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ABST RACT

This thesis investigates the equilibrium and dynamic properties of

stochastic systems of varying complexity. The dynamic properties of

lattice models – the 1-d Ising model and a 3-d protein model – and

equilibrium properties of continuous models – particles in various po-

tentials – are presented. Dynamics are studied according to a large

deviation formalism, by looking at non-equilibrium ensembles of tra-

jectories, classiVed according to a dynamical order parameter. The

phase structure of the ensembles of trajectories is deduced from the

properties of large-deviation functions, representing dynamical free-

energies.

The 1-d Ising model is studied with Glauber dynamics uncovering the

dynamical second-order transition at critical values of the counting

Veld ’s’, conVrming the analytical predictions by Jack and Solich. Next,

the dynamics in an external magnetic Veld are studied, allowing the

construction of a dynamic phase diagram in the space of temperature,

s-Veld and magnetic Veld. The dynamic phase diagram is reminiscent

of that of the 2-d Ising model. In contrast, Kawasaki dynamics give

rise to a dynamical phase structure similar to the one observed in ki-

netically constrained models.

The dynamics of a lattice protein model, represented by a self avoiding

walk with three diUerent Hamiltonians, are studied. For the uniform

Gō Hamiltonian all dynamics occurs between non-native and native

trajectories, whereas for heterogeneous Hamiltonians and Full interac-

tion Hamiltonians a Vrst-order dynamical transition to sets of trapping

trajectories is observed in the s-ensemble. The model is studied ex-

haustively for a particular sequence, constructing a qualitative phase

diagram, from which a more general dynamic behaviour is extrapo-

lated.

Lastly, an estimator for equilibrium expectations, represented by a

transition matrix in an extended space between temperatures and a

set of discrete states obtained through the discretisation of a contin-

uous space, is proposed. It is then demonstrated that this estimator

outperforms conventional multi-temperature ensemble estimates by

up to three orders of magnitude, by considering three models of in-

creasing complexity: diUusive particles in a double-well potential, a

multidimensional folding potential and a molecular dynamics simula-

tions of alanine dipeptide.
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1
I N T RODUCT ION

Statistical mechanics is an area of study concerned with probabilis-

tic systems with a large number of degrees of freedom. This means it

aims to describe the properties of systems, where no deterministic so-

lutions are available due to either an intrinsic randomness or the sheer

complexity of the system. The variety of systems studied in the frame-

work of statistical mechanics is very broad, such as particle or spins

systems, animal populations and stock markets [7]. Especially in more

recent years, these well known concepts have seen more application

to non-classical areas such as biological, chemical, nano-mechanical

and social systems [8].

This area of research originated in the study of ideal gases and was

later driven by simple physical problems such as the behaviour of mag-

nets, or the Brownian motion of particles and other systems that obey

Maxwell-Boltzmann statistics (see equation (1.1)).

With the popularity of quantum mechanics gaining momentum, the

statistical behaviour of fermions and bosons at low temperatures was

studied and Bose-Einstein statistics were introduced around 1925 [9].

In contrast to fermionic particles, i.e. particles that are governed by

the Pauli exclusion principle, Enrico Fermi and Paul Dirac developed

the theory known as Fermi-Dirac statistics in 1926 [10, 11]. This is, for

example, applicable to electrons. Interestingly, this behaviour is only

observed at low enough temperatures or very dense systems; for high

temperatures and low densities Boltzmann statistic describes particle

behaviour well. In this thesis, we will concentrate on systems which

can generally be described by Boltzmann statistics.

As systems with a large number of degrees of freedom are consid-

ered, the notion of microscopic and macroscopic properties is impor-

tant. In the presence of microscopic Wuctuations it is natural to con-

sider macroscopic observables in order to obtain a probabilistic de-

scription of the system. One can describe average quantities of gas

particles in a box based on their temperature. It may not be possible

to distinguish individual particles and say exactly what velocity they

have at a given point in time, but it is possible to deduce the average

speed of all particles. In fact, the speed v = |v| follows the Maxwell-

Boltzmann distribution:

f(v) =

√

2

π

( m

kBT

)3

v2 exp
(−mv2

2kBT

)

. (1.1)

More generally, the equilibrium behaviour can be expressed in terms

of the partition function, which will be discussed in Chapter 2. There-

fore, in order to obtain an equilibrium description of a system of in-

1



introduction 2

terest, the knowledge of the partition function is essential. For exam-
ple, when considering a system comprised of ideal gas particles the
partition function can be written down exactly, but in more complex
systems this is not necessarily possible. An alternative approach uses
computational sampling techniques in order to estimate the equilib-
rium behaviour of a system. The next section will give an overview of
commonly used computational techniques in order to achieve equilib-
rium sampling.

computational approaches

With the advent of computers, algorithms have been developed that
allow sampling of systems with large state spaces in order to obtain
information regarding their equilibrium behaviour. These algorithms
rely on ergodic theory, which means they make use of the fact that
the time average of the system is the same as the ensemble average in
the limit of inVnite observation time and therefore sampling in time
can be used in order to obtain estimates of the average equilibrium
behaviour [12]. In particular, as the last 60 years have seen tremen-
dous improvements in computational modelling due to the fast ad-
vancement of computational power (processor speed and data storage
possibilities), which lead to algorithmic improvements and could be ap-
plied to increasingly complex systems. Generally, one can distinguish
between two types of algorithms: Monte Carlo (MC) simulations and
molecular dynamics (MD) simulations. Both aim to sample the equilib-
rium properties of the system of interest by exploring the state space,
i.e. the space of all possible conVgurations the system of interest can
take.

MC simulations are based on accepting newly proposed conVgura-
tions of a system according to a probability function and were initially
used to approximate high dimensional integrals. In this thesis MC sim-
ulations will be applied to stochastic systems on a lattice and will be
discussed in detail in chapter 3 and chapter 4. The interested reader is
also referred to a very exhaustive book by Landau and Binder [13] on
the topic of MC simulations.
The other type of algorithm, MD simulations, is often applied to molec-
ular systems, such as simulations of liquids, hard spheres or biological
molecules to name a few. In this approach Newton’s equations of mo-
tion are integrated to evolve the system in time. Mathematically, this
means a time discretisation of the underlying diUerential equations is
used in order to model it on a computer. These equations are taken
from either Lagrangian and Hamiltonian mechanics or a stochastic
counterpart such as Langevin or Brownian dynamics. Each particle
of the system has a momentum and velocity. Generally, in order to
initialise the system at a given temperature, velocities are randomly
drawn from the Maxwell-Boltzmann distribution (see equation (1.1)).



introduction 3

At each time step the discretised diUerential equation will give infor-
mation about the new velocity of each particle, based on the under-
lying potential landscape. In fact, the derivative of the the potential
is the force exerted on the particle at that point in phase-space – the
space that carries the information of position and velocity of the parti-
cle. Depending on the system, model potentials can be anything from
Lennard Jones type interactions, to Coulomb potentials, to model inter-
molecular interactions, to bond, angle and torsion potentials in order
to model intramolecular interactions. This, in turn, leads to a vast area
of research, that of parametrisation of interaction force Velds based on
experiments and quantum mechanical calculations.
In order to make valid statements about the equilibrium behaviour

of the system, simulations look at the average behaviour of observ-
ables and their Wuctuations. For the example of an Ising model MC

simulation (discussed in Chapter 3), this could be the average magneti-
sation; in a MD simulation the average position of a particle/molecule
in a potential may be of interest.

rare events sampling

Often the systems of interest do not have a straight forward equilib-
rium behaviour. For example, the well studied Ising model (used for
studying ferromagnetic behaviour) exhibits a phase transition between
a paramagnet and a ferromagnet. Near the critical point of the phase
transition the convergence of the MC dynamics is very slow. Further,
molecular systems are often plagued by metastability, which leads to
ineXcient sampling of the whole state space and thus the convergence
to the global equilibrium is very slow or even infeasible within an
appropriate simulation time. This sampling problem is even more pro-
nounced at lower temperatures, as even less kinetic energy is available
to the system. Therefore it becomes less likely to overcome a potential
barrier with insuXcient kinetic energy in the system. In the following,
two commonly used methods that allow the extraction of the equilib-
rium behaviour while distorting the dynamics of the system will be
brieWy introduced; these are: Replica Exchange dynamics and Metady-
namics.

Multi Ensemble Algorithms: Replica Exchange

In the following, a temperature ensemble is considered but the method-
ology has been employed to various diUerent ensembles. At low tem-
peratures a metastable system does not have suXcient kinetic energy
in order to overcome potential barriers in the potential energy land-
scape. This is manifested by not accepting MC steps, or the oversam-
pling of a metastable conformation in MD simulations. Metastable bar-
riers can, however, often be overcome at higher simulation tempera-
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tures (they vanish at inVnite temperature). This property has been ex-
ploited by a family of ensemble algorithms, evolving diUerent replicas
of the system at the same time. Each replica samples the system at a
diUerent thermodynamic state, i.e. with diUerent temperatures. These
replicas are exchanged periodically according to a criterion ensuring
that each replica samples from the global equilibrium distribution.
This was Vrst proposed in 1986 by Swendsen and Wang with an

application to a spin glass system [14] and has since seen various dif-
ferent Wavours. In its most general form this algorithm is referred to
as replica exchange molecular dynamics (Monte Carlo dynamics)

(REMD) and can be explored in more detail, for example in a review
by Earl [15]. The replica approach has found vast application in both
MC simulations as well as MD simulations. These ensemble algorithms
may generate correct equilibrium distributions e.g. diUerent tempera-
tures, but at the expense of generating unphysical dynamics. Gener-
ally, replica exchange algorithms are a very useful class of algorithms
for sampling equilibrium properties by reducing correlation times for
sampling independent conVgurations in comparison to using a single
replica. REMD simulations will be discussed in greater detail in conjunc-
tion with the results of a novel estimator presented in chapter 5 .

Metadynamics

A diUerent class of algorithms that allow fast and eXcient exploration
of the equilibrium properties of a complex system is metadynamics.
For an extensive discussion of metadynamics see the review by Lao et
al. [16].
Metadynamics is an algorithm that biases the system away from

phase space regions that have already been sampled, by adding Gaus-
sian functions to the potential function in these regions. From the sum
of all the added Gaussian functions the free energy of the system and
other interesting properties can be inferred. This type of algorithm
is suitable for both MC and MD dynamics and has been successfully
employed to many diUerent systems [17, 18]. However, one drawback
again is that it suUers from generating unphysical dynamics, but gives
accurate information about the ensemble expectations.It can thus only
be used for the estimation of ensemble averages (equilibrium proper-
ties). Its advantage over the ensemble algorithms is that only a single
replica is required, thus computational cost is smaller than that of en-
semble algorithms.

ensembles of trajectories based methods

Until now, we have discussed methods that are used in order to study

the thermodynamic and thus stationary properties of systems. How-

ever, questions such as what is the rate of going from one metastable
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state to a diUerent metastable state are of great interest. This would for
example allow the distinction of folding pathways in the protein fold-
ing problem. Generally. the dynamics of a stochastic system are given
by the Fokker-Planck equation, i.e. the time evolution of the proba-
bility densities of the system from some initial point in time to some
later point in time. Mathematically, this can be expressed by a master

equation of the form:

dP

dt
= KP. (1.2)

Here, P is a probability vector for all possible states at time t and
K is a rate matrix or generator containing transition rates between
states. In most cases, just as it is impossible to write down the parti-
tion function, it is impossible to write down a rate matrix, or generator
of the stochastic process exactly. Instead one has to think of methods
that will generate an ensemble of reactive trajectories (by reactive, tra-
jectories starting in an initial set A and reacting to a Vnal set B, are
meant). An example of such a method is transition path sampling (TPS)
and was proposed by Geissler et al. in the early 2000’s. [19, 20].

Ensembles of Reactive Trajectories

TPS is a method used to facilitate the generation of reactive trajectories
in systems, where one tries to get from one thermodynamic state to a
diUerent one, for example in protein folding from an unfolded state to
a folded state. The basic idea is to generate a Markov Chain, or a ran-
dom walk on the space of dynamical trajectories using MC sampling.
Newly proposed trajectories are only accepted if they are reactive, i.e.
if they make it from A to B. The TPS algorithm has been referred to
as "throwing ropes over high mountain passes in the dark" [19]. This
can be explained in the sense that the throwing ropes is an attempt
to get from one metastable state to a diUerent one. This is particularly
diXcult in high dimensional state spaces, thus the "throwing" occurs
in the dark, as no perfect route is known. In more mathematical lan-
guage TPS can be explained as follows. A trajectory consists of a se-
quence of states observed with lag time τ, where τ is the interval of
the time discretistion: Xtobs

= (x0, xτ, x2τ, . . . , xtobs
). The probability

of observing a given trajectory depends on the path ensemble. Thus if
one deVnes substates A,B ∈ Ω and A∩B = ∅ in a state spaceΩ, the
probability of a reactive trajectory going from A to B is given by:

PAB(Xtobs
) = ΛA(x0)P(Xtobs

)ΛB(xtobs
)Z−1
AB. (1.3)

Here,ΛS(x) (S is either setA or B) is a characteristic function which
takes on the value of unity if x ∈ S and is zero otherwise. ZAB is
a normalisation constant that ensures PAB(Xtobs

) integrates to unity.
All trajectories generated in this way obey the true dynamics of the
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system. Generating trajectories in this way, the ensemble of reactive
trajectories is explored.
This scheme will Vnd application in chapter 3 and 4 in an adapted from
in order to sample rare events in dynamic ensembles.

Ensembles of Non-Equilibrium Trajectories

Until now, we have given a detailed introduction to sampling equi-

librium and dynamic properties of a system. As the thesis is mainly

concerned with looking at non-equilibrium Wuctuations in ensembles

of trajectories, a short introduction will be given in the following. In

the study of non-equilibrium dynamics, the evolution of the system

depends not only on the current state, but also on time. To be more

precise, such methods look at the time dependent Wuctuations of en-

sembles of trajectories, i.e. a dynamic ensemble given for example by

an observable capturing the so called activity of the system. In order

to study such Wuctuations, much of the methodology used for study-

ing equilibrium properties can be reused. Trajectories can be described

by such an activity observable, which will have certain expectations

based on the choice of dynamics and set observational time of the sys-

tem. Analogous to the thermodynamic partition function, a dynamic

partition function over path averages, or trajectories can be deVned.

This will give information about the likelihood of observing a trajec-

tory with a given dynamic observable. Therefore, understanding the

physical conditions for rare trajectories is essential. In this case a rare

trajectory does not mean a trajectory with a rare event such as a tran-

sition from A to B as discussed in the context of TPS, but trajectories

whose activity is unlikely, i.e. a trajectory from the tails of an activity

distribution. This concept will be introduced in much greater detail

in chapter 2 and 3, but essentially in order to eUectively sample rare

trajectories a trick much akin to umbrella sampling of biasing the tra-

jectories is needed. This is referred to as the s-ensemble.

Reweighting dynamic trajectories according to the s-ensemble has

been very successful in describing glass forming system, or highly

frustrated quantum systems [2, 4, 21, 22] amongst others and gives

insight in the inWuence of non-equilibrium Wuctuations on the equi-

librium properties of the system. For example, in the case of glasses

these Wuctuations give rise to the slow relaxation times of glasses in

the liquid state. In this thesis this formalism will be applied to the 1-d

Ising chain in chapter 3 and a lattice model of a protein in chapter 4.

thesis overview

In the following, a brief overview of the subsequent chapters is pre-

sented:
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Chapter 2 gives an introduction to the mathematical and physical
concepts of statistical mechanics, with particular emphasis on the tools
needed in the later chapters. The canonical ensemble is introduced,
the Markov model theory and construction is outlined and Landau
theory of phase transitions is brieWy discussed. Lastly, the dynamic s-
ensemble formalism and large deviation theory are explored.

In chapter 3 the Ising model and MC algorithms are introduced in de-
tail. The thermodynamic properties of the 2-d Ising model are outlined,
with particular interest in the scaling behaviour and universality class.
Then the results of a novel and extensive computational study of the
1-d Ising model are presented, where a dynamic phase transition with
the same universality class of the 2-d Ising model is observed. This is
done using two diUerent move-set MC algorithms: Glauber-Metropolis
dynamics and Kawasaki dynamics.

The subsequent chapter 4 is concerned with the dynamic properties
of a lattice protein model, a computational study we contrived and
conducted using a variety of diUerent interaction potentials. This is
investigated using again the dynamic s-ensemble formalism: equilib-
rium trajectories are reweighted uncovering dynamic complexity in
trajectory space. Trapping states are identiVed and it can be shown
that these are able to inWuence the equilibrium dynamics signiVcantly,
by prolonging mean Vrst passage times to the native state of the lattice
protein.

Chapter 5 moves away from the MC dynamics, and will instead con-
sider the results obtained fromMD simulations of toy potentials as well
as alanine dipeptide, in order introduce a novel estimator (transition
matrix analysis method (TRAM)) we proposed for obtaining the station-
ary behaviour of highly metastable systems. Here the use of Markov
models is vital.

In chapter 6 the thesis is concluded with a discussion of all the re-
sults obtained and an outlook for potential future work is given.



2
TH EORET ICAL BACKGROUND – MARKOV MODEL S ,
LARGE DEV IAT IONS AND THE s - EN SEMBLE

This chapter will give an introduction to the theoretical tools used
for the analysis of equilibrium and dynamic properties in a variety
of stochastic systems. In particular, it will introduce the concept of
Markov models, the theory of Landau phase transitions and the ideas
behind the large deviation formalism. Large deviations are then used
in order to introduce the concepts of the s-ensemble, which allows to
probe non-equilibrium Wuctuations in ensembles of trajectories.

2.1 equilibrium stochastic processes

This section will set the stage for the discussion of stochastic processes
by deVning a few commonly used terms. A stochastic process can be
seen as a collection of random variables. This collection of random
variables can be probed for its equilibrium as well as dynamic proper-
ties. In general, when we discuss random variables in the following we
assume them to be independent identically distributed (iid).

2.1.1 Introduction: Coin Tossing

Thinking of one of the simplest stochastic processes, tossing coins
comes to mind. We can deVne the "Laplace coin", whose probability
of either heads (h) or tails (t) occurring is 12 . If we now consider a
series of n coin Wips, there are many diUerent possible outcomes; 2n

to be precise. Thus, for two Wips the set of possible outcomes already
contains four entries:

Ω = { {h , h } , {h , t } , {t , h } , {t , t } } .

Each of the possible outcomes is also termed a microstate.
In statistics, there are two important laws which govern a stochastic
process such as coin tossing. The Vrst one is the law of large num-

bers which states that, as the number of attempts (n) takes the limit
n → ∞ , the sample average will almost surely converge to the true
value [23]. Let us assume that xn is a sequence of random coin tosses
of length n , then it holds that

l i m
n→∞

〈 xn 〉 =
1

n
( x 1 + x 2 + . . . + xn ) = µ . (2.1)

Here µ is the true value or expected value and x i is the i t h ran-
dom coin toss. Therefore, an interesting choice of observable may be
the probability of how many heads are found in a single sample, i.e.

8
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P ( h n ) = 1
n

∑
i x i = 1

2 as n tends to inVnity. Furthermore, the
number of heads observed after n tosses, i.e. h n can be seen as a
macrostate of the system, whose probability of occurring is just gov-
erned by combinatorics:

P(hn) =
n!

hn!(1− hn!)

1

2n
. (2.2)

Now, it is possible to consider a second important law, the central
limit theorem, which states that random samples of length n with a
Vnite mean and variance will converge in law to a normal distribution
as n → ∞. In this way the true value of the probability for each out-
come can be estimated [23]. This can be approached in the following
way: Rather than letting the number of samples go to inVnity, instead
the probability distribution of possible outcomes for an experiment of
a given length n is observed. The Vrst central moment or sample av-

erage of the probability distribution gives information about the most
likely outcome often denoted by E(xn), 〈xn〉 or µn. The variance or
second central moment gives information on the accuracy of the esti-
mate given by E(xi−µn)

2 or simply denoted by σ. The distribution is
constructed from many repetitions or realisations of length n. For the
case of the coin Wipping, the probability density obtained from many
realisations will be Gaussian, meaning it is of the form:

P(µO) =
1

σ
√
2π

exp
[

−
1

2

(µO − µ

σ

)2]

, (2.3)

where σ is the variance and µ the mean of the distribution and µO the
observed mean of a single realisation. The central limit theorem now
tells us that if the number of realisations is large enough, the mean
of the distributions of observed means (P(µO)) will approach the true
mean of the stochastic process.
In a more mathematical description, such a discrete stochastic pro-

cess can be deVned on a probability space (Ω,B,P). The probability
space consists ofΩ being the set of all possible outcomes, B is the set
of events and has to form a Borel σ-algebra over Ω, in the case of the
coin Wips a power set B = 2Ω. The last part of the triple is the proba-
bility measure P such that P : B → [0, 1]. The probability of the whole
sample space is P(Ω) = 1. Thus, a stochastic process is a collection of
random variables such that: (Xt)t∈I onΩ.
A physical interpretation of this is a trajectory in time t. If the ran-

dom variables and the time increment are discrete, then such a set of
events is known as a discrete Markov jump process, i.e. I = N. In a
situation of continuous time and a continuous state space then the pro-
cess is referred to as a continuous time Markov process and I = R+.
For more details on Markov processes see [24].
Let ωi ∈ Ω be a microstate. Thus, having deVned microstates and
macrostates, it is possible to apply the most fundamental postulate in
statistical mechanics. In equilibrium the probability of being in a par-
ticular microststate is given by P(ωi) = 1/|Ω|, assuming thatΩ is the
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set of all possible states. This means each microstate is equally likely.
This is known as the microcanonical ensemble [25]. Of particular in-
terest might be measurable observables, i.e. macrostates of the system,
and in particular how likely a certain outcome is to be observed –
such as a given number of heads hn. This depends on how many ways
there are to obtain the average divided by all possible outcomes (mi-
crostates). In the following section, we will explore how one can move
from the microcanonical description of a system, where it is assumed
that each state is equally likely, to a canonical description – where
each states likelihood is dictated by its underlying potential.

2.1.2 Canonical Ensemble

The canonical measure or canonical/NVT ensemble of constant par-
ticle number, phase space volume and temperature will be introduced
in this section. By using the maximum entropy assumption, the prob-
ability of being in microstateωi is deVned as:

Pi =
1

Z
exp(−βui), (2.4)

where Z(β) is called the partition function of the system, serving as
a normalisation constant and ui the energy of state ωi and β the in-
verse temperature (see formal deVnition below). Z does always depend
on β, but this will not be explicitly stated in the following. The deriva-
tion is achieved through the use of entropy maximisation, where we
can deVne the entropy as S = lnΩ. Entropy is also deVned later on by
equation (2.12) Furthermore, an energy and particle constraint can be
posed on the system leading to the use of Lagrange multipliers, where
the energy constraint (see equation (2.6)) and a number of particle con-
straint (see equation (2.5)) are assumed such that:

α
∑

i

dni = 0 (2.5)

and

β
∑

i

uidni = 0, (2.6)

with α and β being the Lagrange multipliers. Furthermore, the mul-
tiplier β associated to the energy constraint is proportional to the in-
verse temperature of the system, or to be more precise:

β =
1

kBT
. (2.7)

Generally, the Boltzmann constant kB will be set to unity in this the-
sis; where this is not the case this will be explicitly stated. For a more
detailed sketch of the derivation, refer to [25]. The normalisation con-
stant Z is of particular interest, as it relates a lot of equilibrium prop-
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erties of the system. It is given by the following sum over state space:

Z =
∑

i

exp(−βui). (2.8)

For systems with degenerate energy states a factor called the density of
states is introduced, but will not be further discussed here. The expres-
sion exp(−βui) is also known as the Boltzmann factor, representing
the unnormalised probability of a given state. This allows the determi-
nation of some thermodynamic/equilibrium properties with respect to
the partition function.
For example, quantities of interest may be the ensemble average of the
total energy given by:

〈Et〉 = −
∂ lnZ

∂β
, (2.9)

and the Wuctuations in the total energy:

〈(Et − 〈Et〉)2〉 =
∂2 lnZ

∂β2
. (2.10)

Another important observable is the free energy of the system, which
is deVned as:

F = −kBT lnZ, (2.11)

which is closely related to the entropy

S = −
∂F

∂T
. (2.12)

Thus, it can be concluded that the knowledge of the partition func-
tion gives useful information about the equilibrium properties of the
system. So far only systems with a discrete number of states (the coin
tossing experiment) were considered. It is evident, however, that one
can easily think of situations where Ω is not discrete but continuous.
An example of such a system would be that ofN identical gas particles,
with Ω = R

6N. In that case the sum in equation (2.8), turns into an
integral over all of state space, i.e.:

Z =

∫

Ω

dω exp(−βU(ω)). (2.13)

This integral is in most cases not easily solvable and thus Vnding ways
of estimating this integral are important.
In the following we will consider the example of a diUusive particle

in a 1-d potential, for which an exact solution of the integral of the
partition function is available, in order to illustrate some the properties
of the partition function.
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2.1.3 Example: Single Particle in a Harmonic Potential

In the following a 1-d harmonic potential with a diUusive particle will
be considered, in order to demonstrate the usefulness of the knowl-
edge of the partition function for a continuous state space Ω = R.
The example chosen here is exactly solvable. Let U(x) = (x− 2)2 be
the potential, depending on the – here unitless – position x on state
space and let the corresponding partition function Z depending on the
inverse temperature β be given by:

Z(β) =

∫+∞

−∞

dx exp(−β(x− 2)2) =

√

π

β
, (2.14)

which is a standard Gauss integral in this case. The expectation of the
energy is given by:

〈U〉 = −
∂ lnZ

∂β
=
∂ ln

√

π/β

∂β
= −

1

2
kBT . (2.15)

The equilibrium probability, π(x) of each point in state space Ω is
given by:

π(x) =
exp(−βU(x))

Z(β)
. (2.16)

This probability π(x) is always normalised to unity by the partition
function such that:

∫+∞

−∞

dxπ(x) = 1 . (2.17)

Figure 2.1(a) shows the harmonic potential U(x). Figure 2.1(b) shows
the equilibrium probability for 3 diUerent values of the inverse temper-
ature β in reduced units, evaluated according to equation (2.16). Alter-
natively, Vgure 2.1(b) can also be obtained by "sampling" the potential.
This would require observing the position of the particle in the po-
tential as it performs a diUusive motion (e.g. Brownian motion), from
this, the average position (equilibrium probability) of the particle can
be extracted. The potential itself carries all necessary information for
the equilibrium behaviour of the diUusive particle in this harmonic po-
tential. Probing equilibrium properties by means of sampling is only
necessary if equation (2.16) cannot be evaluated exactly.
Evaluating equation (2.16) in real world systems – one could think of
a protein molecule, or a carbon nano tube – often poses a problem,
as the dimensionality is too high and the state space is too complex,
such that the solution can be written down exactly. This problem is
also known as the curse of dimensionality. Hence, ways of estimat-
ing the equilibrium behaviour need to be found. This is often achieved
by means of sampling and further reducing the dimensionality of the
system of interest. Generally the dimensionality reduction is achieved
by projecting the high dimensional continuous state space – which
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Figure 2.1: (a) Potential U(x). (b) The normalised equilibrium distribution of
the harmonic potential (a) for three diUerent temperatures 1/β =

{0.5, 1, 2} in reduced units.

is unknown – onto a single or even multiple reaction coordinates,
along which a histogram can be constructed. Using this approach a

lot of information is evidently lost, therefore instead one can think of

clustering the data into a high dimensional histogram and in this way

captures more of the properties of the original system. For evaluating

stationary and dynamic properties of a system discretised in such a

way, the theory of a Markov State model (MSM) is very useful and will

be discussed in the following section.

