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Upon increasing the electron density in a quantum wire, the one-dimensional electron system under-
goes a transition to a quasi-one-dimensional state. In the absence of interactions between electrons, this
corresponds to filling up the second subband of transverse quantization, and there are two gapless
excitation modes above the transition. On the other hand, strongly interacting one-dimensional electrons
form a Wigner crystal, and the transition corresponds to it splitting into two chains (zigzag crystal). We
show that the soft mode driving the transition to the zigzag state is gapped, and only one gapless mode
exists above the transition. Furthermore, we establish that in the vicinity of the transition already
arbitrarily weak interactions open a gap in the second mode. We then argue that only one gapless
mode exists near the transition at any interaction strength.
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Transport properties of quantum wires have attracted
much attention over recent years [1–7]. Because of their
quasi-one-dimensional structure, conductance is expected
to be quantized in units of the conductance quantum G0 �
2e2=h, where e is the elementary charge and the factor of 2
accounts for spin degeneracy. This property of noninteract-
ing electrons is insensitive to the inclusion of interactions
within the Luttinger-liquid description. However, a number
of experiments show deviations from perfect conductance
quantization, such as the so-called 0.7-structure observed
below the first plateau [3–7]. These experiments have
stimulated much theoretical interest in the physics of
one-dimensional conductors not captured by the
Luttinger-liquid theory, such as that of the spin-incoherent
regime characterized by very weak coupling of the electron
spins [8–10]. Here we consider another important problem
in this category: the transition of the one-dimensional
electron system in a quantum wire into a quasi-one-
dimensional state.

Whether or not an electron system can be viewed as one-
dimensional crucially depends on the strength of interac-
tion [11]. In the absence of interactions, electrons occupy
subbands of transverse quantization, and the system is one-
dimensional until the chemical potential reaches the bot-
tom of the second subband. On the other hand, at strong
interactions, the electrons form a Wigner crystal, and the
subband picture is no longer applicable. The system re-
mains one-dimensional until the interaction energy over-
comes the confining potential, and the crystal splits into
two chains, forming a zigzag structure [12].

There is an important difference in the behavior of the
system in the vicinity of the transition between the limits of
noninteracting and strongly interacting electrons. In the
noninteracting case the two subbands are independent
and therefore represent two gapless modes. By contrast,
at strong interactions one expects that the two chains of the

classical Wigner crystal are locked, and only one gapless
mode (the plasmon) remains. In this Letter we address the
fate of the second low-energy mode in the vicinity of the
transition as the interaction strength varies. First we estab-
lish that the second excitation mode of the zigzag crystal
remains gapped in the presence of quantum fluctuations.
Then we show that in the vicinity of the transition already
arbitrarily weak interactions open a gap in the second
mode. We subsequently argue that a gap exists at any
interaction strength.

For simplicity we consider spinless electrons and as-
sume that they interact via long-range Coulomb repulsion,

 Vint �
e2

2�

X
k�l

1

jrk � rlj
: (1)

Here rk are the two-dimensional position vectors of the
electrons, and � is the dielectric constant of the material. If
the electrons in the wire are confined to one dimension by a
strong external potential Vconf�yk�, their physics is con-
trolled by the one-dimensional electron density ne. Since
at ne ! 0 the kinetic energy of an electron ��@2=m�n2

e
scales to zero faster than the interaction energy��e2=��ne,
at low densities the Coulomb repulsion dominates. In this
limit electrons behave classically. In order to minimize
their mutual interaction, they form a periodic one-
dimensional structure—the so-called Wigner crystal. At
small but finite density, quantum fluctuations smear the
long-range order [13], but the short-range order remains as
long as the distance between electrons n�1

e is greater than
the Bohr radius aB � �@2=me2.

