2,810 research outputs found

    Formation of defects in multirow Wigner crystals

    Full text link
    We study the structural properties of a quasi-one-dimensional classical Wigner crystal, confined in the transverse direction by a parabolic potential. With increasing density, the one-dimensional crystal first splits into a zigzag crystal before progressively more rows appear. While up to four rows the ground state possesses a regular structure, five-row crystals exhibit defects in a certain density regime. We identify two phases with different types of defects. Furthermore, using a simplified model, we show that beyond nine rows no stable regular structures exist.Comment: 11 pages, 8 figure

    Oscillatory pairing of fermions in spin-split traps

    Get PDF
    As a means of realizing oscillatory pairing between fermions, we study superfluid pairing between two fermion "spin" species that are confined to adjustable spin-dependent trapping potentials. Focusing on the one-dimensional limit, we find that with increasing separation between the spin-dependent traps the fermions exhibit distinct phases, including a fully paired phase, a spin-imbalanced phase with oscillatory pairing, and an unpaired fully spin-polarized phase. We obtain the phase diagram of fermions in such a spin-split trap and discuss signatures of these phases in cold-atom experiments.Comment: 5 pages, 5 figures, RevTe

    Transition from a one-dimensional to a quasi-one-dimensional state in interacting quantum wires

    Get PDF
    Upon increasing the electron density in a quantum wire, the one-dimensional electron system undergoes a transition to a quasi-one-dimensional state. In the absence of interactions between electrons, this corresponds to filling up the second subband of transverse quantization, and there are two gapless excitation modes above the transition. On the other hand, strongly interacting one-dimensional electrons form a Wigner crystal, and the transition corresponds to it splitting into two chains (zigzag crystal). The two chains are locked, so their relative motion is gapped, and only one gapless mode remains. We study the evolution of the system as the interaction strength changes, and show that only one gapless mode exists near the transition at any interaction strength.Comment: 4 pages, 2 figure

    Quantum phase transition in quantum wires controlled by an external gate

    Full text link
    We consider electrons in a quantum wire interacting via a long-range Coulomb potential screened by a nearby gate. We focus on the quantum phase transition from a strictly one-dimensional to a quasi-one-dimensional electron liquid, that is controlled by the dimensionless parameter nx0n x_0, where nn is the electron density and x0x_0 is the characteristic length of the transverse confining potential. If this transition occurs in the low-density limit, it can be understood as the deformation of the one-dimensional Wigner crystal to a zigzag arrangement of the electrons described by an Ising order parameter. The critical properties are governed by the charge degrees of freedom and the spin sector remains essentially decoupled. At large densities, on the other hand, the transition is triggered by the filling of a second one-dimensional subband of transverse quantization. Electrons at the bottom of the second subband interact strongly due to the diverging density of states and become impenetrable. We argue that this stabilizes the electron liquid as it suppresses pair-tunneling processes between the subbands that would otherwise lead to an instability. However, the impenetrable electrons in the second band are screened by the excitations of the first subband, so that the transition is identified as a Lifshitz transition of impenetrable polarons. We discuss the resulting phase diagram as a function of nx0n x_0.Comment: 18 pages, 8 figures, minor changes, published versio

    Cooperative Effect of miR-141-3p and miR-145-5p in the Regulation of Targets in Clear Cell Renal Cell Carcinoma

    Get PDF
    Background Due to the poor prognosis for advanced renal cell carcinoma (RCC), there is an urgent need for new therapeutic targets and for prognostic markers to identify high risk tumors. MicroRNAs (miRNAs) are frequently dysregulated in tumors, play a crucial role during carcinogenesis and therefore might be promising new biomarkers. In previous studies, we identified miR-141-3p and miR-145-5p to be downregulated in clear cell RCC (ccRCC). Our objective was to investigate the functional association of these miRNAs, focusing on the cooperative regulation of new specific targets and their role in ccRCC progression. Methods The effect of miR-141-3p and miR-145-5p on cell migration was examined by overexpression in 786-O cells. New targets of both miRNAs were identified by miRWalk, validated in 786-O and ACHN cells and additionally characterized in ccRCC tissue on mRNA and protein level. Results In functional analysis, a tumor suppressive effect of miR-141-3p and miR-145-5p by decreasing migration and invasion of RCC cells could be shown. Furthermore, co-overexpression of the miRNAs seemed to result in an increased inhibition of cell migration. Both miRNAs were recognized as post-transcriptional regulators of the targets EAPP, HS6ST2, LOX, TGFB2 and VRK2. Additionally, they showed a cooperative effect again as demonstrated by a significantly increased inhibition of HS6ST2 and LOX expression after simultaneous overexpression of both miRNAs. In ccRCC tissue, LOX mRNA expression was strongly increased compared to normal tissue, allowing also to distinguish between non-metastatic and already metastasized primary tumors. Finally, in subsequent tissue microarray analysis LOX protein expression showed a prognostic relevance for the overall survival of ccRCC patients. Conclusion These results illustrate a jointly strengthening effect of the dysregulated miR-141-3p and miR-145-5p in various tumor associated processes. Focusing on the cooperative effect of miRNAs provides new opportunities for the development of therapeutic strategies and offers novel prognostic and diagnostic capabilities

    Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae

    Get PDF
    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (EGSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. EGSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include

    Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells

    Get PDF
    Purpose: To examine the viability and differentiation of retinal pigment epithelial (RPE) cells after exposure to the vital dye Acid Violet-17 (AV-17). Methods: Bovine RPE cells were incubated with AV-17 (0.0625-0.5 mg/mL) for 30 seconds or 5 minutes. Viability was determined by live/dead staining, cleaved CASP3 immunostainings, and MTT test. Actin cytoskeleton was visualized by Alexa 488-phalloidin. Immunocytochemistry was performed to determine the levels of ZO-1, CTNNB1, and KRT19. Results: Exposure to AV-17 at the concentrations of 0.25-0.5 mg/mL resulted in a dose-dependent decrease in viability, the loss of ZO-1 from tight junctions, translocation of CTNNB1 into the cytoplasm and nucleus, disarrangement of the actin cytoskeleton, and a slight increase in KRT19. Conclusion: AV-17 at a concentration. 0.125 mg/mL is likely to be well tolerated by the RPE cells, whereas the concentrations from 0.25 mg/mL onward can reduce viability and induce dedifferentiation particularly after long-term exposure
    corecore