2.2 markov state models

Markov state models (MSMs) are stochastic models which obey the

Markov property, which means that the system does not carry any

memory of a past state or future state in a time evolution process. An

example of such a process would be a random walker, or the diUusive
particle in the 1-d well discussed in section 2.1.3. MSMs use the notion

of the Markov property in order to obtain a quantitative description

of the stochastic process. In fact from the Markov property it follows

that the system is fully described by the generator of the stochastic

process.

The construction of these models will allow the reconstruction of

equilibrium and kinetic behaviour of the particular stochastic process

of interest, therefore it is a very useful tool. Generally, the idea behind

the construction of an MSM is to approximate the generator K of the

stochastic process. The generator – from the Master Equation of the

process – is an operator that contains the transition probabilities be-

tween states of the system. In most systems of interest, e.g. molecular

systems, the curse of dimensionality does not allow for the generator

to be written down exactly, or be approximated by means of Vnite ele-

ment methods. Instead, it can be approximated by data obtained from

simulations which are obtained evolving the system according to the

underlying stochastic dynamics. These then form the basis of the MSM.

In the following we will Vrst introduce the transfer operator and its

relation to the generator and discuss some of its very useful properties.
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Then we will move towards a discretisation of the state space and in-
troduce the discrete equivalent of the transfer operator, the transition
matrix. Next it will be discussed how one can arrive at an estimate
of a transition matrix from an actual observed trajectory. This will be
discussed using a discrete example only allowing two possible states.
Lastly, it will be shown how such a model can be applied to continuous
state spaces and an example will be given of a model where the state
space is given by Ω = R. It will then be alluded to how this can be
extended to much larger state spaces, e.g depending on the number of
atoms (N) contained in a system, such thatΩ = R

3N.

2.2.1 Formal DeVnition of a Markov Process

We assume there exists a time continuous stochastic process (Xt)t>0
on a probability space (Ω,B,P). If the Markov property for Xt holds,
meaning that the history of the system does not inWuence the future of
the system the transition probability between states inΩ fully describe
the dynamics. Let us denote two diUerent states in Ω in a continuous
setting as x and y. In the following transition probabilities between
these points:

p(x, y;dt)dy = P[xt+dt ∈ y+dy|x(t) = x] ∀ {x, y} ∈ Ω . (2.18)

Equation (2.18) gives the probability of the system transitioning from
initial state x at time t to state y after a time interval dt. Further-
more, y + dy could be deVned as a whole region (subset of Ω) out
of which, or into which probability can Wow. It is also useful to as-
sume that the Markov process is ergodic. This means all points x on
Ω are dynamically connected and as t → ∞ every x will be visited
inVnitely often [12]. The probability density for each element x in the
inVnite limit is the stationary probability of the system given by equa-
tion (2.16), where U(x) can in such a case be described by the Hamil-
tonian H(x). Throughout the thesis U(X) and H(x) are often used
interchangeably. From ergodicity, the uniqueness of the stationary dis-
tribution follows. The Hamiltonian can, for example, be describing the
energy terms of a protein molecule. The last assumption made is that
the dynamics are reversible, which means that the detailed balance

condition must hold:

π(x)p(x, y;dt) = π(y)p(y, x;dt) . (2.19)

Thus, detailed balance means that the probability of going from one
state to another and the reverse are the same, weighted by the equi-
librium probability π(x). Again, the notion of a trajectory can be used
and is deVned as a sequence of states x from time t = 0 to time t = tobs

and denoted by Xt. For a more rigorous deVnition and discussion of
Markov processes, see [24].
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2.2.2 Transfer Operator Approach

In the following, we will Vrst discuss how the dynamics on the full/con-
tinuous state space behaves, before considering its discretised analogy.
As with any stochastic process, predicting the behaviour of a single re-
alisation is impossible, due to the randomness of the process. However,
it is possible to say something about the averaged properties of the en-
semble. Therefore, it is of interest to investigate the time evolution
of a probability density, resulting from an ensemble of diUerent real-
isations. The Master equation (1.2) allows to propagate a probability
density in time. This is achieved by the generator K of the stochastic
process. For convenience, we will deVne the transfer operator T in this
section, which is related to the generator in the following way:

T(τ) = exp(τK) , (2.20)

where τ is a lagtime, at which the process is observed. The timestep of
a numerical integrator dt can, for example, represent such a lagtime.
The transfer operator propagates a weighted probability density ft,
related to the probability distribution pt(x) by the equilibrium proba-
bility π(x):

pt(x) = ft(x)π(x) , (2.21)

with pt(x) being the probability of being in x at time t, in the follow-
ing way:

ft+τ(y) = T(τ) ◦ ft(y) =
1

π(y)

∫

x∈Ω
p(x, y; τ)π(x)ft(x) . (2.22)

The transfer operator is a non-negative operator and therefore ful-
Vls the requirements of the Perron-Frobenius theorem. This allows
the deduction of a few useful well known properties with respect to
Markov models [26]:

1. The powers of T(τ), i.e. T(τ)n, obey the Chapman-Kolmogorov
equation, such that

T(τ)n = T(nτ) . (2.23)

2. The continuous eigenvalue spectrum has some interesting prop-
erties if the transfer operator models a reversible process. All
eigenvalues are real-valued and between [0, 1], i.e the largest
eigenvalue will always be λ1 = 1 and all subsequent eigenval-
ues will be real valued and decreasing as λi > λi+1 > 0 in all
cases considered here. The set of m dominant eigenvalue and
eigenfunction pairs can be written as:

T(τ) ◦ψi(x) = λiψi(x) . (2.24)
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These dominant eigenvalues and eigenfunction are of particular
interest to the system, and are again dependent on the lagtime τ.
This leads to the fact that the spectrum holds information about
metastable behaviour of the system.

3. Metastability of the system can be observed through a gap, i.e.
λm ≫ λm+1 in the eigenvalue spectrum, such that a distinc-
tive separation of fast and slow processes is possible. All slow
processes (the m dominant eigenfunction and eigenvalue pairs,
see equation (2.24)) will have eigenvalues close to the dominant
value of unity and all fast processes can be found in a ball around
0.

4. The eigenvalues corresponding to the slow processes can be as-
sociated with an implied timescale (ti) of the underlying dynam-
ics of the system through the following equation:

ti = −
τ

ln λi
. (2.25)

This timescale is related to the mean Vrst passage time between
the slow regions of the system (e.g. between two metastable
basins of a double well potential as seen in Vgure 2.2.)

Of course a lot more can be said about the transfer operator, therefore
for a more detailed discussion the reader is referred to [26].
Unfortunately the transfer operator suUers the same curse of dimen-

sionality as the generator K, in the sense that it can only be approxi-

mated for systems of low dimensionality, where an operator approxi-

mation by means of Vnite elements computation is possible [27].

2.2.3 Discrete Approximation of the Transfer Operator – the Transition

Matrix

Until now Markov processes in continuous time and on a continuous

state space were considered. Most of the time, however, trajectories

on a set of discrete states are used. This leads to an approximation of

the transfer operator by the so called transition matrix, holding tran-

sition probabilities between discrete states. For the estimation of this

transition matrix one can generally distinguish between two diUerent

cases: The Vrst is an estimate from a trajectory obtained from a dis-

crete Markov jump process, where the observed dynamics has prede-

Vned discrete states. The second is an estimate obtained from a trajec-

tory generated on a continuous state space. In the latter case the state

space requires discretisation Vrst, in order to turn the state continuous

trajectory into a discrete trajectory.

A discrete trajectory is a sequence of integer number, each of which

identiVes a unique state in state space (i.e a naturally discrete state)

or a region on the continuous space. Let us assume that we have

{1, . . . , k} ∈ K such states. This means that an exact number of K
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states can be identiVed and the transfer operator can be approximated
by a transition matrix T(τ) ∈ R

K×K. The transition matrix is a non-
negative row stochastic matrix and is required to be irreducible, for
all cases discussed in this thesis. For matrices of this kind the Perron-
Frobenius theorem holds and properties ((1)-(4)) from section 2.2.2 are
also valid for the transition matrix. Again, T will also depend on the
chosen lagtime τ of the system, and will be implicitly assumed, but will
be neglected again in the notation, i.e. T means it has a certain lagtime
τ. In the following one property will be highlighted as it will play a
more prominent role in chapter 5. The eigenvector corresponding to
the trivial eigenvalue λ1 = 1 represents the stationary probability of
the system, and thus the following holds:

πTT = TT . (2.26)

The vector π has K elements and holds the equilibrium probability of
each state as its entries.

2.2.4 Transition Matrix Estimation

The question is how to obtain the transition matrix from the observed
trajectories of a simulation or experiment. The transition matrix is
given by the discrete transition probabilities between each conVgura-
tion visited in the simulation at a given lagtime τ. How these can be
estimated will be discussed in the following sections.

2.2.4.1 Count Matrix – Stochastic Switch Example

Let us assume we have a system with some unknown underlying prop-
erties, but we can observe a light switching on and oU in a random
manner. Thus we can deVne a state space consisting of two states:
Ω = {on, off}. A measurement is taken every second and after n sec-
onds a trajectory (Xt) which may look like this is observed:

Xt = {t1 = on, t2 = on, t3 = on, t4 = off, t5 = off, . . . , tn = on} .

Now, the underlying stochastic process which we do not know any-
thing about, dictates the switching of the light, but with the recorded
observation we have counts of how many times each state, as well as
switches between states are observed. An example of this is found in
table 2.1. In this way we can deVne a count matrix C(τ). Let us assume
that we have taken 1000 measurements, i.e. a trajectory that is 1000s
long and we construct C(τ) at a "native" lagtime, i.e. τ = 1s in this
case. It is very straight forward deVning a count matrix from table 2.1:

C(τ = 1) =

(

300 100

100 500

)

. (2.27)
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State Transition Observed number of times

on → off 100

off → off 500

off → on 100

on → on 300

Table 2.1: Number of times a state transition is observed in the light switching
example from a 1000s trajectory.

Taking the limit of an inVnitely long trajectory, the counts out of and
into states at the lagtime τ will be exactly the correct transition prob-
abilities, if the underlying dynamics is Markovian. As it is not possi-
ble to generate inVnitely long trajectory, conditional probabilities are
used in order to estimate a transition matrix from the observed counts,
given a certain lagtime.

2.2.4.2 Maximum Likelihood Estimation

The aim is to estimate a most likely transition matrix based on the ob-
served trajectory at lagtime τ. The conditional probability for a transi-
tion matrix, from the observed counts is given by:

p(T|C) ∝

K∏

i,j

T
Cij
ij . (2.28)

The maximum likelihood estimator of the transition matrix is trivial
and is recovered by row normalising the count matrix C(τ). The esti-
mate for the transition matrix T̂ is given by the following entries (not
the hat is not always explicitly written. All transition matrices from
simulations are assumed to be estimates):

T̂ij =
Cij

∑
jCij

, (2.29)

which is just

T̂ = arg maxp(T|C) , (2.30)

assuming that transition matrices are uniformly distributed. Looking
back at the light switch example a maximum likelihood transition ma-
trix just becomes:

T̂(τ = 1) =

(

0.75 0.25

0.17 0.83

)

, (2.31)

resulting in an equilibrium probability of π = {0.4, 0.6}, i.e 40% of
the time the light is on and 60% of the time the light is off . This works
well for a 2× 2 system, but for a system with more than two states,
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the problem arises that with this method of estimation, T is not nec-
essarily reversible, meaning that the entries do not necessarily fulVl
detailed balance. The detailed balance condition for the entries of the
transition matrix estimate mean that πiTij = πjTji is true, while πi
is the stationary probability of being in state i. Generally reversibility
is desired, as it ensures only real valued eigenvectors. A method for
the reversible estimate of a maximally likely transition matrix based
on the observed counts has been proposed by Prinz et al. [28] and in-
volves an iterative pairwise update of the matrix entries, weighted by
the stationary probability distribution for each updated state.

2.2.5 Large Systems with Continuous State Spaces

Until now only the small two states switch example, which was dis-

crete by construction, was considered. However, Markov models can

also be very useful for classifying equilibrium and dynamic behaviour

of continuous stochastic systems. Thus as an example Markov mod-

els can be built from MD simulations. Here the task arises to discre-

tise the dynamics in time but also reduce the size of the state space

to a manageable set of representable states, for example, in the case

of a large protein system. The dynamics (Langevin dynamics are con-

sidered here) need to be discretised so that the stochastic diUerential

equation can be integrated computationally. The Langevin equation is

given by:

m
d2x

dt2
= −F(x) − ζm

dx

dt
+ η(t) , (2.32)

wherem is the mass of the particles, x the particle positions, F(x) the

force acting on each particle, ζ a friction coeXcient and η(t) a ran-

dom white noise. Equation (2.32) can, for example, be integrated by a

leap frog algorithm, discussed in more detail in chapter 5. The size of

the time step is dictated intrinsically by the system and for molecular

simulations generally in the range of femtoseconds [29]. In this way

the continuous Markov process now becomes a time discrete Markov

chain. With this a molecular system can be evolved in time and at ev-

ery time step a snapshot of the state space x can be taken. This makes

up a trajectory Xt. Now in order to propagate a set of path ensembles

from time t = 0 to some later time, the knowledge of the transfer op-

erator is essential, but is generally not known exactly. Instead, it can

be approximated by a transition matrix, but now a discretisation of the

continuous state space will be necessary, i.e. many points in continu-

ous state space are considered as one discrete state. The overall space

discretisation is ideally done in such a way that the reduced state space

becomes more manageable but also retains the important dynamic and

static properties of the system one wishes to study. Generally a crisp
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discretisation is chosen, meaning that each point in the whole state
spaceΩ is sorted into a clustered state S = {S1, . . . ,Sk}, such that:

K
⋃

i=1

Si = Ω and Si ∩ Sj = ∅ ∀ i 6= j . (2.33)

In this case K is the total number of discrete states. Discretisation
introduces three main problems.

• The choice of discretisation:
Finding a good discretisation which resolves all relevant slow
dynamics of the system can be diXcult. There are a number of
diUerent clustering algorithms available, such as k-center clus-
tering or k-means clustering [30] and many more. K-means is a
standard clustering algorithm and clusters a d-dimensional vec-
tor into K sets, and minimises the within cluster sum of squares
according to a Voronoi partitioning. Mathematically speaking
the following expression is minimised:

arg min
S

K∑

i=1

∑

xj∈Si

||xj − µi||
2 , (2.34)

where the set S contains K sets, which make up the discretisa-
tion of the real d-dimensional vector x and µi is the mean of the
ith set. These sets can be further coarse grained into metastable
sets. This can, for example, be achieved by the Perron-Cluster
Cluster Analysis (PCCA) [31]. One can think of many other meth-
ods of clustering data, but these do not have immediate rele-
vance for this thesis. Many research eUorts are being made in
identifying ideal clustering for Markov model analyses.

• Loss of Markovianity:
Through the clustering, the trajectory can be discretised accord-
ing to the diUerent clusters and can be described by a natural
number assigning the current state of the trajectory to its cor-
responding cluster (see the two state switch example). Through
the projection of the high dimensional state space onto the K

discrete clusters, the Markov property of the stochastic system
is lost. In order to overcome this problem, generally the sys-
tems studied are considered at "suXciently large" lagtimes, for
which the system becomes Markovian again. Establishing such
lagtimes is not straight forward.

• Projection error:
From the projection of the whole state spaceΩ onto the discrete
set of states, a projection error has to be accounted for and es-
timated. However, it can be shown that for a Vne discretisation
the projection error is suXciently small. For more details on how
to estimate projection errors, refer to [28].
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Once a discrete trajectory is obtained, it can be used to construct a
count matrix C(τ) from which the transition matrix can be estimated,
as discussed previously in section 2.2.4, and in this way approximating
the transfer operator T(τ).

2.2.6 Example: Single Particle in a Double Well

For the purpose of illustration, an example of a double well will be
considered. The double well is illustrated in Vgure 2.2(a), where the
state space, here in the 1-d case, is discretised into 50 states (given by
the points along the curve). The dotted vertical lines represents every
10th state boundary). The results shown in Vgure 2.2 are obtained from
simulations at 1/β = 10kBT (kB is set to unity, as well as all other
constants, thus working in reduced units), where a single particle is
diUusing according to Langevin dynamics in the potential. The trajec-
tory of 1× 105 data points in continuous space was discretised into
50 states on which a Markov model transition matrix was estimated.
The Vrst 4 eigenvalues including the eigenvalue gap are depicted in Vg-
ure 2.2(b). The eigenvector corresponding to the eigenvalue of λ1 = 1
is that of the equilibrium distribution and seen in Vgure 2.2(c) – de-
noted in this case by ψi. The second largest eigenvalue corresponds
to the exchange between the two basins, whereas all other dynamics
are diUusive properties within the two basins. Figure 2.2(d) shows the
second eigenvector corresponding to λ2. The sign change observed in
ψ2 shows that the slow dynamics occurs from the left basin to the
right basin and the rate at which this occurs is captured in the eigen-
value λ2, as given by equation (2.25). The transition matrix, eigenval-
ues and eigenvectors were estimated with the Markov model software
EMMA [32].
This means that with the aid of Markov models, even for complex
systems it is relatively straight forward to deVne an equilibrium prob-
ability for the occupation of diUerent discrete states of the system. Fur-
thermore, if the system exhibits a two state or even multiple state dy-
namics, it is possible to estimate a lower bound of the timescales for
these which can then even be compared to experimental results [33].

2.2.7 Markov Model Estimation

In order to facilitate the estimation of Markov models and transition
matrices, a software package was put together by some members of
the Computational Molecular Biology research group at the FU-Berlin
and myself. My contribution to this software project was mainly to

provide a Java implement of existing algorithms, Vtting in the overall

design framework of the software and help with the design and test-

ing of the tutorial material. The software EMMA is available for down-

load at www.simtk.org/emma/ and can be used to build and validate

Markov models from simulation or experimental data. All relevant in-
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Figure 2.2: (a) The double well potential with discretisation, indicated by the
points along the curve. Vertical lines are state boundaries at ev-
ery 10

th state. (b) Shows the Vrst 4 eigenvalues of the 50 × 50
transition matrix at τ = 10. (c) Shows the right eigenvectors corre-
sponding to the Vrst eigenvalue, i.e the stationary distribution and
(d) shows the second eigenvector. Blue lines indicate U(x) = 0 in
(a) and φ2 = 0 in (d).

formation in conjunction with the software is published in the Journal
of Computation and Theory [32]. The software is command line driven
with a series of command line tools, suitable for Windows and UNIX

systems, that allow the construction of a Markov model. The following

steps are usually carried out.

• Clustering and assignment of the data to the clusters, either by

a provided clustering algorithm or by manually selected cluster

centres.

• Probing the connectivity of the discrete sets and if necessary

restricting the estimation of the transition matrix to the largest

set of connected data.

• Construction of a transition matrix and its analysis, which pro-

vides eigenvalues and the corresponding eigenvectors as well as

the matrix itself and the stationary distribution.

• Estimation of implied timescales or transition paths, if required.

There are some further features available not discussed here, as they

have no further relevance to this thesis.

2.3 phase transitions and their classification

Moving away from Markov models, the next section will be concerned

with further exploring the phase space of stochastic systems, in par-

ticular considering phase transitions. Many physical systems exhibit

phase transitions. The freezing transition of water is an obvious exam-

ple that comes to mind. It is generally not trivial to study phase tran-

sitions analytically other than using mean Veld approaches. Ehrenfest
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introduced a classiVcation of phase transitions, based on the deriva-
tives of the free energy of the system [34]: a discontinuity in the
Vrst derivative is a Vrst-order transition, a discontinuity in the sec-
ond derivative is a second-order transition, and so on. Only the Vrst-
and second-order (continuous) phase transition will be discussed here.

2.3.1 The Order Parameter

In order to observe a phase transition a parameter that captures the
phase behaviour needs to be deVned. This parameter is referred to
as the order parameter of the system. It is a parameter that changes
abruptly if the system undergoes a Vrst-order phase transition, or con-
tinually if it is a second-order transition. Figure 2.3 shows a sketch
of the order parameter ρ with respect to temperature for a Vrst- (a)
and second-order (b) transition. An example of a Vrst-order transition
would be the transition between liquid and vapour where the density
serves as the order parameter and abruptly changes as the volume or
pressure of the system is varied. This transition ends in a tricritical
point of a second-order transition, at a certain combination of param-
eters of temperature and pressure of the system, where all phases are
present at the same time – i.e. liquid, vapour and solid. At the crit-
ical point a clear distinction of the liquid phase from the gas phase
is not possible. However, a commonly discussed example of second-
order phase transitions are magnets, where at a low enough temper-
ature spontaneous symmetry breaking occurs and a transition from a
disorder paramagnet to an order ferromagnet occurs. This is, for exam-
ple, discussed in greater detail in [13, 35]. In the case of the magnet a

ρ ρ(a) (b)

Figure 2.3: (a) First-order phase transition, with a discontinuity in the or-
der parameter ρ. (b) Second order or continuous phase transition,
with an analytic function for the order parameter ρ. The critical
temperature is denoted by Tc.

spontaneous magnetisation is observed below the critical temperature,
and thus the magnetisation serves as an order parameter. It should be
noted however, that it is not always straight forward to deVne an order
parameter for a given system, as it requires physical insight into the
nature of the system.
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2.3.2 Landau Theory of Second-Order Transitions

In the late 1950’s, Lev Landau constructed a theory of second-order
phase transitions which relies on the fact that the free energy of the
system can be described entirely by the order parameter of the sys-
tem. Any microscopic knowledge of the system is disregarded [36].
From the free energy, the order of the phase transition is Vxed and the
function describes all phases of the system. Also, in equilibrium the
derivative of the free energy with respect to the order parameter is
zero, ∂F∂ρ = 0.
Expanding the free energy using a Taylor expansion with respect

to the order parameter ρ gives information about the phase behaviour
close to the critical temperature.

F(T , ρ) = F0 + ρ+ aρ
2 + bρ3 + cρ4 + . . . , (2.35)

where all coeXcients (a− c) are smooth functions of temperature. The
order parameter ρ will be vanishing for values above a critical temper-
ature and therefore a minimum of F at ρ = 0 must exist. When, con-
sidering a magnetic system, due its symmetry F(ρ) = F(−ρ), only
even powers of the order parameters need to be considered and a free
energy for the second-order phase transition can be evaluated to be:

F(ρ, T) = F0(T) + a(T − Tc)ρ
2 + cρ4 , (2.36)

where c is a constant that is larger than 0. Figure 2.4 shows the Landau
free energy with respect to the order parameter for the constant a > 0,
a = 0 and a < 0. In the case where the cubic term in equation (2.35)
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Figure 2.4: The free energy as an expansion in the powers of the order pa-
rameter for a system with symmetry. The behaviour for subcriti-
cal (continuous line), critical (broken-dotted line) and supercritical
(broken line) temperatures is shown.
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cannot be neglected, as in the case of a liquid gas transition, the Lan-
dau approximation does not give clear information about the nature
of the transition. Now both a second-order as well as Vrst-order transi-
tion can be present. For a Vrst-order transition, the order parameter is
discontinuous at the critical temperature, thus the expansion in ρ does
not capture the phase behaviour any more and a diUerent approach
needs to be taken to evaluate the free energies. Such approaches are,
for example, that of Renormalisation group theory. This is discussed
in [37].

2.4 large deviation theory and the s-ensemble

In the following section, the s-ensemble formalism will be introduced
which allows the investigation of dynamic phases in many diUerent
systems. This is done by means of biasing path averages according to
their activity or other time integrated observables. First, some aspects
of large deviation theory (LDT) will be discussed, as the s-ensemble for-
malism relies on this theory in order to deVne a dynamic free energy.
Once the LDT is established, the dynamic ensemble is deVned further
by drawing analogies to the well known canonical ensemble and the
section will be concluded with an overview of applications for this
methodology.

2.4.1 Large Deviation Theory

In this subsection the notion of LDT will be introduced. Loosely speak-
ing, as the name suggests, it looks at the large deviations of a probabil-
ity distribution, i.e. its tails. In terms of computational sampling these
represent the rare events which occur in a system. These can be the
escape rates from a metastable basin. A trivial example would be the
double well potential, see Vgure 2.2(a) of section 2.2.6. The formulation
of LDT has been mainly attributed to Donsker and Varadhan [38, 39, 40]
in the 1960’s and 70’s, but the principle has been previously applied, for
example, by Cramér [41]. In fact, Boltzman used this technique in 1877,
when he calculated equilibrium macrostates in 2-d turbulences [42].
For a physicist, studying statistical mechanics, the LDT gives informa-
tion on how to deal with the exponential decay of probabilities of large
deviations in stochastic processes.