The above picture is valid if the width w of the wire is
small, w� aB. In wider wires, or, equivalently, at stronger
interactions, the opposite regime w� aB can be achieved.
In this case the electrons may form a two-dimensional
structure while remaining essentially classical. The struc-
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ture of the classical Wigner crystal can be studied in detail
(cf. Ref. [12]), if the confining potential is quadratic,

 Vconf �
1

2
m�2

X
k

y2
k: (2)

Here the frequency � determines the width of the wire,
w�

��������������
@=m�

p
. The positions of all electrons are found by

minimizing the energy Vint � Vconf over rk keeping the
one-dimensional electron density ne fixed. The geometry
of the classical crystal is controlled by the dimensionless
electron density � � ner0, where r0 � �2e

2=�m�2�1=3 is
the sole length scale of the problem [12]. At � below the
critical value �c �

�����������������
4=7��3�3

p
	 0:780 the energy is mini-

mized when electrons form a one-dimensional crystal, in
which xk � k=ne and yk � 0. At � > �c the crystal splits
into two rows. The distance between rows vanishes at the
transition; just above the critical value, when �� � ��
�c � 1, it grows as c � 


����������������������
24=93��5�

p
=�2

c�
������
��
p

(in units
of r0).

Let us consider the low-energy phonons in the zigzag
Wigner crystal. Regardless of the density, the crystal has
the usual plasmon excitation mode with acoustic spectrum.
In the limit of zero wave vector, this excitation corresponds
to translation of the crystal along the wire, �xk � �, �yk �
0 for any k. In addition, at the zigzag transition point a
transverse soft mode appears, for which �xk � 0 and
�yk � ��1�k’. One can easily show that near the zigzag
transition, when ��� 1, the coupling of the two low-
energy excitation modes is weak, and they can be treated
separately. The action describing the soft transverse mode
takes the form

 S�A@

������
r0

aB

s Z
d�dx
�@�’�2��@x’�2���’2�’4�: (3)

Here x, �, and the field ’ have been rescaled so as to yield
the simplest form of the action possible; A � 
7��3��3=2��������

ln2
p

=31��5�. The general form of the action and our
results from this point on are not sensitive to the exact
shape of the confining potential. Above the classical tran-
sition point �� � 0, the transverse mode becomes un-
stable. This corresponds to the formation of the zigzag
structure. To stabilize the system we keep the quartic
term ’4. Contrary to the claims of Ref. [12], above the
transition the classical soft mode is gapped.

Quantum fluctuations affect both the position and the
nature of the phase transition. To determine their effect,
it is helpful to fermionize the problem. To this end we
rediscretize the coordinate x and consider a set of par-
ticles moving in a double-well potential ��’2

j�’
4
j with

nearest-neighbor interaction �’j � ’j�1�
2 between them.

At sufficiently large � each particle is almost completely
localized in one of the minima, and its position can be
described by a spin operator, ’j � 

���������
�=2

p
�

���������
�=2

p
�zj. In

terms of these pseudospin variables the Hamiltonian con-

tains two terms:�t
P
j�

x
j describing tunneling between the

two minima of the double-well potential and�v
P
j�

z
j�

z
j�1

accounting for the nearest-neighbor interactions. Rotating
�x ! ��z and applying the Jordan-Wigner transforma-
tion, one obtains the Hamiltonian

 H f �
X
j


2tayj aj � v�a
y
j � aj��a

y
j�1 � aj�1��: (4)

Since the number of fermions is not conserved, the
Hamiltonian (4) should be diagonalized by performing a
Bogoliubov transformation. As a result one easily finds
that the excitation spectrum of the Hamiltonian (4) has a
gap � that vanishes when t � v. We identify this point
with the phase transition from the one-dimensional state of
the wire at t > v when all the fermionic states in the
Hamiltonian (4) are empty, to the quasi-one-dimensional
state at v > t, in which fermionic states describing the
transverse degrees of freedom in the wire are filled, but
possess a spectral gap. Near the transition the gap behaves
linearly, � � 2jv� tj.

In experiments with quantum wires, the transition from a
one-dimensional to a quasi-one-dimensional state is ob-
served when the chemical potential 	 of electrons is tuned
by applying a gate voltage. The parameters t and v of the
Hamiltonian (4) are expected to be nonsingular functions
of 	. The transition occurs at the critical value 	c, defined
as a solution of the equation t�	� � v�	�. The gap in the
excitation spectrum is then linear in the distance from the
transition,

 � / j	�	cj: (5)

To better understand the nature of this transition, it is
helpful to consider the well-known mapping between
phase transitions in d-dimensional quantum systems and
�d� 1�-dimensional classical models [14]. In particular,
the phase transition in the one-dimensional quantum model
(3) is equivalent to that in the two-dimensional classical
Ising model [15]. In this mapping the gap � becomes the
inverse correlation length r�1

c of the Ising model, and the
scaling rc / jT � Tcj�1, well-known from the exact solu-
tions, is equivalent to Eq. (5). The relation between these
phase transitions can be made more explicit by noticing
that our Hamiltonian (4) essentially coincides with the
transfer matrix [16] of the Ising model near the transition
point.

