9 research outputs found

    Trajectory ensemble methods for understanding complex stochastic systems

    Get PDF
    This thesis investigates the equilibrium and dynamic properties of stochastic systems of varying complexity. The dynamic properties of lattice models -- the 1-d Ising model and a 3-d protein model -- and equilibrium properties of continuous models -- particles in various potentials -- are presented. Dynamics are studied according to a large deviation formalism, by looking at non-equilibrium ensembles of trajectories, classified according to a dynamical order parameter. The phase structure of the ensembles of trajectories is deduced from the properties of large-deviation functions, representing dynamical free-energies. The 1-d Ising model is studied with Glauber dynamics uncovering the dynamical second-order transition at critical values of the counting field 's', confirming the analytical predictions by Jack and Solich. Next, the dynamics in an external magnetic field are studied, allowing the construction of a dynamic phase diagram in the space of temperature, s-field and magnetic field. The dynamic phase diagram is reminiscent of that of the 2-d Ising model. In contrast, Kawasaki dynamics give rise to a dynamical phase structure similar to the one observed in kinetically constrained models. The dynamics of a lattice protein model, represented by a self avoiding walk with three different Hamiltonians, are studied. For the uniform Go Hamiltonian all dynamics occurs between non-native and native trajectories, whereas for heterogeneous Hamiltonians and Full interaction Hamiltonians a first-order dynamical transition to sets of trapping trajectories is observed in the s-ensemble. The model is studied exhaustively for a particular sequence, constructing a qualitative phase diagram, from which a more general dynamic behaviour is extrapolated. Lastly, an estimator for equilibrium expectations, represented by a transition matrix in an extended space between temperatures and a set of discrete states obtained through the discretisation of a continuous space, is proposed. It is then demonstrated that this estimator outperforms conventional multi-temperature ensemble estimates by up to three orders of magnitude, by considering three models of increasing complexity: diffusive particles in a double-well potential, a multidimensional folding potential and a molecular dynamics simulations of alanine dipeptide

    Trajectory ensemble methods for understanding complex stochastic systems

    Get PDF
    This thesis investigates the equilibrium and dynamic properties of stochastic systems of varying complexity. The dynamic properties of lattice models -- the 1-d Ising model and a 3-d protein model -- and equilibrium properties of continuous models -- particles in various potentials -- are presented. Dynamics are studied according to a large deviation formalism, by looking at non-equilibrium ensembles of trajectories, classified according to a dynamical order parameter. The phase structure of the ensembles of trajectories is deduced from the properties of large-deviation functions, representing dynamical free-energies. The 1-d Ising model is studied with Glauber dynamics uncovering the dynamical second-order transition at critical values of the counting field 's', confirming the analytical predictions by Jack and Solich. Next, the dynamics in an external magnetic field are studied, allowing the construction of a dynamic phase diagram in the space of temperature, s-field and magnetic field. The dynamic phase diagram is reminiscent of that of the 2-d Ising model. In contrast, Kawasaki dynamics give rise to a dynamical phase structure similar to the one observed in kinetically constrained models. The dynamics of a lattice protein model, represented by a self avoiding walk with three different Hamiltonians, are studied. For the uniform Go Hamiltonian all dynamics occurs between non-native and native trajectories, whereas for heterogeneous Hamiltonians and Full interaction Hamiltonians a first-order dynamical transition to sets of trapping trajectories is observed in the s-ensemble. The model is studied exhaustively for a particular sequence, constructing a qualitative phase diagram, from which a more general dynamic behaviour is extrapolated. Lastly, an estimator for equilibrium expectations, represented by a transition matrix in an extended space between temperatures and a set of discrete states obtained through the discretisation of a continuous space, is proposed. It is then demonstrated that this estimator outperforms conventional multi-temperature ensemble estimates by up to three orders of magnitude, by considering three models of increasing complexity: diffusive particles in a double-well potential, a multidimensional folding potential and a molecular dynamics simulations of alanine dipeptide

    xTRAM: Estimating equilibrium expectations from time-correlated simulation data at multiple thermodynamic states

    Get PDF
    Computing the equilibrium properties of complex systems, such as free energy differences, is often hampered by rare events in the dynamics. Enhanced sampling methods may be used in order to speed up sampling by, for example, using high temperatures, as in parallel tempering, or simulating with a biasing potential such as in the case of umbrella sampling. The equilibrium properties of the thermodynamic state of interest (e.g., lowest temperature or unbiased potential) can be computed using reweighting estimators such as the weighted histogram analysis method or the multistate Bennett acceptance ratio (MBAR). weighted histogram analysis method and MBAR produce unbiased estimates, the simulation samples from the global equilibria at their respective thermodynamic state--a requirement that can be prohibitively expensive for some simulations such as a large parallel tempering ensemble of an explicitly solvated biomolecule. Here, we introduce the transition-based reweighting analysis method (TRAM)--a class of estimators that exploit ideas from Markov modeling and only require the simulation data to be in local equilibrium within subsets of the configuration space. We formulate the expanded TRAM (xTRAM) estimator that is shown to be asymptotically unbiased and a generalization of MBAR. Using four exemplary systems of varying complexity, we demonstrate the improved convergence (ranging from a twofold improvement to several orders of magnitude) of xTRAM in comparison to a direct counting estimator and MBAR, with respect to the invested simulation effort. Lastly, we introduce a random-swapping simulation protocol that can be used with xTRAM, gaining orders-of-magnitude advantages over simulation protocols that require the constraint of sampling from a global equilibrium.Comment: 23 pages with appendices, 5 figure

    Dynamic Profiling of β-Coronavirus 3CL M<sup>pro</sup>Protease Ligand-Binding Sites

    Get PDF
    Data availability statement: The trajectories of Mpro simulations and models of the metastable states can be downloaded from 10.5281/zenodo.4782284.β-coronavirus (CoVs) alone has been responsible for three major global outbreaks in the 21st century. The current crisis has led to an urgent requirement to develop therapeutics. Even though a number of vaccines are available, alternative strategies targeting essential viral components are required as a backup against the emergence of lethal viral variants. One such target is the main protease (Mpro) that plays an indispensable role in viral replication. The availability of over 270 Mpro X-ray structures in complex with inhibitors provides unique insights into ligand–protein interactions. Herein, we provide a comprehensive comparison of all nonredundant ligand-binding sites available for SARS-CoV2, SARS-CoV, and MERS-CoV Mpro. Extensive adaptive sampling has been used to investigate structural conservation of ligand-binding sites using Markov state models (MSMs) and compare conformational dynamics employing convolutional variational auto-encoder-based deep learning. Our results indicate that not all ligand-binding sites are dynamically conserved despite high sequence and structural conservation across β-CoV homologs. This highlights the complexity in targeting all three Mpro enzymes with a single pan inhibitor.There was no funding for this wor
    corecore