2.4.1.1 Coin Tossing Revisited

In order to explain this concept further the coin tossing experiment
from section 2.1 is revisited. Let us assume that µO is the sample av-
erage after n tosses. The question that poses itself now is, what is the
dominant behaviour of observing a sample mean r = µO as n grows
large. The probability of observing any sample mean is just the proba-
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bility of observing a macrostate, as given by equation (2.2) multiplied
by the number of coin tosses, thus:

P(µO = r) =
n !

(rn) ! [(1 − r)n] !

1

2n
, (2.37)

where the number of observed heads is h = rn. Using Stirling’s ap-

proximation lnn! ≈ n lnn− n results in the probability P(µO = r)

being approximated by an exponential with a rate function

I(r) = ln 2+ r ln r+ (1− r) ln(1− r)

for its dominant behaviour, that is:

P(µO = r) ≈ exp(−nI(r)) , (2.38)

provided that n is large. The rate function I(r) is what is sought after

in LDT and constitutes its main result. For the case of the coin toss-

ing experiment, the rate function gives information about how likely

it is to observed averages away from the value of P(µO) = 1
2 . As

n gets large, the likelihood of observing averages larger or smaller

than 1
2 falls exponentially. In Vgure 2.5 the rate function is plotted

and increases as r moves away from the mean, thus according to the

deVnition of the probability of observing events far away from the

mean from equation (2.38), this probability exponentially decreases if

r moves away from 0.5.

I(r)
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Figure 2.5: Rate function I(r)

2.4.1.2 A Formal DeVnition

Generally, the aim is to establish whether a LDT for a random num-

ber/process exists and what the corresponding rate function is. A large

deviation principle exists if the probability Pn can be approximated
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by an exponential, i.e. Pn ≈ exp(−nI). Let An be a random vari-
able that depends on a sum of n random variables itself. According
to [43], a large deviation principle is satisVed, if An has the probabil-
ity P(An ∈ B) of taking a value in a set B, which has a dominant
exponential behaviour, such that the limit

lim
n→∞

−
1

n
lnP(An ∈ B) = IB (2.39)

exists and IB is the corresponding rate function. See Touchette’s re-
view [43] for more details on estimating upper bounds if the limit does
not exist, or how to deal with continuous random variables. Evaluating
the rate function is not always as straight forward as in the example of
the coin tossing where the rate function appears directly out of the ap-
plication of the Sterling approximation to the exact state probabilities.
A diUerent approach can be taken which will always work for strictly
convex and diUerentiable scaled cumulant generating functions g(k).
Note, that the cumulant generating function is the logarithm of the
moment generating function (MGF) and can be deVned by the follow-
ing limit:

g(k) = lim
n→∞

1

n
ln〈exp(nkAn)〉 , (2.40)

where An is a real random variable and k ∈ R . The average can also
be written in integral form such that:

〈exp(nkAn)〉 =
∫

R

exp(nkb)P(An ∈ db) . (2.41)

The shorthand notation db = [b,b+ db], meaning that P(An ∈ db)
is the probability ofAn being in the interval [b,b+db], a more lenient
approach that using an exact value b. If for the random variable An a
large deviation principle exists, i.e

P(An ∈ db) ≈ exp(−nI(b)) , (2.42)

then the Gärtner-Ellis theorem states that the rate function I(b) is
given by a Legendre-Fechnel transform [43], provided the scaled cumu-
lant generating function fulVls the requirement of being diUerentiable
and convex. Thus I(b) is given by

I(b) = sup
k∈R

{kb− g(k)} . (2.43)

Here, sup is the supremum. For more details on the Gärtner-Ellis the-
orem and the Legendre-Fechnel transform see the discussion as pre-
sented in the review by Touchette [43].

2.4.1.3 Large Deviations: Free Energy and Entropy

The large deviation principle has many useful features and many dif-
ferent applications. In the following, the relation between the rate
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function and the free energy and entropy will be sketched out in the
case of looking at the large deviations of the mean energy of a system
of interest. The notation was mainly borrowed from Touchette [43],
and for brevity not all the steps are presented. In general the review
is highly recommended for further details. With the following set up
it is possible to relate the entropy density and free energy to each
other through the Legendre transform. A system withN particles and
ωi microstates a set or state space of ΩN j R

N containing all mi-
crostates. The interaction energy between particles is deVned through
a Hamiltonian HN(ωi) with an average energy per particle 〈EN〉 =
HN(ωi)/N. Now we are interested in the large deviations of the
probability of observing an average energy 〈EN〉 in an inVnitessimal
energy interval [u,u+ du] = du, i.e.

P(〈EN〉 ∈ du) =
∫

[ωi∈ωN:〈EN(ωi)〉∈du]
P(dωi) . (2.44)

This then deVnes a volume of microstate ωi comprising the energy
interval du, such that:

V(〈EN〉 ∈ du) =
∫

[ωi∈ωN:〈EN(ωi)〉∈du]
dωi . (2.45)

Therefore, it is possible to deVne a rate function, which captures the
behaviour of observing average particle energies outside of the energy
interval du, by:

I(u) = lim
N→∞

−
1

N
lnP(〈EN〉 ∈ du) (2.46)

which gives:

I(u) = ln |Ω|− lim
N→∞

1

N
lnV(〈EN〉 ∈ du) . (2.47)

As ln |Ω| is just a number, the microcanonical entropy can be de-
Vned as the negative of the rate function:

S(u) = lim
n→∞

1

N
lnP(〈EN〉 ∈ du) (2.48)

and

I(u) = −S(u) . (2.49)

From thermodynamics it is known that the entropy and free energy
are related by a Legendre transformation. It is possible to write down
anN particle partition function, very similar to the single particle par-
tition function given by equation (2.14). Thus it is given by:

ZN(β) =

∫

ΩN

exp(−〈EN(ωi)〉)dωi (2.50)

=

∫

ΩN

exp(−βHN(ωi))dωi. (2.51)
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With this it is straight forward to write down the free energy again:

F(β) = lim
N→∞

1

N
lnZN(β) (2.52)

This can be reformulated by changing measure from dωi to P(dωi),
see [43] for more details:

f(β) = F(β)/β

= lim
N→∞

−
1

N

∫

ΩN

exp(−〈EN(ωi)〉)P(dωi)

= lim
N→∞

−
1

N
ln〈exp(−Nβ(−〈EN(ωi)〉)〉 . (2.53)

Furthermore, it can be shown that the cumulant generating function
is the negative of the convex free energy f(β), which will be omit-
ted here. However, this fact implies that the convex free energy, and
entropy density are related by the Legendre-Fechnal transform in the
following way:

f(β) = inf
u

{βu− S(u)} (2.54)

and the Gärtner-Ellis Theorem results in:

S(u) = inf
β

{βu− f(β)} , (2.55)

as is shown on page 31 of the review by Touchette [43]. In the following
these ideas will Vnd application in the context of a dynamic ensemble.

2.4.2 The Dynamic Ensemble

In the following, we will introduce the s-ensemble. For an extensive
and mathematically rigorous discussion, the reader is referred to [3].
In section 2.1 the canonical ensemble and the associated partition func-
tion as well as free energy were introduced (see equation (2.35)). The
free energy is an intensive variable, whose singularities carry informa-
tion about phase transitions in the system as outlined in section 2.3,
provided the thermodynamic limit is taken. In order to investigate the
dynamic properties we are interested in deVning a dynamic free en-
ergy. Analogously to the canonical ensemble, the singularities of the
dynamical free energy would then carry information about phase tran-
sitions in the dynamic ensemble. Let us Vrst of all deVne what wemean
by dynamic ensemble. Instead of the previously deVned microstates
and associated macrostate, i.e. time independent instantaneous observ-
ables of a system, we want to introduce time dependent observables.
We will do this in the language of ensembles of trajectories, as the
ideas presented here will Vnd application in computational studies.
For an equilibrated system at a given temperature, the path ensemble
P[Xt] of trajectories Xt can be sampled straightforwardly by gener-
ating dynamical trajectories starting from an equilibrated initial state.
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Now, rather than looking at the typically observed trajectories of a sys-
tem we are interested in the rare Wuctuations within the trajectories.
Therefore, it is useful to deVne a dynamic observable which describes
a system of a given observation time t = tobs. Such an observable can
be denoted by the activityK, where each trajectory can be described by
a single K, resulting in a distribution of activities Pt(K) in an equilib-
rium setting. The choice of the dynamic activity is system dependent.
The systems considered in this thesis all present obvious choices for
the activity. When we say we look at the rare Wuctuations of a sys-
tem, we mean trajectories whose average activity is far away from the
mean of the distribution Pt(K), i.e. we are interested in a large devia-
tion property of observing trajectories of a given length whose activity
is unlikely. In order to make such observation more likely in simula-
tions or more general to obtain a quantitative understanding of the
dynamic ensemble we introduce a modiVed ensemble of trajectories
which is biased according to the activity:

Ps[Xt] ≡
P[Xt]e

−sK[Xt]

Zt(s)
. (2.56)

The parameter s is a biasing “counting” Veld conjugate to the activity
K[Xt] [2]. The exponential factor in equation (2.56) biases the proba-
bility of trajectories towards those which are less (more) active when
s > 0 (s < 0) compared to the unbiased ensemble. The normalisation
factor

Zt(s) ≡
∑

Xt

P[Xt]e
−sK[Xt] (2.57)

is the moment generating function (MGF) for K, that is,

〈Kn〉 = (−)n∂ns Zt(s)|s=0 (2.58)

and can be thought of as a dynamical partition function associated to
the ensemble of trajectories biased with s.
In analogy with an equilibrium statistical mechanics problem, the MGF

Zt(s) is the object of interest. Now depending on some arbitrary ob-
servation time t. At long times (t → ∞) the MGF acquires a large-
deviation form [2, 43],

Zt(s) ∼ e
tψ(s) . (2.59)

The large deviation function ψ(s) can be thought of as a dynamical
free energy, which through a Legendre transform determines the prob-
ability Pt(K) of observing an activity K over time t, at long times. Just
like the free-energy in an equilibrium problem, the analytic structure
of ψ(s) as a function of s tells us about dynamical phases and possible
phase transitions (or crossovers in the case of systems of Vnite extent)
between them. The biasing of the ensemble of trajectories according
to the counting Veld s is what we deVne as the s-ensemble.
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Often we will consider scaled activities, allowing for diUerent sys-
tem sizes and diUerent observation times to be compared to each other
by deVning the following intensive activity:

〈κ〉s ≡ (Nt)−1〈K〉s = (Nt)−1
∑

Xt

Ps[Xt] K[Xt] . (2.60)

The normalised activity presented here as κ will be associated to two
diUerent observables in chapter 3 and chapter 4. In chapter 3 it will
represent the number of accepted MCmoves for the Ising model and in
chapter 4 it will represent the number of native contact being broken
and formed in a lattice protein model. They will be disccused in more
detail again in the appropriate chapters.

2.4.3 Applications

Investigating the large deviations of trajectories was originally done
in the context of kinetically constrained models, in an attempt to get
insight into the dynamical behaviour of glassy systems [1]. It was pro-
posed that the increasing relaxation time in glass forming materials
can be described using the s-ensemble formalism, by attributing it to
a discontinuous dynamic phase transitions in trajectory space, i.e. a
non-equilibrium dynamic phase transition. Here, the glassy features of
the system get attributed to a coexistence of dynamically mobile and
dynamically arrested phases. This type of analysis has been carried
out for various systems ranging from simple binary spin models (e.g.
Frederick Anderson models) [3, 2], spin glass models such as the ran-
dom orthogonal model [44], or more complex models such as Lennard
Jones mixtures [4]. All these models can be attributed with an interest-
ing space time phase behaviour, resulting in coexistence regions of the
diUerent dynamic phases.
In the following two chapters this formalism is applied to the dynam-
ics of the 1-d Ising model and those of a lattice protein model. These
models are of interest, as for the Vrst time a magnetic model (Ising
model) is investigated. Furthermore the lattice protein is the model of
highest complexity yet, investigated under this formalism.



3
DYNAM IC PHASE S OF TH E 1 -d I S I NG MODEL

This chapter aims to give a brief introduction to the Ising model and
commonly studied equilibrium and non-equilibrium thermodynamic
properties associated to it. It will then move towards a dynamical de-
scription of the system by employing the formalism of the s-ensemble
as introduced in chapter 2. This means the trajectory space of the 1-
d Ising model is studied, looking at the rare dynamic Wuctuations of
the trajectories. The investigation was carried out producing trajecto-
ries from two diUerent types of MC movesets, which are Glauber and
Kawasaki dynamics. The critical behaviour of the system as presented
in [45] is studied computationally and predicted results were veriVed.
In addition to the theoretical results available, the systems will also
be considered in the presence of an external magnetic Veld. The work
presented here was done in collaboration with Ernesto Loscar and Juan
Garrahan. The work was published in the journal of statistical mechan-
ics [22] and was adapted to this thesis where appropriate.

3.1 the ising model

The Ising model is a well studied model of a simple magnet in theoreti-
cal/statistical physics [13, 46, 47, 48]. In this model spins are placed on a
lattice of a given dimensionality, which point either up or down (± 1),
representing magnetic dipoles. The alignment, or anti-alignment of
the spins will give the entire lattice its magnetic property, as in an ac-
tual magnet. This leads to two extreme cases, one where all spins are
either all up or down, representing the lowest energetic states possible
– the ferromagnetic state of the system–, the other where spins are
randomly pointing up or down and no bulk magnetisation is present
– the paramagnetic state of the system. These extremes will occur at
T = 0 and T = ∞ . The interesting behaviour is how this change
between order and disorder occurs, especially depending upon the di-
mensionality of the model. This is also known as its phase behaviour.

The model is named after Ernst Ising, who discussed the 1-d case in
his PhD thesis in 1928 [49]. Most famous is probably the Ising model
in two dimensions, as it displays a second-order phase transition, with
the magnetisation as the order parameter. This will be discussed in
greater detail later. In this case an exact analytical solution of the phase
behaviour is available, originally proposed by Onsager [50]. Since the
model was Vrst introduced, it has seen many variations but the un-
derlying idea is always the same, i.e. the arrangements of spins on a
lattice of choice. Generally, only short range interaction energies be-

32



3.2 equilibrium and non-equilibrium properties 33

tween neighbouring spins are considered. The Hamiltonian is given
by the following simple expression:

H = − J
∑

i , j

σ i σ j − h
∑

σ i , (3.1)

where J > 0 is a coupling constant which is assumed to be 1 for
the rest of this chapter. The sum runs over all neighbouring spins σi,
taking a value of 1 or -1 respectively. For the 1-d case this is just the
nearest neighbours along the chain, on a 2-d lattice this would be the
neighbours in the two directions of the orthonormal basis, i.e i and j.
Depending on the lattice type a set of nearest neighbours can always
be deVned. The second sum is depending on h which is an external
magnetic Veld that couples to each spin on the lattice. An illustration
of the 1-d lattice with up and down pointing spins can be found in
Vgure 3.1.

a

Figure 3.1: Spin chain with spins σi represented by arrows pointing up or
down indicating positive or negative spin values. The spacing of
the spins is equidistant. The lattice width a is indicated.

In the 1-d model no phase transition occurs, as demonstrated by
Ising. The reason for this is that the free energy can be described by
an analytic function for all temperatures other than zero. Another ex-
planatory approach to this observation is the Mermin-Wagner theo-
rem, which gives information about second-order transitions in mag-
netic systems between paramagnetic–ferromagnetic states above abso-
lute zero [51, 52]. The theorem states that such a transition cannot be
present in isotropic systems – i.e. structurally homogeneous systems
– whose dimensionality is d < 3, where the 1-d Ising is an example of
this.

3.2 equilibrium and non-equilibrium properties of the

2-d ising model

The 2-d Ising model however, exhibits an interesting phase behaviour,
as the Mermin-Wagner theorem does not apply in this case due to the
special symmetry of the system. A second-order phase transition be-
tween an ordered ferromagnetic and a disordered paramagnetic phase
can be observed. The mean magnetisation per spin sharply drops to
zero, at a critical temperature Tc, as the speciVc heat per spin c di-
verges at that temperature. The speciVc heat and the phase behaviour
will be discussed in more detail in section 3.2.3. From Onsager’s an-
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alytic solution [50] an expression for the critical temperature can be
derived in units of the Boltzmann constant and the coupling constant.

Tc =
2

ln(1+
√
2)

≈ 2.269kBJ . (3.2)

For any higher dimension, there are no analytical solutions available
other than mean Veld approaches and one has to resort to computa-
tional methods in order to adequately describe the system. Various
diUerent MC algorithms can be used to characterise the system. The
simplest approach is by means of the Metropolis algorithm.

3.2.1 Monte Carlo Simulations

Before looking at diUerent sampling algorithms it is useful to deVne a
couple of variables which will describe the model, dependent on the
dimensionality of the system. The length L describes the length of a
lattice side, thus for a 1-d chain L = Ns, where Ns is the number of
spins in the system. In fact the number of spins scales with the dimen-
sion of the system such that:Ns = Ld, for any lattice type considered
in this thesis. There are a variety of very fast algorithms sampling
the behaviour of the Ising model most eXciently. Rather than giving
a literature overview of the diUerent simulation algorithms available,
this section serves as an introduction to the two most straight for-
ward single spin algorithms available: The Metropolis algorithm and
the Kawasaki algorithm. The Vrst one is used for modelling a ferro-
magnet and the latter for properties of lattice gases. In the model of
the lattice gas the number of up and down pointing spins is Vxed as
only exchanges of spins are allowed as valid moves, and thus there is
no change in overall magnetisation of the system during the period
of observation. For the ferromagnetic model the magnetisation is not
conserved, as spins are randomly attempted to be Wipped. Each of the
two algorithms sample equilibrium properties of the system and in
this way approximate the partition function. In the subsequent sec-
tion only the 2-d model on a square lattice will be considered, but this
can in principle be extended to n-dimensions and diUerent types of
lattices.

3.2.1.1 Metropolis Dynamics and Non-Conserved Magnetisation

As for any statistical system, the knowledge of the partition function
Z is vital to fully describe the equilibrium behaviour of the system,
as previously discussed in chapter 2. In the case of the Ising model
the state space is given by Ω = 2Ns , whose elements representing
speciVc possible lattice conVgurations I = {σi}i∈Ns . It is evident that
even for modest system sizes the exact enumeration of the partition
function soon becomes non-trivial. Thus a Monte Carlo (MC) algorithm
can serve as an approximation to the partition function.
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Listing 3.1: Pseudocode: Metropolis algorithm

Step1: Compute the instantaneous energy of the system.

Step2: Choose a lattice site at random, with a pseudo random

number generator.

Step3: Flip the spin, if the proposed new configuration and

its associated energy is accepted from the Metropolis

criterion

Step 4: Repeat 1-3 until the maximum number of iterations is

reached.
�

Originally, MC methods were developed in order to solve complex in-
tegrals of high dimensional functions and only in the 1940’s started
to be applied to statistical sampling problems [53]. The most famous
algorithm was introduced by Metropolis in 1953 in order to simulate
hard sphere gases [54]. This can easily be applied to the Ising model
where a spin is chosen at random and is proposed to be Wipped to its
opposite orientation. The Wip will occur, if the acceptance criterion is
fulVlled. Whether this acceptance criterion is fulVlled depends on the
change in total energy ∆H = Hnew −Hold of the system which is de-
pendent upon the neighbouring spin conVgurations, known from the
Hamiltonian.

Paccept =






exp(−β∆H) if ∆H > 0

1 otherwise .
(3.3)

The Hamiltonian H gives the instantaneous energy of the system. It
is evaluated according to equation (3.1) and β = 1

kBT
representing the

inverse temperature of the system, as previously deVned in chapter 2.
The algorithm obeys detailed balance, which means that the probabil-
ity going from conVguration I to J and J to I is equally likely when
weighted according to the equilibrium probability of each state

pIJπI = pIJπJ ∀ I, J ∈ ˙ . (3.4)

(Here I, J indicated one certain conVguration of the entire lattice.) In
practice, the algorithm consists of the steps listed in listing 3.1.
In a unit of time,Ns spin Wips will be attempted which is referred to

as a MC lattice sweep. Initially some simulation data will be discarded
as the system needs time to equilibrate to the simulation temperature.
After the initial equilibration time, measurements of equilibrium Wuc-
tuations of the system at the temperature of interest can be conducted.
From a large set of equilibrium simulations, observables of the sys-
tem for the given temperature can be deduced without the knowledge
of the partition function. The equilibrium expectation of any observ-
able of the system, for example the magnetisation, can be accurately
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predicted from long simulation runs. Any average of an observable is
given by:

〈O〉 =
∑n
i=0O exp (−βH)
∑

exp(−βH)
=

1

tobs

tobs∑

i=0

Oi , (3.5)

where the sum runs over n MC lattice sweeps (the number of lattice
sweeps n is equivalent to the observation time tobs), also representing
the unit of time. Equation (3.5) is valid, provided detailed balance is
enforced and the system is ergodic. After each MC lattice sweep any
observable such as instantaneous energy and magnetisation is calcu-
lated and can be recorded. The instantaneous magnetisation is given
by:

m̃ =

Ns∑

i

σi . (3.6)

How does this information relate to the phase behaviour of the Ising
model? Furthermore, if a phase transition only occurs in an inVnite

system, which can not be emulated on a computer, how can this be

captured? The latter problem can be resolved to some extent. In order

to remove spatial boundaries in a Vnite lattice of a given size, peri-

odic boundary conditions can be introduced. The resulting boundary

eUects can be neglected far away from the critical temperature even

at modest system sizes. For the Ising model this can be as small as a

32× 32 system. However, when approaching Tc the spatial correlation

will eventually be of the size of the system. Secondly, the choice of or-

der parameter is important. An obvious choice for the Ising model is

the magnetisation. The magnetisation can be used to deVne an auto-

correlation function, which in turn allows to classify the correlation

times of the system after a given time t:

R(t) =

∫

dt ′[m̃(t ′)m̃(t ′ + t) − 〈m̃〉2] , (3.7)

with R(t) being the auto correlation function at time t and 〈m̃〉 de-
notes the average magnetisation of the system and gives an insight

into the timescales of the system. Another useful measure is the two

point correlation function which gives insight into the spatial correla-

tions at equilibrium:

Gij(r) = 〈σiσj〉− 〈σi〉〈σj〉 , (3.8)

where r is the distance between the two spins at diUerent lattice sites.

From Gij(r) one can extract the correlation length, which diverges in

the limit of L→ ∞ at Tc. This nicely illustrates the spontaneous phase

separation and hints at the phase transition, due to the divergence of

the cluster size, as the critical temperature is approached.
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3.2.1.2 Kawasaki Algorithm: Conserving the Magnetisation

As mentioned, a second common algorithm conserves the magnetisa-
tion of the system which also allows the measurement of equilibrium
properties through equations (3.5) and (3.8). In order to conserve the
magnetisation of the system, a diUerent approach other than Wipping
spins needs to be taken, as with every spin Wip the overall magnetisa-
tion of the system changes. The Kawasaki algorithm was introduced
in the mid 1960’s exactly to do that [55]. Kawasaki proposed to ex-
change neighbouring spins as a basic MC move, thus preserving the
magnetisation. This results in a diUusive movement of spins around
the lattice. The acceptance criterion for exchanging spins is still given
by the Metropolis acceptance criterion from equation (3.3). This algo-
rithm also fulVls detailed balance and the change in energy can eas-
ily be calculated locally, such that summing the overall energy of the
lattice is not necessary. The Hamiltonian is also unchanged given by
equation (3.1). When picking pairs of spins which should be exchanged,
also aligned spin pairs need to be counted as a MC move, otherwise de-
tailed balance would be violated.
Finding domain walls, i.e. anti-aligned neighbouring spins, can be a
quite slow process. In particular, if the simulation temperature is below
the critical temperature of the 2-d Ising model and thus large domains
of aligned spins have formed. There are a variety much more eXcient
algorithms, circumventing the diUusive motion of the particles on the
lattice. A common approach in order to improve this are continuous
time algorithms, see [56].

3.2.2 Universality

Universality is the reason why second-order, or critical phase tran-
sitions are such an interesting area of study, but did not properly
emerge until the 1960’s with the development of the Renormalisation
group [46]. Universality refers to the scaling behaviour of the system

near the critical point of a phase transition. For the purpose of inves-

tigating universality a bit further, we can deVne a set of observables

describing the system, which are the correlation length ξ, the speciVc

heat c and the susceptibility χ. The susceptibility of the magnetisation

gives information about the magnetic Wuctuations of the system and

can be used as a scaling variable. The susceptibility is given by:

χm =
β

Ns
(〈m̃2〉− 〈m̃〉2) . (3.9)

The speciVc heat per spin, gives information about the Wuctuation of

the energy of the system and can also be used as a scaling property of

the system. The speciVc heat is given by:

c =
1

kbT2Ns
(〈H2〉− 〈H〉2) . (3.10)
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The correlation length ξ simply holds the information over what dis-
tance r the spins are correlated with each other. The correlation length
diverging as the critical temperature of the phase transition is ap-
proached. As χ and c implicitly depend on the correlation of the spins,
these too serve as scaling variables thus a set of diUerent scaling func-
tions for these variables can be deduced. The correlation length scales
as:

ξ ∼|T̂ |−ν , (3.11)

with T̂ = T−Tc
Tc

being a dimensionless quantity giving information on
how close to the critical temperature the system is and ν is deVned as
a scaling exponent. This exponent reWects what universality means, as
it is independent of the lattice type or coupling constant J and is valid
for any 2-d Ising model. In the same way two more universal critical
exponents can be deVned:

c ∼|T̂ |−α (3.12)

and

χ ∼|T̂ |−γ , (3.13)

where χ is the susceptibility of the system, c the speciVc heat and
α and γ in the literature commonly used symbols for the associated
exponents. Essentially any phase transition will fall into a universal-
ity class and can be identiVed further according to its set of scaling
exponents. A fourth exponent can also be deVned which is known as
the dynamic exponent and describes the scaling behaviour of the di-
vergence of the correlation time τcorr. This depends on the correlation
length of the system such that:

τcorr ∼ ξ
z , (3.14)

with z being this dynamic exponent. It can be used as a measure for
the eXciency of the simulation algorithm. For example, if z is large,
then the simulation eXciency is low, as the correlation time becomes
large around Tc and critical slowing down is making the simulation
slow near the transition region. If z is small critical slowing is much
more negligible and thus the simulation algorithm used is more suit-
able for measuring critical points.
In the following the universality class of the 2-d Ising model will

be brieWy discussed followed, by an overview of the commonly used
Vnite size scaling methods to classify phase transitions.

