assign students to do projects in groups. Data were collected via one-on-one interviews with 18 faculty members from four faculties at the university. Findings suggest that OCAC, especially of a teacher-required kind, is fairly common at the university. Faculty members' views on factors affecting the success of OCAC are discussed for the light they might shed on practices to enhance the effectiveness of OCAC

    Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration

    Get PDF
    NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017

    Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Get PDF
    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described

    A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis

    Get PDF
    Background: Bacterial exported proteins represent key components of the host-pathogen interplay. Hence, we sought to implement a combined approach for characterizing the entire exoproteome of the pathogenic bacterium Corynebacterium pseudotuberculosis, the etiological agent of caseous lymphadenitis (CLA) in sheep and goats. Results: An optimized protocol of three-phase partitioning (TPP) was used to obtain the C. pseudotuberculosis exoproteins, and a newly introduced method of data-independent MS acquisition (LC-MSE) was employed for protein identification and label-free quantification. Additionally, the recently developed tool SurfG+ was used for in silico prediction of sub-cellular localization of the identified proteins. In total, 93 different extracellular proteins of C. pseudotuberculosis were identified with high confidence by this strategy; 44 proteins were commonly identified in two different strains, isolated from distinct hosts, then composing a core C. pseudotuberculosis exoproteome. Analysis with the SurfG+ tool showed that more than 75% (70/93) of the identified proteins could be predicted as containing signals for active exportation. Moreover, evidence could be found for probable non-classical export of most of the remaining proteins. Conclusions: Comparative analyses of the exoproteomes of two C. pseudotuberculosis strains, in addition to comparison with other experimentally determined corynebacterial exoproteomes, were helpful to gain novel insights into the contribution of the exported proteins in the virulence of this bacterium. The results presented here compose the most comprehensive coverage of the exoproteome of a corynebacterial species so far
    • 

    corecore