In the discussion leading to the result (5), the interac-
tions in the quantum wire were assumed to be very strong.
To explore the fate of the gap as the interaction strength is
reduced, we now turn to the case of weak interactions. In
this case the transition to the quasi-one-dimensional state
occurs when electrons start populating the second subband
of transverse quantization in the wire. The essential phys-
ics of the problem is captured by the model of interacting
electrons that may occupy two subbands. The low-energy
properties of the system are described by four interaction
constants. The three constants, g1, g2, and gx, correspond
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to density-density interactions in the first subband, the
second one, and between the two subbands, respectively.
The fourth coupling constant gt accounts for the possibility
of transfer of pairs of electrons between the subbands,
Fig. 1(a).

It is well known that in one-dimensional systems
density-density couplings renormalize the velocities of
the acoustic low-energy excitations, but do not lead to
the emergence of spectral gaps [17]. On the other hand,
the coupling gt creates and destroys pairs of electrons in
each subband and thus can, in principle, lead to a BCS-like
gap in the spectrum [18,19]. Since the coupling constants
in weakly interacting one-dimensional electron systems
acquire logarithmic renormalizations at low energies
[17], the existence of a gap is determined by the scaling
of gt.

The renormalization group equations for the four cou-
pling constants have been derived in Ref. [18]. As the
bandwidth of the problem is scaled from D0 down to D,
the renormalization of the coupling constants can be found
by solving the system of two coupled equations

 y0t � yyt; y0 � y2
t : (6)

Here the derivatives are with respect to 
 � ln�D0=D�,
 

yt �
gt
�@

���������������������������������������������������
�vF1 � vF2�

2 � 4vF1vF2

2vF1vF2�vF1 � vF2�
2

s
;

y � �
1

2�@

�
g1

vF1
�
g2

vF2
�

4gx
vF1 � vF2

�
;

vF1 and vF2 are the Fermi velocities in the two subbands.
The renormalization group flow corresponding to the

Eqs. (6) is shown in Fig. 1(b). To find the initial values
of yt and ywe compute the coupling constants in first order
in the interaction strength. Assuming that the Coulomb
interactions between electrons are screened by a gate at
distance d, in the limit of low electron density in the second
subband we find with logarithmic accuracy g�0�1 � g�0�x �
2e2 ln�kF1d� and g�0�2 � e

2�kF2d�2 ln�1=kF2d�. It is impor-
tant to note that g�0�2 =vF2 vanishes when approaching the
transition. This is a consequence of the Pauli principle.
When the average distance between electrons is large,
interactions between them are effectively local. Then, as

identical fermions never occupy the same place, electrons
essentially do not interact. From these estimates we con-
clude that y�0� is positive, y�0� ’ �3e2=�@vF1� ln�kF1d�, and
according to the flow diagram Fig. 1(b), the interaction
constant gt scales to infinity. Consequently, the system
develops a spectral gap. Our result differs from the one
obtained in Ref. [18], where no gap was found at vF2 ! 0

because of the assumption g�0�t � g�0�1 � g�0�2 � g�0�x . This
choice of the initial conditions is not appropriate in our
case.

To find the value of the gap, we estimate g�0�t near the
transition as g�0�t � e2kF2=kF1 and obtain

 � / �	�	c�
�: (7)

Thus the gap in the spectrum of transverse excitations of
the wire exists not only when the interactions are strong,
but also when they are weak. Unlike the case of strong
interactions (5), at weak coupling the power-law depen-
dence (8) has a very large exponent � � �4y�0���1 � 1.