3.2.3 The 2-d Ising Universality Class

The 2-d Ising universality class is presented here, as it will Vnd ap-
plication in section 3.3.2.1. In fact the dynamic phase behaviour of the
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1-d Ising model, which will be explored in later sections falls into the
2-d Ising universality class. This is not so surprising as the time acts
as a second dimension to the spatial dimension. However, this will be
discussed in the appropriate section. With Onsager’s solution to the 2-
d Ising model, a set of scaling exponents for the phase transition can
be worked out. His ansatz involved a complicated transfer operator ap-
proach. From this the critical temperature could be determined exactly,
as given by equation (3.2). The heat capacity per spin can be evaluated
which diverges as T approaches Tc, given by:

c

kB
=
1

π

( 2J

kBTc

)2[

− ln
(

1−
T

Tc

)

+ ln
(kBTc

2J

)

−
(

+
π

4

)]

. (3.15)

For the three thermodynamic scaling exponents as introduced in sec-
tion 3.2.3 the following values can be deduced:

α = 0 , (3.16)

γ =
7

4
(3.17)

and ν = 1 . (3.18)

These scaling exponents are used to classify the phase behaviour of
the 2-d Ising model. There are a couple more scaling exponents which
are all related to each other, but will not be discussed here. For more
details on the scaling behaviour in the 2-d Ising model [46].

3.2.4 Finite Size Scaling – Measuring Exponents

As was discussed in section 3.2.3 the exact solution of the 2-d Ising
model is known and thus its scaling exponents. It is still of interest to
compare how well a simulation performs, which is achieved by esti-
mating these. The exponents are a good indicator of the performance
quality of an algorithm near the critical point.

3.2.4.1 Measuring Exponents

With the critical temperature for the 2-d Ising model known, it is rela-
tively easy to estimate the dynamic exponent, given by equation (3.14).
The simplest approach is conducted by repeating simulations at the
known critical temperature, i.e. Tc = 2.69 for diUerent lattice sizes.
Due to the divergence of the correlation length, the correlation time
will eventually reach the size of the lattice for temperature values
close enough to the critical temperature, thus the scaling behaviour
becomes:

τcorr ∼ L
z . (3.19)

In the book by Newman and Barkema [47], a simple MC simulation
was run in order to show this scaling behaviour. The Vgure found in
this textbook is shown in a slightly adapted version in Vgure 3.2. From



3.2 equilibrium and non-equilibrium properties 40

lattice size N

c
o
rr

e
la

ti
o
n
 t

im
e
 

τcorr

103

102

101

100

10 100

L

Figure 3.2: Dependence of the correlation time versus the lattice size on a
log-log scale.

the Vt in Vgure 3.2 z is estimated at z = 2.09. It is also mentioned
that an even higher estimate can be found in [57], suggesting that the
Metropolis algorithm does not scale well near the critical temperature
of the system.

Of course, often the situation is very diUerent and the critical be-
haviour of the system is not known. Therefore a diUerent approach
to Vnite size scaling will have to be used instead. For this purpose the
magnetic susceptibility is a useful observable and its scaling behaviour
is given by equation (3.13) which depends on the critical temperature.
This can be rewritten such that it depends on the correlation length of
the system

χ ∼ ξγ/ν . (3.20)

Evidently, ξ is also an unknown quantity but the diverging property
of ξ near the critical point can be used to deVne a scaling function,
which can be measured. The scaling function is given by:

χ = ξγ/νχ0

(L

ξ

)

. (3.21)

The dimensionless function χ0 has the following properties:

χ0(x) = constant, ∀ x≫ 1

and
χ0(x) ∼ x

γ/ν, as x→ 0 .

Hence, the scaling behaviour for the magnetic susceptibility, making
use of equation (3.11) is given by:

χm̃ = Lγ/νχ̃
(

L1/νT̂
)

. (3.22)



3.2 equilibrium and non-equilibrium properties 41

Now the magnetic susceptibility is measured for each system size at
a set of temperatures T̂ , which are close to the presumed critical tem-
perature. This can be gauged from an initial temperature scan of the
system. As the name suggests, the scaling function should look the
same for each of the evaluated curves, if the exponents are correctly
estimated. This can be done, by calculating χ̃(L1/νT̂) for the diUer-
ent system sizes and then varying the exponents as well as the critical
temperature until all curves collapse on top of each other. This kind of
scaling function can be calculated for the speciVc heat and magnetisa-
tion and thus will yield good estimates for the other scaling exponents.
For more details on this see for example [13]. Generally, a Renormalisa-
tion group approach allows for an accurate calculation of these scaling
exponents and depending on the situation maybe a more desirable ap-
proach.

3.2.5 Non-Equilibrium Properties – Spinodal Decomposition

Everything discussed so far assumed the Ising system to be in equilib-
rium. Therefore in the following section non-equilibrium behaviour
will be brieWy discussed. We will follow closely ideas as presented
in [47] and represent well established results. However, all simulations
were setup and carried out by the author in order to illustrate the non-
equilibrium properties which can be observed in spin systems, they
also served as a point of validation for the implementations of the al-
gorithms. A non-equilibrium simulation setup can be achieved in the
following way: the system is initially at a high or inVnite temperature,
where all spins are randomly arranged and the system is in its para-
magnetic state. Then the temperature is quenched to a temperature
below the critical temperature. This quench will drive the system out
of equilibrium. The relaxation of the system will result in the growth
of up and down pointing spin domains. This process is also known as
spinodal decomposition. It also serves as a simple model of de-mixing
of colloids. The process of spinodal decomposition can also be classi-
Ved through a universality class, where the universality class depends
on the algorithm used for the relaxation process. Hence, this is often
referred to as a dynamic universality class. Considering the Metropolis
MC algorithm for the Ising model. The domain growth is well described
by a power law behaviour, such that:

D ∼ tυ , (3.23)

where t is the time (in this particular case the number of MC lattice
sweeps) and D(t) is the size of a spin domain at a given time t. The
exponent υ depends on the coarsening property of the simulation al-
gorithm. Figure 3.3(a)-(d) shows the progressing spinodal decomposi-
tion of an Ising model at 0.5Tc of lattice size L = 500, after t = 1 (a),
t = 10 (b), t = 100 (c), and t = 1000 (d). Each time step is a MC sweep
of the entire lattice. The growth of the domains can be observed and is
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(a) (b)

(d)(c)

Figure 3.3: 500× 500 Ising model after 1 (a), 10 (b), 100 (c), 1000 (d) MC lattice
sweeps at 0.5Tc, where white and black are domains of spins with
values 1 and -1 respectively.

energetically favourable, as the total area of domain walls decreases re-
ducing the overall energy of the system. This is due to the fact that the
energetic cost of a domain wall depends on the surface tension. The
surface tension is reduced by minimising the number of interfaces.

Quantitatively, the size of the domainD(t) can be measured in two
ways, through the two point correlation function, deVned by equa-
tion (3.8) or the two dimensional structure factor, deVned by equa-
tion (3.24). The distance Dc(t) over which the correlation function
falls to a value of 1/e = 0.368 gives information about the domain
size, in terms of the correlation function.
In crystallography the structure factor is used to estimate regularity
in crystals, here we utilise these properties for the estimation of do-
main sizes. The structure factor will exhibit a peak corresponding to
a change in spin orientation which can be used to deVne the domain
size Ds(t) with respect to the structure factor. The structure factor is
given by:

S(k, t) =
〈∣

∣

1

N

∑

ri

s(ri, t) exp(ik · ri)
∣

∣

2〉
. (3.24)
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Here, the angular brackets indicate an average over independent sim-
ulation runs. Furthermore, k is deVned as:

k =
2π

L
(mi + nj) m, n = 1, 2, . . . ,L .

A circular average of the two dimensional structure factor will result in
a smooth estimate, where the average is obtained by deVning a spheri-
cal shell as a bin [58]. In this way the structure factor can be discretised
and averaged. The shell is deVned to be n− 1

2 6 (L/2π) | k |< n+ 1
2

for the circularly averaged structure factor of the form:

Ŝ(kn, t) =
∑

k

S(k, t)/
∑

1, kn = 2πn/L (3.25)

and n runs over half the lattice, i.e. n = 1, 2, . . . ,L/2 and kn is the
averaged absolute value of the wave vector falling into the given bin.
In the end, the Vrst moment of the circularly averaged structure factor,
gives information about the location of the peak and thus an estimate
of the domain size. The Vrst moment µ1 has the following relation to
the domain size.

Ds(t) =
2π

µ1
(3.26)

and is given by:

µ1(t) =

kc∑

kn=0

knŜ(kn, t)
/

kc∑

kn=0

Ŝ(kn, t) . (3.27)

The cut-oU value is given by kc = L
2 . In Vgure 3.4 the scaling be-

haviour of the domain size growth over time from the two point corre-
lation function and the circularly averaged structure factor are shown.
Both methods result in a straight line on a log-log plot with an expo-
nent of υ ≈ 0.5. The multiplicative factor can be neglected in the scal-
ing behaviour and just indicates that both methods for the domain size
estimation are not equivalent but exhibit identical scaling behaviour.
This establishes a scaling behaviour for the domain size growth

from non-equilibrium simulations for the example of the Metropo-
lis MC algorithm. The existence of such magnetic domains is a well
known and well studied property of real magnets, where magnetic
domains are formed if a ferromagnet is cooled below the Curie tem-
perature. For more information and a detailed introduction to more
realistic magnets than the simplistic Ising model, the reader is referred
to a textbook by Cullity [59].
With this, the introduction to the commonly used tools in computa-
tional studies of the critical behaviour of phase transitions in the Ising
model is concluded. In the next section the previously established s-
ensemble methods will be applied to the 1-d Ising chain. With the aid
of the introduced Vnite size scaling method within this section 3.2.4,
the dynamic phase space behaviour will be investigated.
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Figure 3.4: Log-log plot ofDs(t) (crosses) andDc(t) (stars) with respect to t
in units of MC lattice sweeps. Averages were taken over 5 indepen-
dent runs and errors are within the size of the symbol. The power
law Vt results in a scaling exponent of υ ≈ 0.5.

3.3 dynamic properties of the 1-d ising model in the s-

ensemble

In various model systems of glasses, such as kinetically constrained
systems, it has been shown that looking at the ensemble of trajecto-
ries, interesting dynamic phase behaviour can be uncovered [5, 2, 4].
Therefore, it is of interest to apply these ideas to magnetic models as
well, where the 1-d Ising model is a very simplistic example. For this
purpose we are interested in looking at ensembles of trajectories gen-
erated from MC simulations and in particular looking at atypical tra-
jectories, i.e. rare Wuctuations in the distribution of typical trajectories.
This is achieved by biasing equilibrium trajectories according to the
previously introduced formalism of the s-ensemble. Furthermore, this
computational investigation is supported by a set of theoretical results
giving good predictions of the expected dynamic phase behaviour [45].

All results presented in the following sections are novel and the au-
thor contributed in the development of the simulation algorithm and
analysis of the results. The exhaustive and novel computational study
is published in the journal of statistical mechanics [22].
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3.3.1 Theoretical Predictions

The computational study was motivated and facilitated through a re-
cent publication by Jack et al [45] which looks into the dynamic prop-
erties of the 1-d Ising model using an analytic toolset. The authors
predict a dynamic phase transition in an energy biased ensemble and
reveal a set of critical values of the biasing parameter at which point
the dynamic phase transition occurs. In [45] this is achieved by the
introduction of a modiVed path ensemble with a biasing parameter
g – known as the g-ensemble. This path ensemble makes use of an
energy constraint, as opposed to an activity constraint found in the
previously introduced s-ensemble. The g-ensemble introduces a dy-
namic free energy φ(g) in a similar fashion as discussed in chapter 2.
This free energy can also be obtained through the large deviation for-
malism for the dynamic free energy with no external magnetic Veld.
The second derivative of this dynamical free energy diverges, result-
ing in a line of critical points of the biasing parameter g. Furthermore,
it is shown that the scaling behaviour of the observed transition falls
into the 2-d Ising universality class. The analytical solutions, as pre-
sented in [45], were derived by mapping the 1-d spin chain onto a
corresponding quantum problem [60]. An equivalence between the ac-
tivity constrained ensemble (with biased Veld s) and the energy con-
strained ensemble (with biased Veld g) can be established, since in the
Ising problem of interest, the biasing of the energy is akin to biasing in
terms of the escape rate of the corresponding continuous-time Markov
chain, see e.g. [3]. With this equivalence known, it is straight forward
to probe the dynamic phase behaviour by means of MC simulations.
The known critical behaviour from the g-ensemble can be directly ap-
plied to the s-ensemble, which in turn is readily accessible through MC

simulations.

3.3.1.1 The Phase Diagram

The purpose of this section is to give an overview of the theoreti-
cally predicted dynamic phase diagram. Let us consider three variables
{s, T ,h} spanning a parameter space, which contain all relevant in-
formation of the phase space of the dynamic system. Looking at the
evolution of the system in time, a dynamic phase diagram can be con-
structed on this parameter space, where s is the biasing Veld, T the
temperature of the system and h an external magnetic Veld. From the
equivalence of the g-ensemble and s-ensemble an exact solution for
the dependence of s and T can be deduced. This is:

s(T) = − ln [tanh (2J/kBT)] , (3.28)

as derived in: [45]. This gives the line of critical points as seen in Vg-
ure 3.5(a) which represents a schematic of the phase diagram of the
dynamic 1-d Ising model.
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Figure 3.5: Schematic representation of the dynamic phase diagram of the 1-
d Ising model in the s-ensemble with magnetic Veld h and the
application of Glauber dynamics. (a) The phase space is deVned
as the parameter space {T , s,h}. The continuous line in the plane
h = 0 represents the critical points given by the theoretical so-
lution of equation (3.28) separating paramagnetic (and highly ac-
tive) and ferromagnetic (and low-activity) dynamical phases. The
dashed line corresponds to the state where T = T0 = const
and h = 0 and contains a critical point (CP) marked by a cir-
cle. The dotted area below the critical line represents a surface of
Vrst-order transitions, when varying the external magnetic Veld h.
(b) m̃(s|T = T0) gives the spontaneous magnetisation, where the
symmetry is broken at s = sc. (c) The plane (h, s) for T = T0. The
critical point s = sc divides the line in two phases, a paramagnetic
phase for s < sc and a ferromagnetic phase s > sc. For s > sc,
the dashed line indicates points of Vrst-order transitions.

The parameter space was chosen in such a way that it allows a clear
distinction of diUerent dynamic phases of this system. In Vgure 3.5(a),
the line of critical points that lie in the plane of h = 0, as predicted by
equation (3.28), divides this plane into two diUerent phases of activity.
As a separator of these phases acts a critical point at s = sc. For values
of s < sc the system is in a paramagnetic and active phase, whereas
for s > sc the system is in a ferromagnetic and less active phase.
The dashed line in Vgure 3.5(a) is an isotherm at constant temper-

ature T = T0, including the critical point (CP) for a critical value of
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s = sc, only considering the plane where h = 0. The temperature
T0 in this picture is similar to the critical temperature Tc for the 2-d
model previously discussed. As indicated, this line contains a critical
point corresponding to sc = s(T0) given by equation (3.28).
Figure 3.5(b) shows the magnetisation of the Ising chain as a func-

tion of the biasing Veld s. Here the critical point s = sc separates the
ferromagnetic phase for s > sc with non-zero spontaneous magnetisa-
tion m̃ 6= 0 and, the paramagnetic phase for s < sc with m̃ = 0. Tun-
ing the biasing Veld s, once the critical point is reached, the symmetry
of the system is spontaneously broken. The inclusion of the magnetic
Veld in the isothermal behaviour gives rise to a third dimension and
therefore the plane T = T0 can be considered as shown in the 3.5(c).
Here for s < sc the magnetic Veld acts on a paramagnet, while for
s > sc the magnetic Veld acts on a ferromagnet 3.5(c).

Figure 3.5(c) is analogous to that of a 2-d Ising model assuming that
s→ β. In fact, by taking s = sc and using the temperature T (instead
of s) as the control parameter, the critical behaviour is in complete
analogy with the 2-d Ising model, and thus it is not surprising that the
model belongs to the same universality class as the 2-d Ising model.
This will be veriVed subsequently. In the presence of an external mag-
netic Veld h the system is expected to exhibit a Vrst-order phase tran-
sition along the dashed line, as shown in Vgure 3.5(c), where s > sc.
In the three dimensional parameter space this results in a surface of
Vrst-order transitions, which is indicated in Vgure 3.5(a), by the dotted
area below the critical line. The goal is to computationally verify the
phase space behaviour as laid out in this section, based on the theoret-
ical work by [45]. For this purpose a series of MC simulations are con-
ducted in order to study the second-order critical behaviour as well as
the Vrst-order behaviour in the presence of an external magnetic Veld
h.

3.3.2 Simulation Setup

In this section, we will present the simulation setup used for the nu-
merical study. Motivations for certain choices of system size will be
given, where appropriate.

3.3.2.1 Glauber Dynamics

As the theoretical work was based on Glauber dynamics, the same dy-
namical approach is used in the computational study. Until now only

the Metropolis acceptance criterion given by equation (3.3) was dis-

cussed. The Glauber acceptance criterion is not much diUerent from
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the Metropolis criterion and can be employed instead of it [61]. It is
given by:

Paccept =
1

1+ eβ∆H
, (3.29)

where β is the inverse temperature β = 1/kBT and the Boltzmann
constant kB is assumed to be 1. This acceptance function results in
a smoother crossover as opposed to the Metropolis criterion, as ener-
getically favourable moves can be rejected. The MC simulation is car-
ried out in the same way as described in algorithm 3.1 substituting the
Glauber acceptance criterion.

3.3.2.2 Sampling the s-ensemble

Trajectories, or paths of a certain ’temporal’ length tobs can be gener-
ated by employing the single spin Wip dynamics of algorithm 3.1 using
the Glauber acceptance criterion. A single timestep ∆t corresponds
to a lattice sweep, i.e. Ns attempted spin Wips. From these, path av-
erage properties can be deduced, such as the average magnetisation,
as mentioned previously. In order to bias the trajectories according to
the s-ensemble, a dynamic measure of the system needs to be deVned.
To this end, we deVne a dynamic activity K as the incremental count
of accepted spin Wips. This is then normalised to κ = K

Nstobs
in terms

of the observation time and lattice size. When generating many inde-
pendent realisations of trajectories of a given observation time tobs,
each trajectory is associated with a value of an activity κ. Typical tra-
jectories will have a certain distribution of activities centred around a
mean. However, here we are not interested in the typical trajectories,
but rare trajectories which have a larger than average, or lower than
average activity. In order to bias the path averages evaluated accord-
ing to their average activity towards low or high activity, the activity
of an old and newly generated trajectory are compared and the new
trajectory is accepted according to the Metropolis criterion in terms of
the s-ensemble:

Paccept = e
−s∆κ . (3.30)

Unlike in the case of the inverse temperature, s is unitless as κ is just a

normalised incremental count. The old trajectory stays the same until

a newly proposed trajectory is accepted, much like the spin conVgu-

ration stays the same if a spin Wip is rejected. As this is driving the

system towards the tails of the activity distribution, generating trajec-

tories which will be accepted is not easy. In order to facilitate this, a

modiVed transition path sampling (TPS) method is proposed, as used

in [4]. In the introduction 1 this method was brieWy outlined. The ba-

sic idea, as illustrated by Vgure 3.6, is to choose uniform randomly a

point along a given trajectory – the shooting point – and choose with

a 0.5 probability a shooting direction – forward or backward – from
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which the dynamics is run until a new trajectory reaches the desired
length of tobs.
Therefore, if we already have a trajectory which exhibits some in-

activity (which we are trying to bias towards) a new trajectory will
also have low activity, as only part of it was regenerated. This makes it
more likely for accepting the new trajectory in the s-ensemble accord-
ing to equation (3.30). This allows a more eUective way of generating

(a) accepted moves

(b) not accepted moves

shooting point
accept and 

choose new 

shooting point

Kold Knew

Kold Knew
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trajectory with 
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point
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}
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e
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part trajectory
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Figure 3.6: The schematic illustrates the TPS schedule employed for generat-
ing new trajectories, which are similar to the old trajectory. A
shooting point is randomly chosen along the original trajectory
(red frame). Up to that point all of the original trajectory is kept

and dynamics are restarted at the shooting point until the desired

trajectory length is obtained. The direction of the newly gener-

ated trajectory is arbitrarily chosen. (a) Outlines the schedule for

an accepted trajectory and (b) for a rejected trajectory

new trajectories for the modiVed path ensemble, than regenerating

completely new trajectories each time. Furthermore, a description of

the system in this path space now extends to the time dimension. This

sets the ground for a computational exploration and quantitative study

of the dynamic phase space of the 1-d Ising model as proposed in sec-

tion 3.3.1.1.

3.3.2.3 Choice of Parameters and Approach

In order to study how the system scales with the observation time

tobs and the system size L = Ns some initial parameter choices have

to be made. For this purpose, before the simulations for the ensem-

ble of trajectories study was setup, some initial trial simulations using

Glauber dynamics were carried out in order to investigate the eUect of

the Vnite system size. In an ideal world one can use an inVnitely large
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system (L→ ∞, i.e. the thermodynamic limit), but as this is not possi-
ble on a computer, instead a ’suXciently’ long spin chain with periodic
boundary conditions is considered. To this end, the 1-d Ising chain was
simulated for various diUerent chain lengths, from 30 to 500 spin sites.
From these short trial runs a system size of Ns = 64 was deemed suf-
Vciently large enough to mimic a thermodynamic limit. Therefore the
system size was Vxed, allowing only time as a scaling variable.

In order to justify the observation time tobs as a scaling variable
similar to that of the system size, an associated quantum problem
needs to be considered. The dynamic evolution of the system can be
described by a time evolution operator, which is the equivalent to a
quantum Hamiltonian. From this point of view the length (tobs) of the
trajectories is equivalent to the inverse of the temperature T(q) of the
quantum problem presented in [45]. It has previously been shown that
there is a mapping between the classical 2-d Ising model and a quan-
tum chain [60]. The mapping demonstrates that the inverse of T(q) is
equivalent to the size in one spatial direction in the 2-d Ising model
(that is 1/T(q) ↔ L). Therefore it can be correctly assumed that tobs

is the equivalent of the linear size L in the classical 2-d Ising model
(i.e. tobs ↔ L). The scaling relations for the lattice size as discussed in
section 3.2.4 can simply be replaced by the observational time tobs.

In the light of simulating a stochastic system, generally a very large
number of realisations is used in order to estimate averages. Most
of the time, unless otherwise stated, data points are generated from
Nrealisation = 5× 106. As the standard error of the mean is given by:

ǫstd =
σ√

Nrealisation
, (3.31)

it is often the case that the ǫstd will fall into the size of the data points
shown, if errors are not explicitly stated.

3.3.3 Simulation Results of the Dynamic Properties

In the following section the results of the simulations with respect to
the phase diagram shown in Vgure 3.5 will be discussed.

3.3.3.1 Dynamic Continuous Phase Transition

As was established in the discussion of section 3.3.1.1 describing Vg-
ure 3.5, there are two ways in which the dynamical critical point can
be reached: by setting either s or T to a constant value. Trajectories
are generated as described in section 3.3.2.1 using a Vxed tempera-
ture T and zero external magnetic Veld. From each accepted trajec-
tory of a given value of the biasing parameter s a set of time exten-
sive variables is obtained, which classify the dynamic properties of
the system according to a given observational time tobs. These are the
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activity κ representing the total number of spin Wips observed in a
given trajectory (i.e. the number of conVgurational changes), the inte-
grated energy E =

∫tobs

0 dt ′H(t ′), and the integrated magnetisation

M =
∫tobs

0 dt ′m̃(t ′), where m̃(t) =
∑Ns
i=1 σi(t).

Drawing from the experience of the study of the thermodynamic
behaviour of the 2-d Ising model, Vnite size scaling is a valid approach
in order to classify the universality class of the dynamic phase transi-
tion. As the scaling behaviour of dynamic properties is the observable
of interest, the temporal size is the scaling variable of choice, as was
motivated in section 3.3.2.3.

In order to determine the critical temperature of a continuous phase
transition the peaks of the susceptibilities of an observable – here in-
tegrated energy or activity – can be used. According to the previous
discussion χ is expected to scale according to [13]:

χ(tobs) = t
α/ν
obs f

(

(T − Tc)

Tc
t
1/ν
obs

)

, (3.32)

where α and ν are the previously deVned exponents from the scaling
relations deVned in equations (3.13). Furthermore, the location of the
peaks deVne an eUective size-dependent transition temperature which
is expected to vary as:

Tc(tobs) = Tc(∞) +At
−1/ν
obs . (3.33)
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Figure 3.7: (a) Susceptibility of the energy as a function of T at constant
s = 0.036 635 37. Vertical dashed line corresponds to Tc = 1.00
given by equation (3.28). The standard error falls into each data
point. (b) EUective critical T , taken as the value of T at the max-
imum of each of the curves of (a), with respect to 1tobs. The ex-
trapolated value, for tobs → ∞, is Tc = 1.02± 0.02, from a linear
Vt. (c) Susceptibility χe at Tc = 1.00 versus tobs. The divergence
is logarithmic, as in the case of the speciVc heat in the 2-d Ising
model.
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The scaling given by the equation (3.33) is expected in terms of T
or in terms of s, respectively. Thus, both approaches were used for
probing the scaling behaviour.
Figure 3.7 shows the simulation results for a Vxed value of s and

varying the temperature T . The critical value for s = sc was chosen in
such a way that it would correspond to an equivalent temperature of
T ≡ 1. From equation (3.28) the relationship between s and T is given
such that sc = 0.03663537. By deVning a generalised susceptibility of
the energy χe in such a way that

χe =
〈E2〉s − 〈E〉2s
T2Ntobs

, (3.34)

the scaling behaviour can be observed.
All data is shown from averages over 5× 106 independent trajec-

tories and NS = 64. In Vgure 3.7(a) the susceptibility of the energy is
plotted with respect to temperature, for increasing observational times
tobs. Observed peaks sharpen as tobs increases. This leads to an extrap-
olation of an ’eUective critical temperature’ Tc(tobs) according to tobs.
The peak of χe was determined with a quadratic least square Vt from
data points around the peak. From the functional value obtained from
the Vt, the maximum was extracted. The linear regression Vt and the
maximum were calculated with the plotting program Grace, using the
standard error of the Vt as the error for the extrapolated value. The ob-
tained eUective critical temperatures, from the peak values were plot-
ted in Vgure 3.7(b) with respect to 1/tobs. The dotted line is a linear Vt
to peaks, ignoring the data point from the shortest observation time
and allows an extrapolation to the critical temperature Tc for inVnite
observation times. The expected critical temperature is Tc = 1. The
linear interpolation gives a value of Tc = 1.02± 0.02, therefore the
MC simulation agrees with the predicted value within errors of the Vt.
One should bear in mind that we have neglected the error resulting
from the least square Vt to the peaks. This also supports the fact that
the scaling behaviour belongs to the 2-d Ising universality class with
a critical exponent ν = 1. Figure 3.7(c) shows the scaling behaviour
of the susceptibility versus tobs on a log-linear scale. As the dynamical
free energy φ(g)must have the same critical properties as the thermo-
dynamic free energy F(T) of the 2-d Ising model, its second derivative
must be analogous to the behaviour of the speciVc heat. It was shown
in [45] that the second derivative ofφ(g) has a logarithmic divergence
when the critical point is approximated [45]. Figure 3.7(c) shows that
a logarithmic behaviour is observed, which means that equation (3.32)
holds with an exponent of α = 0.

