55,366 research outputs found

    Analytic invariant charge and the lattice static quark-antiquark potential

    Full text link
    A recently developed model for the QCD analytic invariant charge is compared with quenched lattice simulation data on the static quark-antiquark potential. By employing this strong running coupling one is able to obtain the confining quark-antiquark potential in the framework of the one-gluon exchange model. To achieve this objective a technique for evaluating the integrals of a required form is developed. Special attention is paid here to removing the divergences encountered the calculations. All this enables one to examine the asymptotic behavior of the potential at both small and large distances with high accuracy. An explicit expression for the quark-antiquark potential, which interpolates between these asymptotics, and satisfies the concavity condition, is proposed. The derived potential coincides with the perturbative results at small distances, and it is in a good agreement with the lattice data in the nonperturbative physically-relevant region. An estimation of the parameter ΛQCD\Lambda_{QCD} is obtained for the case of pure gluodynamics. It is found to be consistent with all the previous estimations of ΛQCD\Lambda_{QCD} in the framework of approach in hand.Comment: LaTeX2e, 10 pages with 3 EPS figure

    Anomalous Josephson effect in semiconducting nanowires as a signature of the topologically nontrivial phase

    Full text link
    We study Josephson junctions made of semiconducting nanowires with Rashba spin-orbit coupling, where superconducting correlations are induced by the proximity effect. In the presence of a suitably directed magnetic field, the system displays the anomalous Josephson effect: a nonzero supercurrent in the absence of a phase bias between two superconductors. We show that this anomalous current can be increased significantly by tuning the nanowire into the helical regime. In particular, in a short junction, a large anomalous current is a signature for topologically nontrivial superconductivity in the nanowire.Comment: 10 pages, 9 figures; published versio

    Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Get PDF
    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P

    Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application

    Get PDF
    A hybrid hydrostatic bearing was designed to operate in liquid hydrogen at speeds to 80,000 rpm and radial loads to 440 n (100 lbf). The bearing assembly consisted of a pair of 20-mm angular-contact ball bearings encased in a journal, which was in turn supported by a fluid film of liquid hydrogen. The size and operating conditions of the bearing were selected to be compatible with the operating requirements of an advanced technology turbopump. Several test parameters were varied to characterize the bearing's steady-state operation. The rotation of the tester shaft was varied between 0 and 80,000 rpm. Bearing inlet fluid pressure was varied between 2.07 and 4.48 MPa (300 and 650 psia), while the fluid sump pressure was independently varied between 0.34 and 2.07 MPa (50 and 300 psia). The maximum radial load applied to the bearing was 440 N (110 lbf). Measured hybrid-hydrostatic-bearing stiffness was 1.5 times greater than predicted, while the fluid flow rate through the bearing was 35 to 65 percent less than predicted. Under two-phase fluid conditions, the stiffness was even greater and the flow rate was less. The optimal pressure ratio for the bearing should be between 0.2 and 0.55 depending on the balance desired between bearing efficiency and stiffness. Startup and shutdown cyclic tests were conducted to demonstrate the ability of the hybrid-hydrostatic-bearing assembly to survive at least a 300-firing-duty cycle. For a typical cycle, the shaft was accelerated to 50,000 rpm in 1.8 sec. The bearing operated for 337 start-stop cycles without failure

    Acceleration of weakly collisional solar-type winds

    Full text link
    One of the basic properties of the solar wind, that is the high speed of the fast wind, is still not satisfactorily explained. This is mainly due to the theoretical difficulty of treating weakly collisional plasmas. The fluid approach implies that the medium is collision dominated and that the particle velocity distributions are close to Maxwellians. However the electron velocity distributions observed in the solar wind depart significantly from Maxwellians. Recent kinetic collisionless models (called exospheric) using velocity distributions with a suprathermal tail have been able to reproduce the high speeds of the fast solar wind. In this letter we present new developments of these models by generalizing them over a large range of corona conditions. We also present new results obtained by numerical simulations that include collisions. Both approaches calculate the heat flux self-consistently without any assumption on the energy transport. We show that both approaches - the exospheric and the collisional one - yield a similar variation of the wind speed with the basic parameters of the problem; both produce a fast wind speed if the coronal electron distribution has a suprathermal tail. This suggests that exospheric models contain the necessary ingredients for the powering of a transonic stellar wind, including the fast solar one.Comment: Accepted for publication in The Astrophysical Journal Letters (accepted: 13 May 2005

    Two-temperature coronal flow above a thin disk

    Full text link
    We extended the disk corona model (Meyer & Meyer-Hofmeister 1994; Meyer, Liu, & Meyer-Hofmeister 2000a) to the inner region of galactic nuclei by including different temperatures in ions and electrons as well as Compton cooling. We found that the mass evaporation rate and hence the fraction of accretion energy released in the corona depend strongly on the rate of incoming mass flow from outer edge of the disk, a larger rate leading to more Compton cooling, less efficient evaporation and a weaker corona. We also found a strong dependence on the viscosity, higher viscosity leading to an enhanced mass flow in the corona and therefore more evaporation of gas from the disk below. If we take accretion rates in units of the Eddington rate our results become independent on the mass of the central black hole. The model predicts weaker contributions to the hard X-rays for objects with higher accretion rate like narrow-line Seyfert 1 galaxies (NLS1s), in agreement with observations. For luminous active galactic nuclei (AGN) strong Compton cooling in the innermost corona is so efficient that a large amount of additional heating is required to maintain the corona above the thin disk.Comment: 17 pages, 6 figures. ApJ accepte

    Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data

    Full text link
    Nanodust grains of a few nanometer in size are produced near the Sun by collisional break-up of larger grains and picked-up by the magnetized solar wind. They have so far been detected at 1 AU by only the two STEREO spacecraft. Here we analyze the spectra measured by the radio and plasma wave instrument onboard Cassini during the cruise phase close to Earth orbit; they exhibit bursty signatures similar to those observed by the same instrument in association to nanodust stream impacts on Cassini near Jupiter. The observed wave level and spectral shape reveal impacts of nanoparticles at about 300 km/s, with an average flux compatible with that observed by the radio and plasma wave instrument onboard STEREO and with the interplanetary flux models

    Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    Get PDF
    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure

    Phase Diagram for Ultracold Bosons in Optical Lattices and Superlattices

    Full text link
    We present an analytic description of the finite-temperature phase diagram of the Bose-Hubbard model, successfully describing the physics of cold bosonic atoms trapped in optical lattices and superlattices. Based on a standard statistical mechanics approach, we provide the exact expression for the boundary between the superfluid and the normal fluid by solving the self-consistency equations involved in the mean-field approximation to the Bose-Hubbard model. The zero-temperature limit of such result supplies an analytic expression for the Mott lobes of superlattices, characterized by a critical fractional filling.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
    corecore