Based on these findings, namely, the existence of a gap
at both weak and strong interactions, we expect that the
system supports only one gapless excitation mode in the
vicinity of the transition at any interaction strength. To gain
further insight into the evolution of the transition between
the two limiting cases, we derive the effective Hamiltonian
of the system at arbitrary interaction strength. Since the
interactions between electrons in the lower subband are no
longer weak and only their properties near the Fermi level
are important, it is convenient to use the bosonization
approach [17]. On the other hand, as we discussed, near
the transition interactions between electrons in the second
subband are negligible, g2 ! 0. Furthermore, the curva-
ture of their spectrum is important in this regime, so the
description in terms of fermionic operators is more appro-
priate. The nonvanishing density-density interactions can
still be described by the constants g1 and gx, although their
values may no longer be computed in first-order perturba-
tion theory. Under these conditions the Hamiltonian has the
form
 

H �
@vF1

2�

Z
dx
�
�@�2 �

�@��2

K2

�
�

@
2

2m

Z
dx y@2 

� �t
Z
dxf
�@ � �  @ �e2i��x� � H:c:g: (8)

Here the bosonic fields ��x� and �x� describe the density
excitations in the first subband, K � �1� g1=�@vF1�

�1=2

is the respective Luttinger-liquid parameter,  is the elec-
tron destruction operator for the second subband, the con-
stant �t � e

2, and � � 1� K2gx=�@vF1. In deriving
Eq. (8) we performed a unitary transformation [20] which
removed the density-density coupling between the two
subbands and changed the phase factor e2i in the last
term to e2i�.

The Hamiltonian (8) interpolates between the limits of
weak and strong interactions. In the weak coupling limit

 

0

(a) (b)
ytg

y

t

µ

FIG. 1 (color online). (a) The scattering processes transferring
pairs of particles between the two subbands. (b) The flow
diagram for the renormalization group (6).
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�! 1, and a simple scaling analysis recovers the renor-
malization group Eqs. (6). At strong interactions the prob-
lem of evaluating the coupling constants g1 and gx is
nontrivial, but in the regime e2=@vF1 � 1� �e2=@vF1��
ln�kF1d� one can still use our earlier estimates g1 � gx �
2e2 ln�kF1d� and conclude that �! 0. Interestingly, in this
case the bosonic and fermionic parts of the Hamiltonian (8)
decouple, with the latter becoming equivalent to Eq. (4).

One can use the Hamiltonian (8) to discuss the evolution
of the gap with varying interaction strength. In the limit of
strong interactions, when � � 0, the magnitude of the
pairing term scales to zero near the transition as kF2, i.e.,
slower than the Fermi energy EF2 / k2

F2. In this regime, the
gap equals the Fermi energy, � � EF2 cf. Eq. (5). At
strong but finite interactions the pairing term suffers addi-
tional power-law suppression at kF2 ! 0 because of the
factor e2i�. However, as long as it scales slower than the
Fermi energy, the magnitude of the gap remains � � EF2.
At weaker interactions, when � exceeds a certain critical
value, the pairing term scales to zero faster than the Fermi
energy. In this regime the gap develops in a small vicinity
of the Fermi points, and its dependence on chemical po-
tential is given by a nonuniversal power-law (7) with
exponent �> 1. A more detailed theory of the transition
at intermediate interaction strengths will be reported else-
where [21].

Our results are summarized in the phase diagram Fig. 2.
The electron system in a quantum wire remains one-
dimensional and has a single acoustic excitation branch
until the chemical potential reaches a certain critical value
	c (solid line). At the critical point there is a second
gapless mode, and the system can no longer be viewed as
one-dimensional. At 	>	c the second mode develops a
gap � / �	�	c�

� with exponent � � 1 at strong inter-

actions, but very large � at weak coupling. At weak
interactions, as the chemical potential is increased further,
the residual interactions g2 grow, and the gap disappears
(dashed line in Fig. 2). This happens at a small but finite
value of the electron density ��kFd2��1 in the second
subband. Thus even at vanishing interactions the solid
and dashed lines do not merge, i.e., as long as the inter-
actions are not strictly zero, in a small region of 	 above
the transition the second mode is gapped, albeit with ex-
ponentially small �. We see no physical reason for the gap
to disappear at strong coupling. In experiments, the pres-
ence of a gap will affect the temperature dependence of the
conductance which is expected to show activated behavior
even above the transition into the quasi-one-dimensional
state. The doubling of the zero-temperature conductance
(from e2=h to 2e2=h for spinless electrons) occurs at the
dashed line in Fig. 2.
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FIG. 2 (color online). Phase diagram of the electronic system
in a quantum wire. The effective interaction strength r� �
r0=aB can be tuned by varying the confining potential. In the
vicinity of the transition to a quasi-one-dimensional state (the
solid line) the system supports only one gapless excitation mode
at any interaction strength. The state with two gapless excitation
modes (above the dashed line) is expected only at relatively
weak interactions.
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