The next step is to consider a case where an isothermal of T = 1 is
used and instead the biasing Veld s is varied. This will also approach
the critical behaviour. Figure 3.8(a) shows the behaviour of the sus-
ceptibility of the activity χk. This is in principle analogous to the be-
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haviour of the energy Wuctuations and thus can be deVned in the fol-
lowing way:

χκ =
〈K2〉s − 〈K〉2s

Ntobs
. (3.35)

Figure 3.8(a) shows the increase of the peaks of the susceptibility as
the observation time of the system increases. The critical biasing Veld
sc is indicated by the grey dashed line. Using the same approach as

before, an eUective critical s can be deduced from the peaks, using

again a quadratic approximation of the peak. The position of the peaks

and therefore the eUective critical value of s is plotted with respect to

1/tobs in 3.8(b). The extrapolation results in a critical value for sc =

0.036± 0.01, again using a linear regression Vt with the Grace plotting
tool, ignoring the data point coming from the shortest observation

time. The scaling exponent is as before consistent with the 2-d Ising

universality class ν = 1. Also Vgure 3.8(c) shows the susceptibility

χk value for s = 0.03663537 in a log-linear scale. This logarithmic

divergence of the susceptibility of the activity means that the scaling

behaviour for exponent α = 0. This indicates a complete equivalence

between the inverse temperature β and the biasing Veld s. The Vnite

time eUects of the Wuctuations of the activity or energy respectively

mean that both E and κ can capture the dynamic phase behaviour.
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Figure 3.8: (a) Susceptibility of the activity as a function of s at constant tem-

perature T = 1. (b) Convergence of the eUective critical s. Val-
ues for s are taken from the peaks of (a). The extrapolated value
is sc = 0.036± 0.001. The arrow indicates the theoretical value
from equation (3.28) (c) Susceptibility at s = sc = 0.0366 constant
versus tobs. The critical divergence of the χk is logarithmic.

3.3.3.2 Magnetic Properties

So far the Ising chain was only considered in a ’neutral’ environment.
The obvious next step is to apply an external magnetic Veld h to the
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system. This magnetic Veld couples to the system, as given by equa-
tion (3.1). Therefore the magnetic Veld is applied to the 1-d chain, when
the system is already close to the critical point. The magnetic suscep-
tibility of the 2-d Ising system can be expressed by the two point cor-
relation function:

χm̃ =
〈m̃2〉− 〈m̃〉2

kTNs

=
1

kTNs

Ns∑

i,j=1

Gi,j , (3.36)

where Gi,j is given by equation (3.8). Analogously, a correlation func-
tion in space and time representing the space-time magnetic suscepti-
bility, can be deVned as:

χM =
〈M2〉s − 〈M〉2s
kBTNstobs

=
1

kBTNstobs

Ns∑

i,j=1

∫tobs

0

∫tobs

0

dt ′′dt ′Gi,j(t
′, t ′′) . (3.37)

This leads to the deVnition of the instantaneous susceptibility in the
s-ensemble:

χ
(s)
m̃ =

〈m̃2〉s − 〈m̃〉2s
kBTNs

. (3.38)

Incorporating the magnetic information in the MC simulation is trivial
and readily implemented. Again averages were taken over 5× 106 re-
alisations and a lattice size ofN = 64 and this time a Vxed tobs = 200.
The results are depicted in Vgure 3.9.
For external magnetic Velds of 0.004 . h, the behaviour is very clear,
meaning that the thermodynamic behaviour of the system is observed
for diUerent lattice sizes and observational times with no inWuence
from Vnite size eUects. However, if the external Veld is chosen to be
small, Vnite size eUects arising from Vnite size Ns and Vnite observa-
tional time tobs are non-negligible. As a result the system is no longer
well behaved enough to be studied with the amount of eUort possible
within the scope of this work. Figure 3.9(a) shows the static susceptibil-

ity χ(s)m̃ with a power law Vt representing the data well in the region
of 0.004 . h . 0.2 for the external magnetic Veld, with a Vtted expo-
nent of 0.90± 0.05. For values of h > 0.2 a deviation from the power
law is expected as the system moves away from the critical behaviour.
The observed exponent is consistent with what is expected from the
2-d Ising model as:

χ
(s)
m̃ ∝ h−(1−1/δ) (3.39)

and δ = 15 therefore the exponent is close to 0.933.
In contrast Vgure 3.9(b) looks at the susceptibility depending on the

temporal aspect of the system. Qualitatively the behaviour is similar
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to that of the static susceptibility, but a power law Vt gives a very
diUerent exponent of ∆ = 1.50± 0.05. A dynamical critical behaviour
can be deVned as:

χM ∝ h−∆ . (3.40)

The exponent ∆ can be written as: ∆ = (γ + νz)(βδ)−1. This al-
lows an estimate of the dynamical exponent z ≃ 1.06± 0.09, which
is within the error of the expected value of z = 1. It should also
be noted that this numerical experiment was repeated for the follow-
ing values of observation time and system size: Ns = 64, 100 and
tobs = 160, 200, 300, obtaining the same results as presented in Vg-
ure 3.9 within error bars. It is interesting to note that the static critical-
ity of the 2-d Ising model reappears in the dynamic 1-d case, as was
shown by means of Vnite time scaling of the energy and activity.
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Figure 3.9: (a) Susceptibility of the instantaneous magnetisation correspond-
ing to spatial Wuctuations. The continuous line is a Vt of a power
law that gives an exponent 0.90± 0.05, in good agreement with
the exponent of the magnetic susceptibility of the 2-d Ising model
1−1/δ ≈ 0.933. (b) Susceptibility of the integrated magnetisation
corresponding to spatio-temporal Wuctuations. The continuous
line is a Vt of a power law that gives an exponent of 1.50± 0.05

3.3.4 Simulation Results of the Dynamic Properties with External Mag-

netic Field

In the phase diagram it was shown that a Vrst-order phase transition
is expected under isothermal conditions, if s is greater than the critical
value sc(T0) (see Vgure 3.5(c)). The application of an external magnetic
Veld will induce a spontaneously broken symmetry. Unfortunately the
mapping of the master equation onto the quantum problem in the pres-

ence of an external magnetic Veld is non-trivial. However, a computa-

tional study of the Vrst-order phase transition is carried out instead.

Let {T , s,h} be the parameter space in which the isothermal plane of

T = 1 is considered. In the presence of no external magnetic Veld, i.e

the plane h = 0 two magnetic phases coexist: a paramagnetic disor-

dered phase for s < sc and an ordered, ferromagnetic phase for s > sc.

This is illustrated in the schematic of the phase diagram 3.5(c).
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The MC setup is as before, but a lattice with Ns = 200 spins was
used and averages where taken over 1× 106 realisations. It was found
that a larger system was necessary to decrease Vnite size eUects. Due
to the increased system size the simulation became more costly, there-
fore fewer number of realisations were considered. Results are shown,
considering three diUerent cases of the biasing Veld s, in Vgure 3.10.
The external Veld h was varied for setups of s < sc, s = sc and s > sc,
shown in Vgure 3.10(a), (b) and (c) respectively.
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Figure 3.10: Stationary results for the magnetisation with an external mag-
netic Veld. The magnetisation with respect to external magnetic
Veld is plotted, varied over a range of h = −0.3 to h = 0.3 with
a constant temperature ensemble at T = 1, with a critical value
for sc = 0.03663537. Depicted are three diUerent cases of s. In
(a) s = 0.02 is thus subcritical, in (b) s corresponds the critical
value and in (c) s is supercritical as s = 0.05. Errors are within
the size of the symbols.

In Vgure 3.10(a) a smooth curve m̃(h), in the vicinity of h = 0, for a
low biasing Veld s = 0.02 is observed, representing the paramagnetic
phase. In contrast Vgure 3.10(c) depicts a sharp transition at h = 0

well into the ferromagnetic phase, as the choice of biasing parameter
s is supercritical with a value of s = 0.05. In Vgure 3.10(b) the exact
critical value is used for the biasing Veld, showing critical behaviour
of the system. The critical value was taken to be: sc = 0.03663537.
The Veld driven Vrst order transition ends in the critical point which
is precisely the critical value of the biasing parameter s. This point is
reached at s = sc (T = 1,h = 0) and thus gives the limits for the
ferromagnetic phase (s > sc).

3.3.5 Results from a Hysteresis Study

Hysteresis is an eUect observed in many diUerent parts of nature, for
example in ferromagnetic material. These ferromagnetic materials will
make use of the hysteresis property in very commonly used objects,
such as credit cards, magnetic tapes and hard disks, to name a few. Hys-
teresis basically describes the relationship between the induced mag-
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netic Wux from an external magnetic Veld and the resulting magneti-
sation in the system. For a magnetic material this has a microscopic
eUect. The dipoles align within the presence of a magnetic Veld. Once
the magnetic Veld is removed the alignment persists partially and re-
sults in a magnetised system. The system will not be able to equilibrate
on its own accord back to the non-magnetic state. Instead this can only
be achieved by increasing the temperature of the system. The interest-
ing aspect is the relationship between the induced Wux from the exter-
nal magnetic Veld and the resulting magnetisation which is obeying a
non-linear relationship. There are theoretical models available which
allow the study of hysteresis [62].

The non-linearity of the relationship gives rise to hysteretic loops,
which are constructed through measurements of the magnetisation,
while slowly changing the external magnetic Veld. Eventually a point
of magnetic saturation will be reached, where all spins are aligned
in one direction. When from the point of saturation the external mag-
netic Veld is reduced to 0 the system will retain some residual magneti-
sation. With regard to this study presented here, rather than varying
an external magnetic Veld, the biasing parameter s can be used to tune
the area of the hysteretic loops, as it is the source of the induced mag-
netisation of the system in the Vrst place.

A typical set of hysteresis loops is seen in Vgure 3.11, for a ferromag-
netic system. The external magnetic Veld h is varied and the resulting
magnetisation m̃ is plotted. Here the area of the loop also depends on
the biasing Veld s. In order to obtain the results of Vgure 3.11 a set of
simulations was carried out in the following way: Simulations were
started from a representative trajectory of the stationary distribution
at a given value of external Veld h, which is then perturbed by h±∆h
(with ∆h = 0.01). In order to reach a stationary state for the new
value of h, nrelax steps in the TPS algorithm are taken for equilibra-
tion. Then measurements of the observables are taken for nobs steps.
Figure 3.11 shows the resulting loops of the magnetisation versus the
magnetic Veld. Again the lattice size was chosen to be Ns = 200 and
the number of relaxation steps was nrelax = 1× 102. Averages were
taken over 1× 105 realisations. It was observed that the number of
relaxation steps taken for each value of h before conducting the mea-
surement, was suXcient for the system to equilibrate to the new value
of the external magnetic Veld.
The top panel of Vgure 3.11(a)-(c) depicts the hysteresis loop with

increasing supercritical s with a trajectory length of tobs = 60, that
is s = 0.05 for (a), s = 0.07 for (b), and s = 0.08 for (c). The bot-
tom panel of Vgure 3.11(d)-(f), shows an identical plot but now with an
increased trajectory length of tobs = 80. It can be observed, that the
area of the loops increases, as s is increased. This is due to the fact that
the metastability of the system increases and thus the relaxation repre-
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Figure 3.11: magnetisation versus the magnetic Veld in the form of hysteresis
loops at constant temperature T = 1 around the Vrst-order tran-
sition at h = 0. The biasing parameter s is Vxed to 3 supercritical
values: for (a) and (d) s = 0.05, for (b) and (e) s = 0.07, and for
(c) and (f) s = 0.08. The observational time is increased from the
top panels of tobs = 60 to tobs = 80 in the bottom panels. Errors
are omitted for clarity of the loops. In all plots h = 0 is indicated
by grey dashed line.

sented by the area of the loop decreases. This supports the previously
made argument that a ferromagnetic phase is observed and indicates
the validity of the dashed line in Vgure 3.5(c). Furthermore, the surface
(dotted area) below the continuous line is therefore made out of Vrst-
order dynamic phase transition points, as depicted in Vgure 3.5(a).

3.3.6 Results for the Dynamic Phase Behaviour Using Kawasaki Dy-

namics

Up to this point only single spin Wip dynamics, or non-conserved or-

der parameter (magnetisation) dynamics have been considered [63, 45].

Glauber dynamics were chosen out of convenience of the available

theoretical predictions, though Metropolis dynamics result in a quali-

tatively equivalent behaviour. An obvious question to ask is, how the

dynamic phase behaviour is aUected by the underlying dynamics. So

far only single spin Wip dynamics were considered, therefore we now

turn to the previously introduced Kawasaki dynamics in order to con-

sider spin exchange dynamics instead 3.2.1.2. The Kawasaki dynam-

ics is employed in conjunction with the s-ensemble biasing using the

adapted TPS schedule, as described in section 3.3.2.2, carrying out a

similar set of simulations as discussed for the Glauber dynamics. The

results of this set of simulations will be discussed in this section.
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Just to serve as a reminder, neighbouring spins are exchanged ac-
cording to the Metropolis acceptance criterion, which is given by:

Paccept = min(1, e−∆H/kBT ) . (3.41)

where ∆H is the change in the energy due to the exchange.
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Figure 3.12: Results of the MC simulations using the s-ensemble with
Kawasaki dynamics at constant temperature (T = 3). (a) Finite
size scaling study with tobs as the scaling variable for the activity
κ with respect to s and (c) the energy E with respect to s. In (b)
and (d) are the respective susceptibilities as a function of s. Errors
are within the size of the symbols.

In Vgure 3.12 the results of the Monte Carlo simulations using the s-
ensemble with Kawasaki dynamics for the Ising chain are shown. The
chosen parameter set for the simulations was: The temperature was
set to T = 3, the lattice size Ns = 64 and the total magnetisation of
the system was zero m̃ = 0. As mentioned before, Kawasaki dynam-
ics can be very slow if the simulation temperature is low. Therefore,
a simulation temperature that was suXciently eUective at accepting
moves was chosen for illustration here. However, other temperatures
were looked at and will be commented on later on in this section. Fig-
ure 3.12(a) and Vgure 3.12(b) show the activity and the susceptibility
of the activity, given by equation (3.35), respectively versus the bias-
ing Veld s for diUerent tobs. At the same time Vgure 3.12(c) shows the
energy with respect to s and Vgure 3.12(d) the susceptibility of the en-
ergy with respect to s. Once again Vnite size scaling was used in order
to investigate the behaviour of the dynamic phases. The observational
time serves as a scaling parameter and is slowly increased, much in
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the same way as presented in section 3.3.2.1. As tobs increases, the ob-
served susceptibilities of activity and energy sharpen in their peaks.
For both quantities this behaviour is qualitatively the same, which
can be reasoned in the following way. The energy is proportional to
the number of domain walls which is the number of sites where anti-
aligned spins are neighbouring each other. In order for a change in
energy to occur, two neighbouring spins which do not point in the
same direction need to exchange, thus activity and energy are closely
linked. However spins can exchange within a domain, which will in
fact aUect the activity but not the overall energy of the system.
From both energy and activity it can be assumed that the observed

transition is a Vrst-order transition. The scaling behaviour in a Vrst-
order transition very much depends on the size and dimensionality of
the system, this is discussed in more detail in [13]. If the peaks χmax

κ

are chosen to be an eUective critical point, depending on the size of
the system, the expected scaling behaviour can be written as:

sc(tobs) = sc(∞) +AV−1 , (3.42)

and

χmaxκ ∝ V . (3.43)

The constantA is of no further relevance. The volume V is in this case
not only dependent on the spatial coordinates but also the observa-
tional time. Especially, when taking the spatial dimension as constant,
as was done in this case, the volume of the system is directly propor-
tional to the observational time. The volume V ∼ tobs, which can be
substituted into equitations (3.42) and (3.43).
Figure 3.13 illustrates that the Vnite size analysis holds for the ac-

tivity of the system. In Figure 3.13(a) the location sc of the maximum
χk is plotted for two Ising chains of length Ns = 64 and Ns = 100

against 1
tobs

. The eUective critical value sc decreases with increasing
tobs and with increasing Ns. Using equation (3.42) an extrapolated

value for the limit of tobs → ∞ can be calculated. For Ns = 64 the

value sc = 0.002± 0.001, and sc = 0.001± 0.001, for Ns = 100 are

obtained. Errors are again those from the goodness of the Vtted linear

regression. The obtained values are also consistent with the energy

analysis.

Figure 3.13(b) shows the height of the peak in the susceptibility of

the activity versus the observational time. For the smaller system size

the power law given by the equation (3.43) is not observed at all. For

the larger sizes there is an intermediate region for which the power

law behaviour holds. This shows that for small tobs there are boundary

eUects in the time of the trajectories, and for longer tobs there are

boundary eUects in the space of the spin chain.

From the analysis, a phase diagram for the dynamic phase behaviour

can now be constructed. There is a clear separation between active and

inactive states through a Vrst-order dynamic phase transition. From
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Figure 3.13: Black squares are results fromNs = 64, obtained from Vgure 3.12
(with some additional observation times omitted for clarity in
the Vgure 3.12) and red triangles for Ns = 100 (not shown in
Vgure 3.12) (a) Estimation by means of a least square Vt of the
critical value sc from Vgure 3.12(b) with respect to the inverse
observation time. The straight lines are Vts used for the extrap-
olations of sc to the limit tobs → ∞ give the following val-
ues: sc = 0.002 ± 0.001 (sc = 0.001 ± 0.001) for Ns = 64

(Ns = 100). (b) Height of the peaks of χκ from Vgure 3.12 on a
log-log scale with respect to tobs. The straight line is the expected
power law behaviour ∝ tobs from the Vnite time/size theory for
Vrst order transitions.

the extrapolation it can be seen that for negative s an active phase is
observed and for positive s an inactive phase is observed, with the
critical value for sc = 0. This means under non-biased simulation
conditions one is at a coexistence of active and inactive dynamical
phases, which is a similar observation as seen in idealised kinetically
constrained models [2, 3]. A schematic representation of the phase be-
haviour in the Kawasaki dynamics is shown in Vgure 3.14.

T

s

paramagnetic

“active” phase

ferromagnetic

“inactive” phase

Figure 3.14: Phase diagram of the Ising chain using Kawaksaki dynamics. The
dashed line at s = 0 represents points of a Vrst-order phase tran-
sition between the indicated phases.
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The simulation can never truly reconstruct this because of much
more prevailing Vnite size eUects in this conserved order parameter
model. This further explains the similarity in behaviour of the energy
and activity in the inactive phase, as Vgures 3.12(a) and 3.12(c)) are
∼ 1/Ns. From the way the model is constructed, there will always
be two domain walls present from the periodic boundary conditions,
which in both cases separate two equal spin domains (one domain,
where all spins are pointing up and one where all spins are pointing
down). This results in a minimum energy E − E0 = 2

Ns
, where E0

is the idealised ground state energy. The two separate domains thus
represent a ferromagnet with no activity in the thermodynamic limit.
In order to extrapolate this behaviour in a more general way, various
diUerent temperatures were considered, which all assert the ferromag-
netic/paramagnetic phase transition at a critical value of sc = 0. At
low temperatures this transition becomes increasingly diXcult to ac-
cess, as the diUerence between the phases will be harder to resolve. In
the limit T → 0 the discontinuity disappears and the transition ends
in the point s = 0, T = 0. Once again, this is analogous to what occurs
in kinetically constrained models [2, 3].

3.4 conclusion and outlook

Both thermodynamic and dynamic properties of the Ising model in 1-d
and 2-d were discussed in detail in this chapter, with particular inter-
est in the previously unobserved dynamic phase behaviour of the 1-d
Ising model. In particular, it was observed that in the 1-d Ising model
a dynamic phase transition is present for dynamics using single spin
Wip algorithms with either Glauber or Metropolis acceptance criteria,
as well as for diUusive dynamics (Kasasaki dynamics). This allows a
direct comparison of the phase diagram of the Glauber dynamics (see
Vgure 3.5) and the Kawasaki dynamics (see Vgure 3.14). Their diUer-
ences can be highlighted as follows: a second-order phase transition is
observed in the dynamic phase diagram of the Glauber dynamics in the
plane of {T , s}, with a line of critical points given by equations (3.28),
where no comparable transition is observed in the Kawasaki dynam-
ics. Instead, a Vrst-order transition at s = 0 is found, meaning that
in the unbiased ensemble, the system is at a critical state. The simi-
larity found however, is that the phases observed (separated by a Vrst
and second-order transition respectively and governed by the activity
as the order parameter) are an active paramagnetic and an inactive
ferromagnetic phase. Furthermore, looking at the behaviour with an
external magnetic Veld in the case of the Glauber dynamics there is a
surface of Vrst-order lines between two symmetric ferromagnetic low
activity phases. The transition between them is driven by the magnetic
Veld. The surface ends in a critical line which belongs to the 2-d Ising
universality class.
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In the future, it will be of interest to extend the study of the dy-
namic behaviour with s-ensemble biasing further to the 2-d spatial
system, where no known analytical solution for the s-ensemble phase
behaviour is available. Or even further extend this problem to a more
general class of magnetic models, where the spin conVgurations are
allowed to take other values than −1 and 1, for example. One might
wonder why the rare trajectory Wuctuations, only reached by an ar-
tiVcial bias are of any interest at all. In fact, the knowledge of the
dynamic information of the system is very useful, as their dynamic
phase behaviour can play an important role in the equilibrium dynam-
ics of certain types of systems. The existence of rare trajectories away
from the equilibrium exhibiting a dynamic phase transition, means
that these rare trajectories can occasionally be observed in equilibrium.
It is believed that these Wuctuations are in fact the reason for the slow
relaxation times observed in glasses [4, 1, 44].



4
LAT T ICE P ROT E I N MODEL S

The novel work presented in this chapter was carried out by Antonia
S.J.S. Mey with advice given by Juan P. Garrahan and Phillip Geissler.
A publications regarding this work can be found on the preprint server
arXiv [64]. Furthermore, all simulation code developed by the author

for the lattice model will be made available on the author’s website

and can be found under the following link:

http://www.antoniamey.co.uk.

This chapter introduces work regarding simulations of a lattice pro-

tein and is organised in the following way: A broader introduction to

proteins and how these are investigated computationally and experi-

mentally is given. Then an overview of the past work carried out on

the lattice model studied here, is presented.

In this thesis the lattice model serves as an approximation to real

proteins in order to study their non-equilibrium dynamic behaviour,

which would be too computationally costly for an all atom systems.

The simpliVed model allows the study of the dynamic phase space in

the s-ensemble in great detail and results of a Vrst-order like dynamic

transition in trajectory space between arrested glass-like and active

trajectories, for models with heterogeneous interaction potentials.

4.1 introduction to proteins

In recent years, physicists have become more interested in biological

systems. Many known physical concepts have since been applied to

biological systems. One area of interest in particular, is the concept of

protein dynamics and protein folding. This has been studied for many

years, but is still poorly understood with regard to even some of the

most basic concepts.

In 1952 Sanger et al. [65] managed to successfully decoded the Vrst

amino acid sequence. He looked at the sequence of insulin, a hormone

which plays an important role in the regulation of the carbohydrate

metabolism. This was the Vrst step towards understanding the molec-

ular structure of proteins. He showed that the structure of a protein

is based on a linear poly peptide chain, which is made of individual

amino acids. This sequence, also referred to as the primary structure

of a protein, is unique for each protein. Pauling managed to correctly

predict the secondary structure of proteins stabilised through their hy-

drogen bonds [66]. In the 1970’s AnVnsen managed to show that a de-

natured protein can recover its biological active form – also known as

64
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its native state – after a denaturing event has taken place – by means
of temperature or pH [67]. This suggests that the primary structure
alone contains all the necessary information for the protein to Vnd its
native 3-d structure.
What complicates the problem of understanding this is the vast amount
of diUerent proteins found in nature. Proteins have a broad range of
diUerent biological functions and are structurally very diUerent from
each other. The protein data base counts 84645 diUerent protein struc-
tures on September 18th 2012, most of which have been established
through X-ray crystallography and NMR studies [68]. Each of these

structures has a unique native state, which is believed to be governed

by the primary structure alone. The real problem lies in being able to

deduce from any given sequence what its native structure might be.

The solution to this problem is still unknown. Various experiments
have been carried out in vivo and in vitro, which conclude that most
proteins fold ’spontaneously’ into their native state. Only very few are
aided by helper molecules called chaperones.
Vast eUorts are being made in understanding the underlying concepts
in more detail, both experimentally and through computational mod-
elling. The work presented here does not aim to solve the protein fold-
ing problem, but looks at the likelihood of observing trajectories away
from the folding pathway using computational models. This aims at
clarifying how rare dynamic Wuctuations can inWuence the equilibrium
behaviour of proteins.

