1,383 research outputs found

    Human-machine networks: Towards a typology and profiling framework

    Get PDF
    © Springer International Publishing Switzerland 2016. In this paper we outline an initial typology and framework for the purpose of profiling human-machine networks, that is, collective structures where humans and machines interact to produce synergistic effects. Profiling a humanmachine network along the dimensions of the typology is intended to facilitate access to relevant design knowledge and experience. In this way the profiling of an envisioned or existing human-machine network will both facilitate relevant design discussions and, more importantly, serve to identify the network type. We present experiences and results from two case trials: a crisis management system and a peerto- peer reselling network. Based on the lessons learnt from the case trials we suggest potential benefits and challenges, and point out needed future work

    The Verifying Compiler: A Grand Challenge for Computing Research

    Get PDF
    Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn from Computer Science, it revives an old challenge: the construction and application of a verifying compiler that guarantees correctness of a program before running it. Introduction. The primary purpose of the formulation and promulgation of a grand challenge is the advancement of science or engineering. A grand challenge represents a commitment by a significant section of the research community to work together towards a common goal, agreed to be valuable and achievable by a team effort within a predicted timescale. The challenge is formulated by th

    Deep Inelastic Scattering from off-Shell Nucleons

    Full text link
    We derive the general structure of the hadronic tensor required to describe deep-inelastic scattering from an off-shell nucleon within a covariant formalism. Of the large number of possible off-shell structure functions we find that only three contribute in the Bjorken limit. In our approach the usual ambiguities encountered when discussing problems related to off-shellness in deep-inelastic scattering are not present. The formulation therefore provides a clear framework within which one can discuss the various approximations and assumptions which have been used in earlier work. As examples, we investigate scattering from the deuteron, nuclear matter and dressed nucleons. The results of the full calculation are compared with those where various aspects of the off-shell structure are neglected, as well as with those of the convolution model.Comment: 36 pages RevTeX, 9 figures (available upon request), ADP-93-210/T128, PSI-PR-93-13, accepted for publication in Physical Review

    Propagation of secondary antiprotons and cosmic rays in the Galaxy

    Get PDF
    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. It was shown that the reacceleration models designed to match secondary to primary nuclei ratios (e.g., B/C) produce too few antiprotons. In the present paper we discuss one possibility to overcome these difficulties. Using the measured antiproton flux AND B/C ratio to fix the diffusion coefficient, we show that the spectra of primary nuclei as measured in the heliosphere may contain a fresh local "unprocessed" component at low energies perhaps associated with the Local Bubble, thus decreasing the measured secondary to primary nuclei ratio. The independent evidence for SN activity in the solar vicinity in the last few Myr supports this idea. The model reproduces antiprotons, B/C ratio, and elemental abundances up to Ni (Z<=28). Calculated isotopic distributions of Be and B are in perfect agreement with CR data. The abundances of three "radioactive clock" isotopes in CR, 10Be, 26Al, 36Cl, are all consistent and indicate a halo size z_h~4 kpc based on the most accurate data taken by the ACE spacecraft.Comment: 6 pages, 5 ps-figures, cospar.sty; Proc. of 34th COSPAR Scientific Assembly (Houston, 10-19 October 2002). Submitted to Advances in Space Research. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    DEEP INELASTIC SCATTERING FROM POLARIZED DEUTERONS

    Get PDF
    The spin-dependent structure function of the deuteron, g_1D, is calculated within a covariant framework. The off-shell structure of the bound nucleon gives corrections to the convolution model at a level of half a percent for x below 0.7, increasing to more than five percent at larger x. Overall, the dominant source of error comes from the lack of knowledge associated with the deuteron D-state, which may introduce an uncertainty in the neutron spin structure function, g_1n, extracted from deuterium data of up to ten percent for x around 0.2.Comment: 11 pages, LaTeX, 4 uuencoded figure

    Hydrological (in)stability in Southern Siberia during the Younger Dryas and early Holocene

    Get PDF
    Southern Siberia is currently undergoing rapid warming, inducing changes in vegetation, loss of permafrost, and impacts on the hydrodynamics of lakes and rivers. Lake sediments are key archives of environmental change and contain a record of ecosystem variability, as well as providing proxy indicators of wider environmental and climatic change. Investigating how hydrological systems have responded to past shifts in climate can provide essential context for better understanding future ecosystem changes in Siberia. Oxygen isotope ratios within lacustrine records provide fundamental information on past variability in hydrological systems. Here we present a new oxygen isotope record from diatom silica (ẟ18Odiatom) at Lake Baunt (55°11′15″N, 113°01,45″E), in the southern part of eastern Siberia, and consider how the site has responded to climate changes between the Younger Dryas and Early to Mid Holocene (ca. 12.4 to 6.2 ka cal BP). Excursions in ẟ18Odiatom are influenced by air temperature and the seasonality, quantity, and source of atmospheric precipitation. These variables are a function of the strength of the Siberian High, which controls temperature, the proportion and quantity of winter versus summer precipitation, and the relative dominance of Atlantic versus Pacific air masses. A regional comparison with other Siberian ẟ18Odiatom records, from lakes Baikal and Kotokel, suggests that ẟ18Odiatom variations in southern Siberia reflect increased continentality during the Younger Dryas, delayed Early Holocene warming in the region, and substantial climate instability between ~10.5 to ~8.2 ka cal BP. Unstable conditions during the Early Holocene thermal optimum most likely reflect localised changes from glacial melting. Taking the profiles from three very different lakes together, highlight the influence of site specific factors on the individual records, and how one site is not indicative of the region as a whole. Overall, the study documents how sensitive this important region is to both internal and external forcing

    Chrobak Normal Form Revisited, with Applications

    Full text link
    Abstract. It is well known that any nondeterministic finite automata over a unary alphabet can be represented in a certain normal form called the Chrobak normal form [1]. We present a very simple conversion pro-cedure working in O(n3) time. Then we extend the algorithm to improve two trade-offs concerning conversions between different representations of unary regular languages. Given an n-state NFA, we are able to find a regular expression of size O ( n2 logn) describing the same language (which improves the previously known O(n2) size bound [8]) and a context-free grammar in Chomsky normal form with O(√n logn) nonterminals (which improves the previously known O(n2/3) bound [3]). As a byproduct of our conversion procedure, we get an alternative proof of the Chrobak normal form theorem. We believe that its efficiency and simplicity make the effort of reproving an already known result worth-while. Key-words: unary automata, descriptional complexity

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
    corecore