4.1.1 Protein Structure

There are 20 amino acids commonly found in eukaryotes [69] which
allows for a large diversity in protein sequences. In particular, taking
into account that on average there are between 100-500 monomers in
a protein.

Figure 4.1: Ball and stick diagram of a generic amino acid residue. The R
group is the variable group, which can be replaced by one of the
20 possible residues.
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Figure 4.1 shows the chemical structures of these amino acids. Each
amino acid has a basic structure in common which will later form
the backbone of a protein. This consists of a central chiral carbon
atom Cα, which is covalently bonded to a carboxy group (COOH), an
amine group (NH2) and a hydrogen atom. For the Cα to form its pre-
ferred tetrahedral conformation there is one more ligand space avail-
able. This ligand allows to distinguish between the diUerent amino
acids and is referred to as the R group – or residue, as seen in Vgure 4.1.
The R group depending on the ligand can have diUerent chemical char-
acteristics, which can be grouped in the following way, according to
each amino acids name:

• Hydrophobic residues: Alanine, Glycine, Valine, Leucine,

Isoleucine, Phenylalanine, Thyrosine, Tryptophane, Methionine,
Proline

• Charged residues: Aspartic Acid, Glutameic Acid, Arginine, His-
tidine, Lysine

• Polar residues: Serine, Threonine, Asparagine, Glutamine, Cys-
teine

Glycine is a special case, with the side chain consisting of a single
hydrogen atom, which makes it non-chiral. For all other residues the
Cα serves as the chiral centre, due to its 4 diUerent ligands. This means
for each amino acid there are two possible enantiomers, a right (R-)
and a left (L-) one [69].
In order to describe the 3-d structure of a protein, 4 diUerent ’struc-

ture levels’ have been introduced.

• The primary structure is just the sequence in which the amino
acids appear along the protein chain.

• The secondary structure is characterising a set of 3-d recurring
structural patters. There are two main types which are observed
in protein conVrmations. These are the α-helix and the β-sheet,
as well as various turns and twists.

• The tertiary structure describes how the secondary structure
elements Vt in with each other to form the three-dimensional
protein, i.e. whether a protein is for example spherical or elon-
gated.

• The quaternary structure can only be found in large proteins
which consist of more than one chain. It describes the way indi-
vidual tertiary domains interact with each other.

4.1.1.1 Secondary Structure

Most proteins consist to 60% or more out of α-helices and β-sheets,
which means most of the amino acids are involved in hydrogen bond-
ing in order to stabilise these structures. Secondary structure elements
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are believed to be one of the Vrst ones to be formed in a folding pro-
cess, as they are stabilising the 3-d structure [70]. The existence of
these structures was predicted by Pauling et al. [66]. He motived this
based on an energetic argument, saying that a large number of hy-
drogen bonds is favourable and therefore structures that optimise this
should be favoured. This is exactly achieved in the secondary structure
elements of a protein.

α-Helix

The α-helix is a helical structure with 3.6 residues per turn. Here by
residue we mean a generic amino acid. It is stabilised through hydro-
gen bonding between the carboxy group oxygen and the amine group
hydrogen, not involved in the formation of the amide bond (peptide
bond). The L-enatiomers of the amino acids will result in a right turned
helix.

β-Sheet

The β-sheets are a quasi-two-dimensional structure. This structure is
realised through the alignment of the peptide chain in a parallel or
anti-parallel fashion and in this waymaking up a Wat sheet and is again
stabilised by hydrogen bonding between residues. For more chemical
details and other possible secondary structure elements the reader is
referred to the book by Berg et al. on Biochemistry [69].

These two structures are very distinct, and therefore it can be seen
whether an α-helix or a β-sheet is present purely based on a pro-
jection onto the two rotational angles or torsional angles φ and ψ,
as seen in Vgure 4.1. A projection of proteins onto the dihedral an-
gle space was introduced by Ramachandran in his Ramachandran di-
agram in the 1960’s [71]. In mathematical terms, the Ramachandran
diagram is just a function f in terms of the angles φ and ψ such that
f : [−π,π× [−π,π → R+. In a slight adaptation of Ramachandran’s
original Vgure 4.2, it can be seen that only certain regions in the φ-
ψ space are physically populated with a high probability, creating a
clear distinction between the α-helix and the β-sheet. Apart from the
α-helix and β-sheet torsional combinations, also the left handed α-
helix indicated by Lα and a diUerent helical structure, the 310-helix,
can be identiVed in the diagram, but have no further relevance in this
thesis. The construction of such a diagram will Vnd more application
in chapter 5.

4.1.1.2 Tertiary Structure

The tertiary structure is referred to as the arrangement of secondary
structure elements with each other. They are commonly stabilised by
salt bridges or sulphide bridges and give a single domain protein its na-
tive conVguration. The mechanism the protein undergoes in order to
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Figure 4.2: Slightly adapted Ramachandran digram as presented in the paper
by Ramachandran et. al. [71], in the space of the dihedral amino
acid anglesφ andψ. Angle combinations in the top left corner are
most likely to belong to a β-sheet, as indicated, whereas α-helices
tend to have angles of around −50◦,−50◦. Other structures are
discussed in the text.

reach this structure is still not fully understood due to a gap between
possible observation time and the available resolution in experiment.
Computationally this is also plagued by the necessity of long simu-
lations and thus not easily attackable. InsuXcient experimental reso-
lution, and insuXcient computational power are common problems
when investigating rearrangements of of protein and can sometimes
be referred to as the timescale gap.

4.1.2 States or Phases of a Protein

Proteins, depending on their chemical environment, can have diUer-
ent spatial conVgurations. These conVgurations can be distinguished
as states or phases, where through the change of a regulating order
parameter a diUerent state can be observed.

• The denatured protein
An agent such as temperature or pH can inWuence the conVgu-
ration of a protein drastically. When the temperature is changed,
the energetics are altered, which can result in the breaking of the
hydrogen bonds which stabilise the α-helices and β-sheets. As
these structures form the foundation on which a protein struc-
ture lies, the conformation is lost and a so called denatured, or
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unfolded state is reached. Normally a protein can return to its
original conVguration even after being denatured.

• The native protein
This represents the biologically active state of the protein. Usu-
ally this will be a very compact and low energy state for the

protein. Most proteins have a unique native structure which al-

lows for example in the case of enzymes an eXcient binding site

for ligand molecules.

4.1.3 The Search for the Native State: the Levinthal Paradox

The peptide bond has double bond characteristics due to the sharing

of π-electrons between the oxygen, carbon and nitrogen atoms. This

has an advantage as it restricts conformational space in a way that

rotations along that bond become impossible [69]. Therefore, the pep-

tide bond is planar and thus gives rise to the restricted φ/ψ space

discussed in section 4.1.1.1. Even with these restrictions, there is still a

puzzling paradox observed, known as the Levinthal paradox. Assume

a peptide with 100 residues, where every residue has only two possi-

ble states A and B there would still be 2100 possible conformations the

peptide could take. Furthermore, assume that the time it takes for the

interchange of conformations is in the order of 10−13s. It would take

about 109 years for the peptide to cover the entire conformational

space. However, it has experimentally been shown that proteins are

able to fold in a few micro to milliseconds [72]. Hence it can be con-

cluded that the protein folding is not a random search through con-

formational space for the native conformation, but somehow it must

follow energetically favourable pathways [73].

4.1.4 Experimental Techniques

Computational power needed for modelling such complex systems

only became widely available in the last 20 years. This meant that

experiments had a head start and only recently experiments and com-

putational models are being compared to each other to gain more

insights. Some of the commonly used experimental techniques are

methods, such as X-ray diUraction, nuclear magnetic resonance (NMR),

single molecule pulling, Förster resonance energy transfer (FRET) and

dStorm [74, 75]. For more details on these see the appendix section on

them A. The main challenge faced in experiments is that either it is

possible to look at low resolution ensemble averages or high resolu-

tion static images. Techniques such as single molecule pulling experi-

ments [76, 77] and dStorm microscopy are working towards overcom-

ing these problems.
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4.1.5 Computational Techniques

In order to study protein folding and dynamics computationally, many
diUerent models have been developed. Nowadays with more computa-
tional power available, all atom simulations become much more feasi-
ble. However, even simple lattice models can vastly improve an under-
standing of some of the most fundamental concepts of protein folding.
The following will brieWy comment on commonly used computational
models in order to study these kind of systems stochastically.

4.1.5.1 Lattice Models

Lattice models can be thought of as beads on a chain performing a self
avoiding random walk on a predeVned lattice. The beads represent the
amino acids and the links between them the backbone structure of the
protein. Generally, one can chose diUerent types of ergodic movesets
and diUerent energetic models in order to perform MC simulations on
the lattice [78, 79, 80, 81, 82].

4.1.5.2 OU-lattice Models

A very widely used class of model are atomistic or coarse grained oU
lattice models using continuous molecular dynamics.

Coarse grained models

Coarse grained models have the advantage of not having to simulate
every single atom in the system and thus allowing for much faster
simulations than in the case of atomistic simulations. The chosen de-
gree of coarseness can vary a lot, from where amino acids are repre-
sented by single beads, as was the case of the lattice simulations, or in
less coarse approaches, beads represent chemical groups which have
a certain characteristic [83]. A widely used coarse grained approach is
called Martini, which is a simulation package grouping 3 to 4 atoms
together and thus tries to be as close to atomistic simulations as possi-
ble, but at the same time allowing an integration timestep that is a 10
fold larger than that of atomistic simulations [84]. This is a very useful
approach for very large systems, such as protein and membranes.

Atomistic models

For atomistic models, there is a number of simulation packages avail-
able, such as GROMACS or NAMD to name a couple [85, 86]. Here,
proteins are presented in an atomistic fashion, solvated in water or a
diUerent solvent. For large systems it is also possible to simulate the
solvent implicitly in order to speed up simulations.

In order to attribute for the interaction energies between diUerent
atoms various force Velds have been developed. A forceVeld is a set



4.2 the lattice protein model 71

of classical potentials for various interactions (bonded, non-bonded,
dihedral. . . etc.). The parametrisation of such forceVelds is non-trivial
and uses results from quantum mechanical calculations on the molec-
ular scale, hard encoded into the classical potentials which are then
veriVed according to experimental data. ForceVeld development is a
very active Veld and new improvements to existing forceVeld parame-
ter are frequently published, as often the desired agreement between
simulations and experimental results is still not ideal. Choosing the
right forceVeld for a simulation can be a diXcult task on its own. Once
the choice has been made, generally the system is evolved in either
an NVT or NPT ensemble with thermostats (e.g Berendsen or Nosé
Hoover [87]) and barostat (e.g. Berendsen [88]).
The main problem in molecular simulations that arises is that the

required timestep is small (order of 2fs), yet interesting molecular
events occur on a millisecond timescale – also known as the timescale
problem. Thus, it is often diXcult to obtain simulations that are long
enough for observing a number of infrequent events, such as the fold-
ing of a peptide structure. Therefore the development of Markov state
models is very important as it allows a much more eXcient estimation
of long time scales of the system without having to simulate them, as
brieWy outlined in chapter 2.
As simulating large systems on a standard workstation is still non-

trivial, mass parallelisation projects have been formed such as fold-
ing@home [89]. Or the development of super computers such as An-

ton in the D.E. Shaw research facility [90].

For the purpose of the investigation presented here, and further jus-

tiVed due to the lack of available computational power, the choice of

model system was that of a lattice protein, as data generation is fast

and abundant and readily done on a normal workstation or small clus-

ter. The following sections will now turn to the discussion of the 2-d

and 3-d lattice model in greater detail and will present the results ob-

tained from these models.

4.2 the lattice protein model

Generally, when studying lattice proteins, the protein is interpreted

as a self avoiding random walk on a lattice, with each vertex being

occupied by an amino acid and each edge connecting the amino acids

in a way the backbone would do in a real protein. The links along the

formed chain are unbreakable, representing the strong peptide bonds.

Amongst the lattice models one can Vnd diUerent variants such as

the Hydrophobic Polar (HP) model by Ken Dill or an even older lat-

tice model, the Gō model [79, 91]. Here variants of the Gō model on a

quadratic and cubic lattice will be considered.

The Gō model, as proposed by Abe and Gō in the early 1980’s, relies

on the predeVnition of a native state, in order to impose a Hamiltonian
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carrying the information of the interaction potential [79]. This follows
from the idea that the native state is an energetically favourable state
and will drive the folding process. The model, by construction, allows
the study of the dynamics and equilibrium properties within the re-
straints of the model but is not concerned with the prediction of the
native state from a given amino acid sequence, which presents a wide
research area on its own [92]. However, it is striking how well such
simpliVed models can capture real protein behaviour, which will be
discussed in more detail in the following sections.

4.3 equilibrium properties of the 2-d gō model

As an introduction into the world of lattice proteins, we will review a
well studied 2-d lattice example, by presenting some of its thermody-
namic properties. First, the case of a quadratic lattice will be consid-
ered, for which a native state needs to be deVned in order to further
assign interaction energies. The native state deVnition is motivated by
the observation of real life proteins. In comparing with nature, it is of-
ten found that native states are generally very compact structures, so
it seems to be an obvious choice to use a maximally compact random
walker on the lattice. The length of the walker Lp indicates the num-
ber of amino acids along the chain. As the length increases the number
of possible native structures to be used increases drastically [93, 94].
These enumerations are generally achieved via recursive algorithms
and to the author’s knowledge, no exact formula is available to give
the number of possible conVgurations (maximally compact or not) for
a chain of a given length. For simplicity, a chain with Lp = 16 (16mer)
amino acids is considered here. An exemplary choice of a native state
is depicted in Vgure 4.3, which was also used in [95]. Native contacts
are deVned as the set of nearest neighbour contacts in the native state,
observed not along the backbone of the chain, also indicated in Vg-
ure 4.3, by the dashed blue lines. The number of native contacts (Nc)
in Vgure 4.3 is Nc = 9. Any arrangement of this chain is referred to
as the protein’s conVguration.

4.3.1 Hamiltonian

The interaction energies deVned by the Hamiltonian of the Gō model
only considers nearest neighbour interactions, between native con-
tacts. The Hamiltonian can be expressed as:

H =

Lp∑

i<j

Bij∆ij , (4.1)

where ∆ij is a nearest neighbour contact map of the protein conVg-
uration and Bij holds the information of the native contacts between
residue i and j. The strength of the interaction potentials can be cho-



4.3 equilibrium properties of the 2-d gō model 73

Figure 4.3: Native conVguration of a 16mer. Black links represent the back-
bone, red circles the amino acids and the dashed blue lines repre-
sent the Nc = 9 native contacts.

sen arbitrarily, but will initially be set to −1 in arbitrary units. With
the knowledge of the Hamiltonian, the partition function and equilib-
rium properties associated with it can be evaluated, as discussed in
chapter 2. So, for example, the probability of being in the native state
is known, if the enumeration of all conVgurations is possible:

P(Eg) =
exp (−βEg)

Z
. (4.2)

P(Eg) is the probability being native, i.e. being in a ground state en-
ergy and Z as usual the partition function, consisting of the sum of all
possible conVgurations. In the regime of short chain lengths Lp < 28
on a square lattice, exact enumerations of all conformations is achiev-
able on a standard work station. From this enumeration the exact par-
tition function of the system can be deduced, and thus all thermody-
namic properties can be calculated exactly. This is, for example, the
probability of being in the native state at a given temperature, as given
by equation (4.2). This has been studied by Lee and Chan [96, 91, 97]
amongst others. For larger systems or the dynamic behaviour of these
systems however, simulations will be necessary. In order to setup these
simulations, it is important to deVne a moveset and deVne an accep-
tance function, such as the Metropolis criterion, for the proposed MC

moves. With the simulations properties such as mean or median fold-
ing times at diUerent temperatures can then be studied.

4.3.2 MC Simulations

Before being able to run a standard MC simulation much in the same
way as presented in chapter 3, an equivalent of the single spin Wip
move needs to be established. Such a move set was previously used
in lattice model studies by Shaknovich [98] and also others. It consists
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Listing 4.1: Pseudocode: MC algorithm for lattice protein simulation

Step1: Compute the instantaneous energy of the system

according to the hamiltonian

Step2: Choose with 0.8 probability to do a single bead move

and 0.2 probability to do a double bead move

Step3a: If single bead move: Choose a random bead and random

move direction.

Step3b: if the move is allowed (i.e., chain doesn’t break or

two beads occupy same lattice site), accept move

according to the Metropolis criterion

Step4a: If double bead move: Chose a random neighbour and a

move direction (up down).

Step4b: If the move is allowed (i.e. the chosen beads are in

a correct crank shaft position), accept move according

to the Metropolis criterion.

Step 5: Repeat 1-4 until the loop criterion is fulfilled.
�

of single residue and double residue moves which are depicted in Vg-
ure 4.4. Most importantly it fulVls detailed balance.

(a)

(b)

double bead 

move

single bead 

move

Figure 4.4: (a) (left) End Wip of 90◦ (right) corner Wip. (b) The double residue
move is a crank-shaft move, where two residues are Wipped by
180◦.

The algorithmic setup closely follows [95] and as such aims to repro-
duce some of the results presented in [95], in order to get an idea about
properties of interest as well as validating the algorithmic aspects of
the work. The MC algorithm using the proposed moveset will follow
the steps displayed in the listing 4.1. The used acceptance criterion is
again chosen to be the Metropolis acceptance criterion i.e equation 3.3
in chapter 3. Ratios for attempted single and double bead Wips were ini-
tially varied but, best results were achieved with a ratio of 20% to 80%.
Generally, time units (such as a MC lattice sweep) are scaled according
to the amino acid chain length Lp, in order to have comparable num-
bers between chains of diUerent lengths.
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Next a set of observables need to be deVned, such as: the average en-
ergy 〈E〉 with respect to temperature T , average number of nativeness,
which is just the fraction of native contacts q = nc

Nc
formed at a given

point in time (nc "current number of native contacts" andNc "the total
number of possible native contacts") with respect to temperature, i.e.
q(T). This observable can than be averaged over a whole simulation
〈q(T)〉 = 1

tobs

∑tobs
t ′=0 q(t

′). Dynamic types of observables might be
the mean Vrst passage time (MFPT) to the native state [95], or contact
appearance order (CAO) [82]. In the following some example simula-
tions were carried out to illustrate how these observables within this
model mimic some of the real world protein behaviour. These results
follow some of those presented in [95] and were used to validate the
Monte Carlo algorithm.

4.3.3 Equilibrium Simulation Results

As an example, the 16mer, with the depicted native state of Vgure 4.3 is
simulated using the MC dynamics described in the listing 4.1 with the
Gō model Hamiltonian of equation (4.3). First of all, the equilibrium
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Figure 4.5: (a) Depicts the average nativeness as a function of temperature
〈q(T)〉. Errors are omitted for clarity. (b) Illustrates the results of
a MFPT and median Vrst passage time simulation with respect to
temperature. Results are obtained from 10000 independent simu-
lation runs at each temperature. Standard errors are within the
size of the symbols.

observable of nativeness with respect to temperature 〈q(T)〉 is consid-
ered. Figure 4.5(a) shows a sigmoidal curve of having a temperature
regime for which the polymer is mainly native and a regime where it
is mainly unfolded. Sometimes this behaviour is said to be Vrst-order
like. The observed behaviour compares well to real life proteins which
denature as their surrounding temperature is increased. Secondly, Vg-
ure 4.5(b) shows the MFPT and median Vrst passage time required for
the native state to be reached as a function of temperature. Averages
were taken over 10000 independent realisations. The size of the data
points is representative of the size of the standard error, i.e. the stan-
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dard deviation from the mean, divided by square root of the number
of realisations:

ǫstd =
σMFPT√
n

.

All the results presented are in reduced units for kB = 1 and interac-
tion energies set to −1 in arbitrary units.
From Vgure 4.5 an optimal folding temperature can be extracted for

which the Vrst passage time is the shortest. Secondly the folding tem-

perature Tfold can be deVned as the temperature where half of the
native contacts are formed on average, i.e. 〈q(Tfold)〉 = 0.5. These are
both observables which will be of interest in later parts of this chapter.

4.4 the 3-d lattice model

Next, a further dimension is added, moving to a lattice protein living
on a cubic lattice. The main results of this chapter will be presented for
the 3-dmodel. These will include some previously known equilibrium
results as well as a novel investigation into the dynamics. This is done
by employing the formalism as introduced in chapter 2.

4.4.1 Hamiltonian and Native State DeVnition

The native state of the system is again deVned by a possible maxi-
mally compact structure of a self avoiding random walker. For the
shortest lattice protein, an 8mer structure, one of the three possible
native states and the corresponding native contacts are depicted in Vg-
ure 4.6(a) and (b) respectively.

(a) native state (b) native bonds (cyan) (c) heterogeneous chain

Figure 4.6: (a) The maximally compact state of an 8mer chain with beads as
amino acids is depicted. (b) Native bonds are indicated in cyan and
in (c) a heterogeneous sequence as in the HeGō and Full case are
illustrated.

As before, it is possible to deVne a Hamiltonian. Now not only the
Hamiltonian of the Gō model will be considered, but also two diUerent
variants of it. For an easy distinction of the three variants the follow-
ing nomenclature is introduced: The homogeneous Gō (Gō ) represents
the original case, where only native contacts are considered, associated
with a uniform interaction energy between them. This could be also
considered as an amino acid sequence consisting of a single monomer.
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Secondly, a variant of the Gō potential with heterogeneous interac-
tion energies, here referred to as the HeGō case, is considered. In this
case again, only native contact interactions are used, but the underly-
ing amino acid sequence is heterogeneous, i.e. a sequence consisting
of a combination of the 20 natural amino acids. A pictorial example
would be Vgure 4.6(c), where each amino acid is represented by a dif-
ferently coloured bead. Lastly, a full interaction potential with native
and non-native nearest neighbour interactions is considered based on
the amino acid sequence of choice. This model will be referred to as
the Full model.

Mathematically the Hamiltonian takes the form:

H =

Lp−1∑

i=1

Lp∑

j>i

U(rij) +

Lp−3∑

i=1

Lp∑

j=i+3

NijBij∆(rij − a) , (4.3)

where rij = |ri − rj| is the distance between two amino acid residues.
The potential U(r) restricts the walker to be self avoiding, as it takes
a value of ∞ for r = 0 and 0 for any value of r > 0. In the second
term Bij, is an energy interaction matrix as before in the 2-d case but
is now determined by the sequence of the chain. The lattice spacing is
given by a, as previously. Interaction values for diUerent amino acids
are drawn from the model of Miyazawa and Jernigan, which uses ex-
perimental values of protein interaction energies [99]. This provides
a table of all amino acid interaction energies between each other and
can be thought of as non-covalent bond interactions. These range from
positive interaction energies to values of ǫ = −1.06ǫ0 for interactions
between cystein residues. This interaction energy scale also sets the
reduced units for all following simulations. Thus, the temperature for
this model is always given in the reduced scale of T = ǫ0

kB
.

The available permutations and thus the choice of native states and
amino acid sequences rapidly becomes very large as the chain length
increases. For simplicity, here mainly one particular native state of a
48mer will be the model of choice, with its 57 native contacts. This
was partly motivated by previous studies, where this structure was
used [82], such that a comparative analysis would be possible but also
aided in the model veriVcation. With the help of PyMOL, the native
state structure can be depicted as seen in Vgure 4.7(a). Figure 4.7(b)
shows an exemplary amino acid sequence in single letter code. This
also presents the seuence used for most the results presented in this
chapter. The appendix B.1 contains an explanation for the single letter
code.

4.4.2 Equilibrium Simulation Results

Initially, some equilibrium properties and the MFPT behaviour are in-
vestigated. This was done in a similar manner as presented by Sha-
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Figure 4.7: (a) Chosen native structure. Colour code aids the eye in following
the chain from one end to the other. (b) Representative amino acid
sequence in one letter code.

knovich and co-workers [80]. The motivation for this investigation in
our case, is to scan the equilibrium parameter space to set the ground
work for more complex investigations. The Wexibility of the Hamil-
tonians allows a detailed investigation of the equilibrium and folding
behaviour of the lattice protein and in particular considering the eUect
of non-native interactions have on the dynamics. The simulations are
conducted in the same way as the 2-dmodel, discussed in section 4.3.2.
The only diUerence is that the crank-shaft move now results in a 90◦

orientation change.

Once the native state is chosen, next the interaction potential needs
to be established. Thus, for any non-Gō simulation, an amino acid se-
quence is deVned. For most of the following work the sequence is cho-
sen to be the one of Vgure 4.7(b) unless otherwise stated. This choice
is supported by the fact that the sequence is a fast folder in the Full
and HeGō potential. The sequence was generated using an evolution-
ary algorithm in order to optimise folding eXciency for the particular
native structure given. For more details on evolutionary sequence gen-
eration see [82].
For the simple Gō model the choice of sequence is also adjusted to the
amino acid interaction energy scale and chosen to be all Valin amino
acids, where a Valin-Valin interaction in the reduced energy scale is:
−0.29ǫ0.
Initial conVgurations for the simulation setup are drawn from a high

temperature ensemble and equilibrated at the simulation temperature
for 1× 105 simulation steps.
Initially, the temperature dependence on 〈q(T)〉 is evaluated in or-
der to obtain a value for Tfold, from a series of independent temper-
ature simulations. This was done for a temperature range of T =

[0.1, . . . , 0.3] for the Gō potential, the HeGō potential and the Full po-
tential.
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Generally, from these models a Vrst-order like sigmoidal curve for the
dependence of nativeness with respect to the temperature is expected.
This behaviour is clearly observed in Vgure 4.8(a). Results are drawn
from 1000 independent simulation runs at each temperature. The sim-
ulation length, or observational time tobs = 1× 107 for the Gō model
and the Full model and tobs = 5× 106 MC steps for the HeGō model.
The HeGo (red) and Full (blue), which have the same amino acid se-
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Figure 4.8: (a) Fraction 〈q(T)〉 of native contacts made with respect to the
temperature for all three models (Gō black, HeGō red, Full blue)
over 1000 independent realisations. Tfold is indicated in all cases,
error bars shown are the standard deviation from the simulation
and omitted in the case of the Full model for clarity. (b) Mean Vrst
passage time to the native state on a log scale for all interaction
model with the same colour code as in (a). Error bars represent
1-σ conVdence intervals from 1000 realisations. Error bars for the
Gō model are omitted for clarity.

quence exhibit very similar behaviour, whereas the Gō structure is
shifted, probably accounted for by the lower ground state interaction
energy of Eg(Gō) ∼ −16ǫ0 as opposed to the ground state interaction
for the heterogeneous sequence of Eg(HeGō) ∼ −14ǫ0. Furthermore,
it becomes apparent that Tfold is higher for the Gō structure.

Next the MFPT will be investigated. Results of this investigation are
shown in Vgure 4.8(b). Again all three variants of the model were con-
sidered. The HeGō model performs much better at folding to the de-
sired compact structure, as a more speciVc folding pathway can be
selected aided by the heterogeneity of the sequence. Also in the case
of the Full interaction potential the folded state is eXciently reached
and thus non-native contacts do not prevent the model from folding
in this case. The slowest folder, with the longest MFPT is the Gō model
despite its favourable potential. This can be seen in the log plot of the
MFPT with respect to temperature in Vgure 4.8(b).
These two observables (q and MFPT) all give information about the

average behaviour of all variants of the Gō model. When varying chain
lengths and sequences, it can be shown that most of them will behave
in a similar way (provided they are able to fold at all.) It is generally be-
lieved, that a nucleus will need to form in order for the folding process
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to be a downhill event. The classiVcation and formation of these nuclei
has been done by Shaknovich and co-workers [94]. Furthermore, for
speciVc sequences very distinctive folding pathways can be extracted,
whereas for the Gō structure this is not the case. This was further es-
tablished recently, by introducing an observable looking at the contact
appearance order (CAO) in the folding process [82]. The CAO is deVned
in a way that once a contact is formed and stays formed until the na-
tive state is found, is a permanent contact and thus appears in the CAO.

4.5 the lattice protein model in the s-ensemble

The next part of this chapter will be concerned with applying the s-
ensemble formalism formally deVned in chapter 2 and applied to the
Ising model in chapter 3, to the lattice protein dynamics in order to
probe the behaviour of the trajectory space of these models further.

4.5.1 MC Simulations Setup

As discussed in 4.3.2, MC simulations were carried out for the lattice
protein model. With respect to these simulations an s-ensemble bias
can also be used with these simulations, much in the same way of the
adapted TPS approach, as presented in chapter 3.
For this purpose, a set of dynamic observables needs to be deVned.
There are two obvious variables that come to mind, both scaled in sys-
tem size and observational time. The Vrst one is the general activity
of the system (gActivity) κg = K

Ntobs
, which just represents any ac-

cepted MC move of the chain resulting in a conformational change of
the chain. The activity K is the number of accepted MC moves. The
second one is a more restrictive one, looking at the native activity of
the system (nActivity) κ = Kn

Ntobs
, which represents the incremental

number of broken or formed native contacts (Kn) during the observed
trajectory. The latter observable will be the observable of choice in this
thesis, as the primary interest is to look at the inWuence of the native
contacts with respect to the dynamics. It should be noted that notation
is the same as the activity of chapter 3. The generation of s-ensemble
biased trajectories follows the same ideas as presented in chapter 3.
The schematic that illustrates the TPS scheduled used for biasing (Vg-
ure 3.6), is still valid, but now instead at each timestep saving a lattice
spin conVgurations, the 3-d lattice protein conVguration is saved, gen-
erating time dependent trajectories in this way. Along the trajectory,
shooting points are chosen at random and from these, the new tra-
jectory is evolved according to the MC dynamics. A new trajectory is
accepted based on the s-ensemble acceptance criterion:

Paccpt = min(1 , exp(−s∆K)) , (4.4)

where K represents the unnormalised activity measure of choice. The
choice of the observation time is a bit more limited than in the Ising
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model. The idea is to generally use observation times which are longer
than the mean Vrst passage time to the native state of the system,
which is assumed to be the slowest time scale of the system. This mean
that already initial observation times are long and Vnite time scaling
becomes non-trivial, as the TPS algorithm will be more likely to reject
newly proposed trajectory, purely due to the length of newly gener-
ated trajectory parts. Due to this, we will mainly use observation times
between 1 × 106 and 1 × 107 MC steps, as these observation times
are of the order of the mean Vrst passage time or longer. None the less,
with these ideas, it is hoped to uncover the rare dynamic Wuctuations
of the system.

4.5.2 Gō Results

First the homogeneous Gō chain will be discussed. The dynamic be-
haviour is very straight forward which is not at all surprising, as the
Hamiltonian contains no heterogeneity.

4.5.2.1 Gō: Dynamic Behaviour in the Equilibrium Ensemble

The average native activity 〈κ〉0 (the 0 subscript means we are con-
sidering the system at equilibrium, i.e s = 0) with respect to temper-
ature will be considered Vrst in order to have an idea about the scale
of the of activities accessible at equilibrium. Figure 4.9(a) shows the
average native activity of the system with respect to temperature. A
fairly sharp sigmoidal increase is observed, for observation times of
the order of the MFPT of the system. In fact, by looking at diUerent ob-
servation times it was observed that altering the overall observation
time of the system, the qualitative behaviour of Vgure 4.9(a) did not
change. The Tfold temperatures corresponds to the sharp changeover
in activity. Looking at the probability distribution of observed native
activity κ, two clear peaks are observed for diUerent native activities,
as seen in Vgure 4.9(b).
This suggests a Vrst-order like transition between two activity re-

gions. In this simpliVed potential the low and high activity regions cor-
respond to trajectories mainly containing native or near native states.
In this case the dynamics gets restricted by the energetically favourable
compactness of the system. The more active regions correspond to
trajectories with mainly unfolded conVgurations. This can also be il-
lustrated with a plot of κ with respect to the integrated nativeness
integrated, for each trajectory, as seen in Vgure 4.10. The integrated
nativeness is thus given by:

Q =
1

tobs
Nc

tobs∑

t ′=0

q(t ′) . (4.5)

The observed dependence of Q and κ is linear. A linear Vt of the
data suggests that the system will always retain a base activity of
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κ ≈ 0.0054, the case where all native contacts are formed at the given
temperature T = 0.225. This base activity will be lower for lower
temperatures. It should be noted that if the observational time is sig-
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Figure 4.10: Scatter plot of κ with respect to Q for a subsample of 5000 of
the 20000 trajectories. The linear Vt in red suggests a minimal
activity of κ ≈ 0.0054

niVcantly increased, the bimodal behaviour of the system is lost, thus
conVrming the notion of a Vnite system in which no phase transition
can be observed.
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4.5.2.2 Gō model: s-ensemble Biasing

Up to this point the dynamic observable κ was only considered in the

equilibrium ensemble, where s = 0. Now the idea is to bias the sys-

tem in such a way that even at temperatures below the folding tem-

perature and above the folding temperature, the dynamic phases be-

tween high and low activity can be accessed. Taking Tfold ≈ 0.225,

then in each case two temperatures below (T = 0.18 and = 0.19) and

above that folding temperature (T = 0.25 and T = 0.26) were chosen

for the s-ensemble biasing. Averages were taken over 2× 104 realisa-
tions which was relatively easily achievable on computer cluster and

resulted in suXcient data for the error analysis.

In case of the Ising model, a critical value of s was known for any

temperature due to the analytical result available for the system as

discussed in chapter 3. Here the space of s is initially scanned blindly

in order to obtain an estimate for a critical value. Figure 4.11 shows

the results of the analysis from the activity behaviour 〈κ〉s (now the

subscript s indicates that we are taking averages over activity values

with a biasing value of s) with respect to the biasing parameter s. For
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Figure 4.11: (a) Shows the results of 〈κ〉s with respect to s for T = 0.18
and T = 0.19 at two diUerent tobs. Standard errors are within

the data points as averages were taken over 2× 104 realisations
(b) Results are shown for the two high temperatures T = 0.25
andT = 0.26 and diUerent tobs. Standard errors are within the

data points as averages were taken over 2× 104 realisations. The
unbiased value of s is indicated by a grey vertical line in (a) and

(b).

both the low temperature (Vgure 4.11(a)) and high temperature (Vg-

ure 4.11(b)) case with a negative and positive s value respectively, the

high or low activity trajectories can both be reached (i.e. mainly native

and mainly unfolded trajectories, non-typical for the observed temper-

atures).

As was done in the Ising model, a Vnite time scaling approach was

used. For this purpose the investigation was carried out with diUer-

ent observation times, which are: tobs = 5× 106 and tobs = 1× 107.
Trajectories with even longer observational times became numerically

challenging due to a high number of rejections of proposed trajecto-

ries, thus making the simulations very slow even with the adapted TPS
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method. However, in Vgure 4.11(a) and (b) it can be seen, that the dy-
namic crossover at s = 0 can be shifted with the application of the
external biasing Veld s to lower and higher temperatures and scaling
is observed to the extent, that the critical value of sc decreases as the
observational time is increased. It should be remembered that here the
chain length is a further limiting factor, as no periodic boundary con-
ditions in the spatial dimension can be applied.

4.5.2.3 Gō Model: Phase Diagram

The analysis from the results in the previous section leads to an ide-
alised phase diagram in the context of this lattice model, where a Vrst-
order like dynamic phase transitions can be assigned to a set of critical
biasing parameters s with respect to temperature. The critical values
for s are extrapolated from Vgure 4.11. From this, a phase diagram in
parameter space {T , s} can be constructed as seen in Vgure 4.12.
It becomes clear, that there is a static as well as dynamical separa-

Tfold

s

T

non-native ‘active’ 

trajectories

native ‘inactive’ 

trajectories

extension of the 

thermodynamic 

corssover

-3.6x10-4 1.6x10-4

Figure 4.12: Schematic of the phase diagram of the Gō model. Active and in-
active phases are indicated and separated by the Vrst-order like
dynamic crossover (grey dashed line). The green points are val-
ues taken form Vgure 4.11, where the exact location of the critical
value is much harder to determine than in the Ising model.

tion between the folded and unfolded state of this system, which can
be described by a Vrst-order like transition between these states. The
active phase, with many native contacts being broken and formed, al-
ways corresponds to trajectories which on average are more unfolded
than folded. The less active phase however, consists of trajectories on
average found to be in the native state. The artiVcial biasing with the
conjugate Veld s can bring this interplay between folded and unfolded
trajectories back into balance even at lower and higher temperatures
than those, where the transition is observed in equilibrium.

The same behaviour as observed for the 48mer can also be observed
for diUerent chain lengths and diUerent compact native structures. The
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same investigation was carried out for a 27mer and diUerent target na-
tive structures. In all cases there was a clear dependence on native ac-
tivity κ with the number of native contacts present on average along
the trajectory. Therefore Gō models in general can be associated with
a Vrst-order like dynamic phase transition, associated to native and
non-native trajectories.
Lastly, one might consider also using the general activity as an observ-
able for biasing. Again a clear dependence on the average nativeness
and activity for a given trajectory is found leading to a very similar
overall dynamic behaviour. Despite the general activity indicating the
system to be more active than when considering native activity, the
overall qualitative observation of the dynamic phase behaviour is the
same. A discussion of the thorough analysis of these was omitted for
brevity.

4.5.3 HeGō and Full Interaction Potential Results

Having discussed the dynamic biasing of the Gō model, the next step
is to look at the dynamic dependence of the HeGō and Full interaction
potentials.

4.5.3.1 HeGō and Full Model: Dynamic Observable in the Equilibrium

Ensemble

As was done for the case of the Gō potential, the average native activ-
ity is considered as a function of temperature. Figure 4.13(a) shows this
behaviour for both the HeGō model (red line) and the Full model (blue
line). Already in the dynamics at equilibrium a sigmoidal behaviour
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Figure 4.13: (a) Shows 〈κ〉0 for the HeGō (red) and Full (blue) model with
respect to the simulation temperature from averages of 2× 104
realisations. Standard errors are within the size of the data point
symbols. (b) Displays the probability distribution of the native
activity κ at the folding temperature of around T ∼ 0.19 on a log-
scale. All data is obtained from simulation trajectories of length
tobs = 2× 106, near the mean Vrst passage time for both poten-
tials.

is observed. From the log plot of the probability distribution of the
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native activity at Tfold a long tail of low activity is found, hinting at
a low activity dynamic behaviour becoming more accessible through
s-ensemble biasing. This is depicted in Vgure 4.13(b).

4.5.3.2 HeGō Model: s-ensemble Biasing for 3 Temperatures

First the HeGō potential will be considered. In this case, the dynamic
behaviour is more interesting in comparison to the Gō model, yet still
conclusive. The HeGō simulations of Vgure 4.14 constitute the main
result of this investigation. First we will discuss results for the obser-
vation temperature T = 0.19, which is close to the Tfold temperature.
The main result is the observation of a transition from an active set
of trajectories to a less active, or low activity set of trajectories, as the
biasing factor s is increased. A coexistence region for this behaviour
can be found in the TPS trajectories, where both dynamic states are
roughly equally populated, which corresponds to the critical value of
sc.
From such a coexistence region a histogram of the native activity

can be evaluated. This was done from 40000 critical trajectories each
of observation length tobs = 5× 106. Coexistence is assured by calcu-
lating the area under the histogram, making sure that the histogram of
sc has the same number of highly active trajectories as low activity tra-
jectories. With reweighting of the histogram, the dependence of 〈κ〉s
and s can be extracted. For this purpose methods such as weighted
histogram analysis method (WHAM) can be used [100]. In this way,
only good sampling around the critical value sc is required. From the
reweighting of the histograms, the dependence on activity and s can
be extracted. This is particularly advantageous for large values of s,
where simulations become tricky, as newly proposed trajectories be-
come rare even in the TPS simulation scheme. The reweighting scheme
is employed here, as opposed to direct sampling for many diUerent
values of s. The reason for this choice is that the protein trajectories
are signiVcantly more costly than those of the Ising model, thus re-
ducing the overall required amount of simulations for this model. The
reweighting scheme had also been employed in previous s-ensemble
studies [4, 5].

All results displayed in Vgure 4.14, use the histogram reweighting
method in order to extract the activity behaviour in terms of the bias-
ing variable. Let us look at the Tfold results Vrst found in Vgure 4.14(d)-
(f). The reweighting of histograms was applied to trajectories at three
diUerent observational times tobs = 1× 106 (black), tobs = 5× 106
(red) and tobs = 1× 107 (blue). From the Vnite time scaling using the
observation time as the scaling parameter, from Vgure 4.14(d) and (e)
it becomes clear, that a Vrst-order like dynamic transition in trajectory
space is observed. As tobs increases, the critical value of sc decreases
as seen by the moving peaks and increased sharpness of the suscep-
tibility (χκ) of the activity κ in Vgure 4.14(e). Here κ serves again as
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Figure 4.14: (a)-(c) Simulations for T = 0.18 < Tfold, with (a) showing the
dependence of 〈κ〉s on s, (b) the susceptibility χκ with respect
to s and (c) a density plot of the joint distribution of κ and in-
tegrated nativeness Q from a subsample of 5000 representative
trajectories at a critical value of sc ≈ 0.0001.
(d)-(f) Simulations for T = 0.19 ≈ Tfold, with (d) showing the
dependence of 〈κ〉s on s, (e) the susceptibility χκ with respect
to s and (f) a density plot of the joint distribution of κ and in-
tegrated nativeness Q from a subsample of 5000 representative
trajectories at a critical value of sc ≈ 0.00005.
(g)-(i) Simulations for T = 0.2 > Tfold, with (g) showing the de-
pendence of 〈κ〉s on s, (h) the susceptibility χκ with respect to s
and (i) a density plot of the joint distribution of κ and integrated
nativeness Q from a subsample of 5000 representative trajecto-
ries at a critical value of sc ≈ 0.0002.
The Colour-code according to the observation time is indicated
by the legend.

the order parameter. This is very similar to what has been observed
in the Gō model, provided that the ’less active’ state corresponds to
mainly native trajectories and the ’active’ state corresponds to mainly
non-native trajectories. For this a density plot of the native activity
with respect to the integrated nativeness is provided in Vgure 4.14(f).
Instead of observing a one to one correspondence between the aver-
age number of native contacts formed with respect to the activity (as
for the Gō model), diUerent activities can be observed for the same
number of integrated native contacts, thus hinting at a trapping state.
This behaviour will be looked at in more detail in a subsequent section,
but Vrst we want to comment on the behaviour observed for diUerent
temperatures as shown in Vgure 4.14(a)-(c) for T = 0.180 and in Vg-
ure 4.14(g)-(i) for T = 0.2. For both temperatures a transition with
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increasing sharpness as the observation time is increased is observed,
further conVrming the notion of a Vrst-order transition in dynamic
trajectory space. This is illustrated by Vgure 4.14(a) and (b) for the
lower temperature and Vgure 4.14(g) and (h) for the higher tempera-
ture, again reweighting the histograms of trajectories with critical s.
Furthermore, the dependence of the density distributions of the joint
space of κ and Q is interesting as in all three cases the low activity
state corresponds to trajectories displaying an average nativeness of
Q > 40, yet by no means close to the expected number of native con-
tacts where Q ≈ Nc = 57. This is shown in Vgure 4.14(c), (f) and
(i). Therefore, the obvious next step is to look at the nature of the ob-
served dynamic phases with respect to their integrated nativeness Q
in more detail.

4.5.3.3 HeGō Model: Classifying the Observed Dynamic Phases Accord-

ing to Nativeness

Looking at Vgure 4.14(f) in more detail, we show the joint density dis-
tribution at s = 0 and s ≈ sc in Vgure 4.15(a). It can be observed
that for s = 0 a linear cigar like dependence of Q and κ is observed,
whereas for s ≈ sc this is lost.
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Figure 4.15: (a) Joint density distribution of κ and Q for s = 0 in black and
s ≈ sc in red. Distribution from a subsample of 5000 trajectories.
(b) Shows the Vrst passage time to the native state distribution for
initial conVguration drawn from the biased ensemble κ < 0.003
and κ > 0.002 and Q > 40, quenched to s = 0 (indicated by
the blue rectangle). (c) Shows the Vrst passage time distribution
for initial conVgurations drawn from trajectories fulVlling condi-
tions of κ < 0.002 and Q > 40 (indicated by the blue rectangle).
(d) Native state and (e) representative trapped conVguration. The
colour code is again used for easy guidance along the chain.

Evidently, there is a highly populated non-native state in this dy-
namic ensemble, which will also have a contribution to the equilibrium



4.5 the lattice protein model in the s-ensemble 89

properties of the system. This arises solely from the introduction of a
heterogeneous sequence and does not involve any non-native contact
energies.
The next step will be to classify this set of conVgurations further,
which was done by looking at the Vrst passage time distribution to the
folded state of representative conformations taken from trajectories
found in the ’active’ and ’less active’ dynamic states respectively. The
results from these are seen in Vgure 4.15(b) and (c). For this purpose
conVgurations were chosen at random from a trajectory that would
fulVl the respective constraints (κ < 0.003 and κ > 0.002 andQ > 40
for Vgure 4.15(b) and κ < 0.002 and Q > 40 for Vgure 4.15(c)). From
the chosen conVgurations dynamics are run at s = 0 until the folded
state was reached, for 50 representative structures with each 100 fold-
ing trajectories from which Vgure 4.15(b) and Vgure 4.15(c) were con-
structed. The respective dotted dashed lines in blue indicate the mean
of each of the distributions. Further it should be noted, that conVgu-
rations drawn from high activity trajectories follow a power law Vrst
passage time distribution, whereas those drawn from low activity con-
Vgurations follow an exponential Vrst passage time distribution. A rep-
resentative initial conVguration from the low activity trajectories is
shown in Vgure 4.15(e).

In order to investigate this behaviour and classify a potential trap-
ping state further, a root mean square distance (RMSD) analysis of a
subset of representative trajectories was carried out. For this purpose,
100 trajectories from each of the two dynamic phases were chosen at
random. To be precise, from simulations at T = 0.19 and s = 0.00012
and tobs = 5× 106, trajectories for which κ > 0.02 and Q > 40 were
used for highly native and more active trajectories and κ < 0.02 and
Q > 40 for highly native and less active trajectories. Snapshots at in-
tervals of 5000 MC steps were taken and written out to trajectory Vles.
The RMSD for each of the trajectories was then computed by means of
a least square Vt of each structure along the trajectory in comparison
to the native state. Thus large RMSD values mean dissimilar structures
from the native state and an RMSD = 0 is that of the native struc-
ture. The analysis was done using the Gromacs tool g_rms [85]. The
tool g_rmsf computes the root mean square (RMS) Wuctuations for each
residue and returns its Wuctuations along the trajectory.

The results from the s-ensemble biased RMSD analysis are seen in
Vgure 4.16. Here the probability of the RMSD from the 100 representa-
tive trajectories is shown in Vgure 4.16(a). The low activity trajectories
(black) are highly peaked around an RMSD = 1 lattice unit and have
practically no probability of being native. The higher activity trajec-
tories have a sharp peak at the native state and the rest of the RMSD

distribution is much broader (red). This shows that in higher activity
trajectories, the native state itself is responsible for the high nativeness
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Figure 4.16: All data are from s-ensemble simulations at s = 0.00012, with
snapshots taken every 5000MC steps. (a) Shows the RMSD distribu-
tion from 50 independent trajectories, where high activity means
that κ > 0.02 (red) and low activity κ < 0.02 (black). (c) Shows
a representative trajectory from the distribution of the RMSD over
the trajectory. (b) Shows the RMS Wuctuations of each residue in
the 48mer for both activity phases, errorbars correspond to one
standard deviation. The corresponding single trajectory represen-
tation is found in (d).

along the entire trajectory, whereas the lower activity trajectories are
trapped in a state, in misfolded conVgurations, which are close to be-
ing native, i.e. similar to the one seen in 4.15(e).
The average RMS Wuctuations over these trajectories are shown in

Vgure 4.16(b) for each amino acid (residue ID). As expected, the ends
of the chain on average move more, but also as expected the more ac-
tive trajectories (red) have on average a higher Wuctuation per residue
ID. The errorbars indicated are the standard deviations from the cal-
culated averages of the 100 trajectories. In Vgure 4.16(c) a single tra-
jectory with its 1000 frames for both a high activity and low activity
trajectory are shown. As expected, the RMSD Wuctuates more in the ac-
tive trajectory, which is also conVrmed by a single realisation of the
RMS Wuctuations in 4.16(d). This clearly supports the concept of a trap-
ping state dominating inactive trajectories.

The next question is, to what extend such trapping states in the
inactive trajectory inWuence non-biased equilibrium dynamics of the
system. This was already addressed in Vgure 4.15, where it was shown
that MFPT from inactive states are by an order of magnitude slower,
than from the active counter parts with the same integrated native-
ness of Q ∼ 40.
To investigate the folding behaviour a bit further, the same RMSD anal-
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ysis as carried out for the biased trajectories is also applied to folding
trajectories. For this purpose, conVgurations along the biased trajecto-
ries are chosen at random as the initial starting position for the folding
simulation. The following conditions were used: The chosen conVgu-
ration must have a nativeness of Q > 40 for both activity phases
and the activity must be below κ < 0.02 for the low activity trajec-
tory, from which the conVguration is picked. For both phases 50 initial
conVgurations are chosen at random, from which equilibrium folding
simulations are carried out. The folding trajectories are then analysed
according to their RMSD, the results for this can be found in Vgure 4.17.

The distribution of RMSDs along the 50 folding trajectories for both
phases is shown in Vgure 4.17(a) with a logarithmic scale on the y-
axis. Folding trajectories started from conVgurations along low activ-
ity trajectories, exhibit a double peak behaviour in the RMSD, where
one peak corresponds to an RMSD = 1 and the second broader
peak to an RMSD = 3 lattice units. This suggests that at Vrst tra-
jectories continue to be trapped, then unfold until they Vnally refold.
This picture is supported by the RMSD of a single folding trajectory
as seen in Vgure 4.17(c). On the other hand, starting conVgurations
taken from active trajectories, the RMSD is only peaked at a value of
RMSD = 1 lattice units (red).
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Figure 4.17: Folding trajectories from representative starting structure for
s = 0 from both phases(κ > 0.02 and κ < 0.02). (a) Shows
the distribution of RMSD from 50 folding trajectories with initial
structures Q > 40, for low activity structures (black) and high
activity structures (red). Representative folding trajectories for
both starting structures are shown in (c). (b) Shows the average
RMS Wuctuations for each contact, with error bars representing
the standard deviation. For both activity phases representative
trajectories are shown in (d).
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From Vgure 4.17(c) faster folding from high activity conVgurations
can be observed. The folding event occurs in a much smaller number
of frames, than for the low activity conVgurations. Here frames are
snapshots of the protein conVguration written out at a given interval
along the folding trajectory. Frames for the low activity conVgurations
were written out every 100 MC steps, whereas for the high activity
conVguration frames were written out every 50 MC steps supporting
the fast folding behaviour from active conVgurations.
Also the Wuctuations per residue were looked at along the folding

trajectories. The average from 50 trajectories is seen in Vgure 4.17(b)
with the error bars indicating standard deviations from the average.
In Vgure 4.17(d), the RMS Wuctuations for representative trajectories
are shown. This clearly indicates that the Wuctuation in the folding
trajectories started from trapping conVgurations, are much larger than
those started from ’on folding pathway’ conVgurations.

4.5.3.4 HeGō Model: General Activity κg

One might now argue that this is not surprising as an intrinsic bias
was introduced with the native activity as the observable, which is bi-
ased according to s. In the following, it can be shown that using the
general activity as the dynamic observable to which s is the conjugate
biasing Veld, the same inactive non-native state is found, as it just rep-
resents a trapping state for this type of lattice protein, with the given
sequence. To investigate this, similar simulations were carried out as
found in section 4.5.3.2. The temperature is again set to T = 0.19 and
the activity measure now consists of all MC moves carried out. Results
from this simulation can be found in Vgure 4.18.
Figure 4.18(a) displays the behaviour of κg with respect to s, from
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Figure 4.18: The behaviour of the general activity with respect to s is shown.
(a) 〈κg〉 with respect to s (b) Wuctuations in the activity with
respect to s. A critical s can be established for both depicted ob-
servational times tobs = 5× 106 and tobs = 1× 107. A density
of κg with respect to the integrated nativeness is found in (c).

the reweighted histograms. In Vgure 4.18(b) the susceptibility of κg is
shown and (c) represents the joint density of κg and the integrated
nativeness for tobs = 1× 107. The critical value for s needed for a co-
existence of the phases is much smaller in the general activity, suggest-
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ing that the transition to the low activity trajectories is not far from
the equilibrium trajectories. For trajectories of an observational time
tobs = 1× 107, sc ∼ 2× 10−5. This means there is a clear inWuence
of these rare event trajectories on the equilibrium behaviour.

4.5.3.5 Full model: s-ensemble biasing at Tfold

Having exhausted the analysis for the HeGō model, the next step is to
look at the dynamic behaviour of the Full interaction potential model
given by equation (4.3). For this purpose again the same sequence at
T = 0.19 was used, following the same approach as before, i.e. vary-
ing s according to the Vxed temperature with two diUerent simulation
lengths and Vnd a dynamic phase coexistence region, from which an
estimate for the critical value s can be found. From this data it is then
possible to construct histograms and reweight the data in order to ex-
tract the behaviour of the average native activity 〈κ〉 versus the biasing
Veld s as seen in Vgure 4.19. In general the behaviour of the Full inter-
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Figure 4.19: (a) Shows 〈κ〉s with respect to s, (b) the Wuctuations (χκ) in κ
with respect to s and (c) density plot of the joint distribution ofQ
and κ for tobs = 5×105. All data is taken from 20000 trajectories
at T = 0.19

action potential is very similar to that of the HeGō potential. Again
the same trapping state is found and has similar eUects on the overall
dynamics of the system. This is seen from Vgure 4.19 (a)-(c), where the
Vnite size scaling shows the transition from the active to the less ac-
tive trapped trajectories at some critical value of s. However, the den-
sity plot (c) hints at a more complex behaviour of multiple low activity
states with diUerent average nativeness. This is not surprising, as more
trapping states with more complex potentials would be expected. The
actual dynamical interplay arising from the higher complexity would
need to be studied in greater detail, but is beyond the scope of this
thesis.

4.5.3.6 Dynamic Phase Diagram

Using all the data displayed in the previous sections collectively, a

phase diagram in the parameter space of {s, T } can be constructed. A
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schematic representation of this is found in Vgure 4.20. In the phase

low activity

“trapped” trajectories

low activity “native” trajectories

active trajectories

Tfold

s

T

Figure 4.20: Schematic of the dynamic phase diagram in parameter space
{s, T }. Dynamic Vrst-order transition between inactive trapped
trajectories and active trajectories is indicated by the green con-
tinuous line. Critical values for diUerent T and s are indicated
by circles. The grey dotted line is an extension of the thermo-
dynamic crossover between active and inactive (now native) tra-
jectories. The folding temperature Tfold is indicated. For the Full
model, some more complexity could be added to the low activity
phase but is omitted for clarity.

diagram a Vrst-order dynamic transition induced by the biasing Veld s
is shown (green continuous line). Red points are those observed from
Vgure 4.14(b) and (h) at least qualitatively. The blue point represents
the dynamic transition at Tfold between unfolded, active and inactive,
trapped trajectories. At s = 0 the thermodynamic equilibrium at Tfold

exhibits a Vrst order like dynamic behaviour and can be extended in to
the space of negative s values as indicated by the dotted grey line. This
observed line is analogous to the behaviour observed for the Gō model,
where the thermodynamic crossover falls together with the dynamic
transition and extends from the coexistence at Tfold into values of neg-
ative biasing values. Establishing exact values for the transition is not
straightforward for the HeGō and Full model, thus only the qualita-
tive behaviour of the models is depicted here. It can be said, that the
HeGō and Full model share most dynamic features, but the Full model,
due to its broader interaction possibilities will exhibit even further
complexity, which is neglected here, as further computer simulations
would be necessary.

4.5.3.7 Extending Ideas to DiUerent Sequences and Structures

This concept can of course be extended to a pool of inVnite sequences
and native states obtained from constructing maximally compact walk-
ers of length 48. Most combinations of models will result in some
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kind of dynamic phase-space behaviour ranging from multiple very
complex transition to very clear single transitions to unique trapping
states. The analysis of further sequences within the HeGō potential
is discussed in the appendix B.2 in order to further the notion of the
broad validity of such dynamic transitions.

The s-ensemble as a robustness test

The s-ensemble biasing allows to probe the robustness of a given se-
quence. Sequences with more homogeneous interaction energies are
by construction much more robust in folding to the target structure.
The s-ensemble biasing gives an idea of how close to the equilibrium
potential misfolding, or trapping states are and thus how likely it is
for a sequence to get trapped in those. If only small values of s are
required to reach such dynamically arrested non-native states, such
states will have a much stronger inWuence on the folding behaviour
than sequences where much stronger biasing, i.e. larger values of s are
required in order to access these dynamically arrested states.

Chain lengths

Another obvious step might be a scaling in the chain length. This was
done only for the Gō structure as a sequence is readily available. Here
the behaviour is very much the same as found for the 48mer long struc-
ture, meaning that at high temperatures the inactive native state is
recovered with the dynamic biasing as well as the active dynamic non-
native trajectories at low temperatures can be recovered as presented
in 4.14. This will break down for shorter observation times, when the
length of the sequence is shorted, as the Vnite spatial size starts inWu-
encing the system sooner.

4.5.4 Summary

In summary, s-ensemble biasing in lattice proteins uncovers rich dy-
namic behaviour in heterogeneous sequence models. By means of an
RMSD analysis two dynamic phases could be classiVed: An active phase
where most trajectories within correspond to equilibrium trajectories
and a low activity phase where the trajectories contained are mainly
populating trapping states of the lattice polymer. The dynamic phases
are connected through a Vrst-order (rounded, due to the Vnite system
size) phase transition at a critical value of the biasing parameter s.
Scanning the parameter space in {s, T } made it possible to establish a
clear phase behaviour for the main sequence of investigation. Further-
more, probing diUerent sequences robustness of folding pathways can
be tested and potential trapping states identiVed. This method could
in the future be applied to more complex systems trying to probe the
dynamic behaviour of real life proteins.
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4.6 conclusion

Lattice models have in the past given valuable clues about real pro-
tein dynamics and are able to mimic some real world protein proper-
ties well (such as the behaviour of nativeness with respect to temper-
ature.) The type of lattice model studied here was developed amongst
other reasons to probe the two state folding behaviour of real pro-
teins. It was recently shown that many proteins exhibiting two state
behaviour may in fact show hidden complexity arising from dynam-
ics [101]. In this study it was shown that near native states give rise
to metastable states, which would have previously been attributed to
the native state itself. This ties well with what has been found here,
as even very simple models, seemingly having a two state (unfolded-
folded) folding behaviour with no oU pathway diversions, do in fact
exhibit more complex dynamic behaviour than expected. This arises
from far from equilibrium Wuctuations within the dynamic trajectory
space.



5
EQU I L I BR I UM EST IMAT IONS

This chapter will given an introduction to general techniques used for

estimating the stationary behaviour of complex stochastic processes.

These ideas are then seized to introduce a novel estimator which com-

bines multi ensemble techniques with Markov state models, allow-

ing very eXcient estimation of equilibrium properties. All results pre-

sented in this chapter can be found in a publication in collaboration

with F. Noé currently under review in Phys. Rev. X [102].

5.1 molecular dynamics : sampling the equilibrium

In section 2.2.5 of chapter 2, we assumed that if a system of interest

becomes too complex and it is not possible to evaluate the partition

function exactly, it is straight forward to use computational sampling

instead in order to estimate stationary behaviour. In fact, we used this

assumption on a "trivial" example of a single particle diUusing around

a potential with two minima. We even applied a quite complex Markov

model analysis to the dynamics, without really verifying that the un-

derlying algorithm does indeed capture the stationary properties of

the system. The aim of this section is to show that such a computa-

tional approach is valid and does capture the correct equilibrium be-

haviour of the system.

When modelling a stochastic process, commonly one considers ei-

ther Brownian or Langevin dynamics. The latter is based on a stochas-

tic diUerential equation called the Langevin equation, used previously

in chapter 2, given by:

m
d2x

dt2
= −F(x) − ζm

dx

dt
+ η(t) . (5.1)

The parameters are as before:m is the mass of the system, F the force

due to the potential, ζ is a friction constant and η(t) a Gaussian ran-

dom noise such that:

〈η(t)〉 = 0 , (5.2)

and the time correlation is given by:

〈η(0)η(t)〉 = 2ζkBTrefmδ(t) . (5.3)

The temperature TRef is the reference temperature of the system. The

Langevin equation can then be used to sample a diUusive particle sys-

tem, such as a single particle living in a potential. Of course, if the

97
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potential is not very complex, i.e. d < 5, evaluating the stationary
probability according to the potential with a grid based Vnite elements
method, is exact and therefore a better approach. However, if the low
dimensionality of the system is not given, we do have to turn to the
computational approach and thus evaluate the Langevin equation ac-
cording to the potential of the system.
Let us look at how we can get a computational representation of the

Langevin equation. First of all a discrete timestep is deVned given by
∆t. Then an updating scheme used for updating the particles position
and velocity according to the potential and the Langevin dynamics
needs to be found. Here, ideas from deterministic dynamics are bor-
rowed, were often a leap frog algorithm is used to computationally
integrated Newton’s equations of motion. As the name suggests, the
leap frog algorithm updates positions and velocities with a half a time
step lag between them. As an example, we can denote the particles po-
sition by x in state space x ∈ Ω ∈ R

d and its corresponding velocity
by ẋ (ẋ = dx

dt ). The acceleration is provided by the potential according
to:

ẍ = −∇U(x) . (5.4)

The set of update equations according to the leap frog algorithm are
then given by:

xt = xt−∆t + ẋt− 12∆t
∆t

ẋt+ 12∆t
= ẋt− 12∆t

+ ẍt∆t .
(5.5)

More details and a derivation of this algorithm can be found in the
textbook by Daan Frankel and Berendt Smit, "Understanding Molecular

Simulations" [103]. This can now be applied to the stochastic Langevin
equation resulting in a more complex updating scheme, as proposed
and derived in [29]. Generally it is assumed that initial positions and
velocities of all particles in the potential are known. If the velocities
are not know, they can be drawn uniformly from a Boltzmann distri-
bution at the reference temperature Tref. Secondly, the force needs to
be evaluated from the known potential such that:

F(x) = −∇U(x) . (5.6)

First, velocities are updated by half a time step (12∆t), then the posi-
tions are updated followed by another velocity update of half a time
step, resulting in the set of updating equations given by equation (5.7).

ẋt+ 12∆t
= ẋt exp

(

− ζ
∆t

2
−

F

m
∆t
(1− exp(−ζ∆t/2)

ζ∆t/2

))

+

+

√
kBTrefN√
m

√

1− exp
(

−Υ
∆t

2

)

xt+∆t = xt +∆tẋt+ 12∆t
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ẋt+∆t = ẋt+ 12∆t
exp

(

− ζ
∆t

2
−

F

m
∆t
(1− exp(−ζ∆t/2))

ζ∆t/2

))

+

+

√
kBTrefN√
m

√

1− exp
(

− ζ
∆t

2

)

. (5.7)

The acceleration is given by ẍt = F(xt). The next question is, does
this set of update equations given by equation (5.7), generate an equi-
librium ensemble, i.e. do detailed balance (2.19) and ergodicity hold?

In order to address this, we will revisit the double well potential from

chapter 2, of the form:

U(x) =






−10+ 5(x+ 2)2 if x < −1

−5x2 if x > −1 and x < 0

−7.5x2 if x > 0 and x < 1

−15+ 7.5(x− 2)2 if x > 1

. (5.8)

A pictorial representation of the potential is seen in Vgure 5.1(a). For

the toy potential the position variable x is in arbitrary units of distance.

In an actual molecular system typical distances would be measured in

nm. The goal is to show that a computer simulation of a particle within

this potential will actually sample the equilibrium and thus converge

to the stationary distribution. For the potential of choice, the exact

solution for the stationary probability is readily obtained through nu-

merical integration, as it is given by:

π(x) =
exp(−βU(x))

∫+∞

−∞
dx exp(−βU(x)

. (5.9)

Let us therefore compare the exact solution of the stationary probabil-

ity obtained from the integration of the potential with the computer

simulations. The results of this are shown in Vgure 5.1(b) and (c). Over-

laid onto the exact stationary distributions are the histograms from the

simulations using the Langevin leap frog integrator from equation (5.7)

for 10000 simulation steps evolving a single particle of mass 1 with a

time step of dt = 0.01within the potential. The system is simulated at

two diUerent temperatures, a high temperature of T = 15 in reduced

units and a low temperature of T = 1. The temperatures are given in

reduced units of the Boltzmann constant, which was set to kB = 1

for convenience. From Vgure 5.1(b), the high temperature simulation,

it can be seen that the exact solution (dashed black curve) agrees well

with the simulation (continuous red curve). This conVrms what has

previously been assumed to be true, that Langevin dynamics can cap-

ture the equilibrium dynamics of a stochastic system well and the set

of leap frog equations for this process are valid.

In contrast however, looking at Vgure 5.1(c), the simulation only

samples one of the wells and therefore the stationary distribution from

the sampled data, does not agree with the theoretical solution. Why

can the simulation not capture the equilibrium behaviour correctly at
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Figure 5.1: (a) Shows the potential and (b) the exact stationary distribution
(black) and a histogram (red) from an MD simulation with 10000
steps at T = 15. (c) Shows the exact stationary (black) distribution
at T = 1 and a simulation histogram (red).

low temperatures? The reason is not that the sampling algorithm –

the Langevin leap frog algorithm – is not valid at low temperatures,

but the fact that the system is metastable. Overcoming the high poten-

tial barrier of 5kBT becomes very unlikely at low temperatures and

is therefore very rarely observed. Waiting an inVnite amount of time,

would also recover the stationary distribution. Though, it is of obvi-

ous interest to accelerate this process. This leads to the formulation of

some well established multi ensemble algorithms, which allow faster

sampling of state space, while reproducing the equilibrium ensemble,

still using Langvin dynamics. Two commonly used multi temperature

algorithms will be introduced in the subsequent section 5.2. These will

be referred to as parallel tempering (PT) and simulated tempering (ST).

5.2 advanced sampling techniques

The toy example of a metastable potential in the previous section is an

idealised version of a very common problem in more complex systems.

An example of such a metstable system are spin glasses. These mod-

els represent frustrated magnets and exhibit many metastable states.

A standard MC simulation can easily get "stuck" in these metastable

states, with a simulation temperature below a certain freezing temper-

ature. In order to overcome this, in the 1980’s a multiple temperature

ensemble algorithm was developed by Swendsen et al. [14]. This algo-

rithm is called PT in this thesis. The algorithm has seen been used in

many diUerent systems, such as quantum frustrated spin systems [104,

105], quantum chromo dynamics (QCD) [106, 107, 108] and simulations

of biomolecules [109, 110]. This chapter will focus on the latter of these.

The naming of these multi temperature algorithms can be inconsistent

in the literature and sometimes the term replica exchange is used in

the context of molecular dynamics simulations, referring to the same

algorithm as PT.
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5.2.1 Parallel Tempering

The PT algorithm utilises the fact that that at higher temperatures ener-
getic barriers are more likely to be overcome. Let us consider a particle
evolving according to the diUusive process Xt in the potential (5.8) at
M diUerent temperatures in parallel. These are referred to as replicas.
At higher temperatures the barriers will easily be crossed, whereas
at lower temperatures this is not the case. After a certain number
of discrete time evolution steps n, exchanges between neighbouring
replicas are attempted. This means the temperatures of each replica
is swapped. Generally this is done in a way that on each alternating
swapping step even replicas and odd replicas are exchanged, as illus-
trated in Vgure 5.2.

3
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000"p"gzejcpigu

Figure 5.2: Illustration of replica swapping schedule

In order to retain detailed balance in the system, the swapping is
done according to a simultaneous Metropolis Hastings acceptance cri-
terion.

PPT(H1(x)β1 → H2(x)β2) = min{1, exp(∆β∆H)} , (5.10)

where H is, as usual, the Hamiltonian of the system. The temper-
ature diUerence of the two states is given by their inverse tempera-
tures ∆β = 1

kBT2
− 1
kBT1

and the diUerence in energy is evaluated
according to the potential. If the set of temperatures is chosen in such
a way that the energy distributions overlap with signiVcant proba-
bility, acceptance is guaranteed. Generally, a 20% acceptance is de-
sired [111] and an exponential spacing of temperatures is preferred, as
the energy distributions are narrower at lower temperatures. The po-
tential distribution overlap required to obtain the desired acceptance
is around 60− 70%. The goal is that each replica spends roughly an
equal amount of time at each temperature, to ensure good mixing of
the system. The idea of the PT concept can be illustrated using the po-
tential from the previous section, deVned by equation (5.8). It can now
be shown that the dynamics using the PT simulation schedule will con-
verge to the stationary distribution even at the low temperature in V-
nite simulation time, through the additional information gained from
the higher temperatures. The simulation results for this are seen in
Vgure 5.3. The drawback of this method is that it creates a computa-
tional overhead, as the system needs to be simulated M times, i.e. the
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Figure 5.3: The recovery of the stationary distribution at T = 1 after nex =

10000 replica exchanges in orange, for an exponential spacing of
6 temperatures between T = [1, . . . , 15] is shown. In red line orig-
inates from data using a single temperature (T = 1) simulation,
with the particles initial position being in the left well.

number of temperatures desired. But in this way allows the system
to escape from metastable states such as the left basin of the chosen
example from Vgure 5.1. This becomes very important in higher dimen-
sional systems, where much more of the conformational space can be
explored in this way and the computational overhead is acceptable.
Furthermore, this method can easily be extended to diUerent ensem-
bles other than the temperature ensemble. Many MD software pack-
ages, developed for simulating biomolecules incorporate this method
as a REMD option. Amongst these are GROMACS and NAMD [85, 86].

5.2.2 Simulated Tempering

The second example of a multi temperature method is ST [112]. This
method is closely related to PT, but only uses a single replica which is
allowed to diUuse in temperature space. To be more precise, during a
simulation after a certain number of simulation steps (MD or MC steps),
an attempt is made to raise or lower the temperature. The tempera-
ture space is chosen in advance and generally makes use of the same
spacing as one would choose for a PT simulation. This is a valid ap-
proach, as the same underlying energy distributions are not aUected
by the multi temperature algorithm used, but the underlying potential.
A change in temperature is again accepted by a Metropolis criterion to
ensure detailed balance:

PST(H1(x)β1 → H1(x)β2) = min{1, exp(−H(x)∆β+∆g)} , (5.11)
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where ∆g is the diUerence in the weight factors. The weight factor gm

ensures equal probability of all temperatures and is given by:

gm = − ln

∫

Ω

dx exp(−βmH(x)) = − lnZm , (5.12)

with Zm being the partition function of the system at temperature Tm,
with m ∈ M. This evidently poses a problem, as Zm generally is a
property of the system the simulation aims to approximate in the Vrst
place. This resulted in an initial unpopularity of the algorithm over its
multi replica counterpart, but now diUerent approaches are available
in order to approximate the weight factor. One options is to evaluate
energy averages at each simulation temperature, prior to the simula-
tion run and used average diUerences in the simulation temperatures
as an approximation [112]. This method is particularly useful, if avail-
able computational power is limited. Another option is to use adaptive
update techniques, with an initial guess which is improved, as the sim-
ulation progresses [113].

5.3 multiple state equilibrium estimation

The work presented in the following sections is new and was devel-
oped and implemented by the author. A novel estimation method for
stationary probabilities will be introduced. This combines the ideas of
an extended temperature ensemble with those of a Markov model as
already introduced in chapter 2 section 2.2.

5.3.1 DeVning the Extended Ensemble

Generally, the problem in molecular systems is that the state space
is too large to work directly on this space and therefore deVning a
set of discrete states is desirable, as long as these states still capture
the essential dynamical and equilibrium properties of interest. There-
fore using Markov models is a good approximation of a real system.
The discretisation of the state space in itself can be challenging, but
is assumed to be optimal for the purpose of this chapter. As already
discussed in chapter 2, all dynamical and static information is retained
in a transition matrix which can be reversibly estimated from a dis-
crete Markov chain. In order to construct correct timescales for the
Markov jump process, the Markov property must hold. However, for
the purpose of the equilibrium estimates this is not necessary. There-
fore a lagtime of the order of the simulation timestep can be used for
the equilibrium estimator. In general, one can deVne a discrete jump
process, for a discrete set of states S = {S1,S2, . . . ,Sk} at a given tem-
perature Tm. From this a transition matrix Tm, at temperature m, can
be estimated reversibly. This transition matrix is spanned by the space
of discrete states K = |S| such that Tm ∈ R

K×K. The subscript m

indicates that this transition matrix is evaluated at a particular tem-
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perature m. Generally this subscript is not written explicitly, but here
it should help to remind the reader that we will consider an extended
ensemble in temperature and state space.

Let us now move to a diUerent transition matrix which spans the
space of temperatures and states, such that T̃ ∈ R

KM×KM, with K

diUerent states and M diUerent temperatures. The extended transition
matrix represents the proposed estimator and is what is sought after
to be approximated from simulation data. We will now discuss some
properties of the extended transition matrix and explain, why it can
be used as an estimator for stationary properties.
This extended matrix T̃ will also hold all the properties of a tran-

sition matrix, discussed in section 2.2.3. This also includes the prop-
erty, that the largest eigenvalue is λ1 = 1 and the corresponding right
eigenvector represents the stationary probability of the system.

1 = (α1π1, ...,αmπm)T̃ , (5.13)

where πm corresponds to the stationary distribution at temperature m

and αm is a normalisation constant, which ideally gives equal probabil-
ity for each temperature. An equal probability for temperatures is de-
sirable as it avoids numerical issues in the estimation of the stationary
distribution at diUerent temperatures. In the following the transition
matrix and its respective entries will be quantiVed a bit further. The
extended ensemble is deVned as:

T̃ = C̃ − S , (5.14)

with C̃ given by:

C̃ = c















T0,1 U1,1 · · · U1,m−1

D2,1 . . .
...

...
. . . Um−1,1

Dm,m−1 · · · Dm,1 T0,m















, (5.15)

where c is normalisation constant and T0,m are transition matrices at
the observed temperature m with all diagonal entries set to zero. The
diagonal matrices D and U describe temperature jump probabilities
form from each state Sk up and down in temperatures. The Vrst su-
perscript indicates the starting temperature and the second one the
diUerence in the temperature jump. As in the case for PT and ST, for
the detailed balance condition to hold, Metropolis Hastings probabili-
ties are used to evaluate entries. Entries for the diagonal matrices of
the up jumps are given by:

u∆m
m,i =

Zm

Zm+∆m

∫

x∈Si

dxµi(x)min{1, exp [−U(x)∆β∆m]} , (5.16)

with ∆β∆m = 1
kBTm+∆m

− 1
kBTm

is the diUerence in inverse temper-

atures and µi(x) = π−1m,i exp(−U(x)/kBTm) the local stationary den-
sity in Si. With Tm < Tm+∆m entries are given by the ratio of the
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partition functions of temperature m and m + ∆m: um,i = Zm
Zm+∆m

.
Analogously, we can deVne the entries for the down jumps:

d∆m
m,i =

Zm+∆m

Zm

∫

x∈Si

dx exp [U(x)∆β∆m] . (5.17)

In order to normalise T̃ to a transition matrix the diagonal matrix S is
used, given by:

S = diag{1− const
∑

i

Ci)} . (5.18)

Now a non-reversible transition matrix T̃ is fully deVned. As a re-
versible estimate is much more desired, this non-reversible matrix can
be used as an input countmatrix for a reversible estimate according
to [28].

5.3.2 The Choice of Scaling Variable

The deVnition of the extended ensemble from equation (5.15), is ideal
for the following to reasons. Firstly, the down jump probabilities can
be easily approximated from simulation data by summing over all sim-
ulation frames, as will be discussed in section 5.3.3. Secondly, the ap-
proximation of the scaling variable, which is the ratio of partition func-
tions at the diUerent temperatures, is also possible from a good set of
simulation data. This in turn allows equal probabilities for all temper-
atures of the extended ensemble. Let us simplify the extended ensem-
ble by only considering nearest neighbour temperatures. This has two
advantages. Firstly the estimated transition matrix T̃ will be sparsely
populated as it now has a tri-diagonal block from, making the diag-
onalisation even for larger systems possible. Secondly, nearest neigh-
bour temperatures will have the largest overlap between the energy
distribution functions, meaning that their probability contribution to
the up and down jumps will be largest and thus suXcient for a good
estimate. In this way a small R

4×4 system can serve as an example
in order to illustrate how the scaling variable can be optimally chosen.
The transition matrix can be deVned as a rate matrix

T̃ = K − I =













1 T02 Υ 0

T03 1 0 Υ

Ξd1 0 1 T12

0 Ξd2 T13 1













−













T02 +Υ 0 0 0

0 T03 +Υ 0 0

0 0 Ξd1 + T
1
2 0

0 0 0 Ξd2 + T
1
3













,

(5.19)
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withΥ = Zm
Zm+1

is the scaling variable and d1 and d2 are the estimated
down jumps from equation (5.17), for each of the two discrete states.
The goal is to chose Υ in such a way that for the overall transition
matrix T̃ the normalisation constants α1 = α2, i.e.:

α1 =

∣

∣

∣

∣

∣

π1 + π2
∑4
i=1 πi

∣

∣

∣

∣

∣

and α2 =

∣

∣

∣

∣

∣

π3 + π4
∑4
i=1 πi

∣

∣

∣

∣

∣

, (5.20)

where π is the stationary vector of T̃. This means there must be a
stationary vector α for a transition matrix projected only on the tem-
perature states. This projected transition matrix can be deVned as:

T̃∗ = PT̃∗PT , (5.21)

where P is a projection matrix, such that:

P =

(

1 1 0 0

0 0 1 1

)

. (5.22)

This leads to a projected transition matrix T̃∗

T̃∗ =
1

2

(

2(1−Υ) 2Υ

Ξ(d1 + d2) 2− Ξ(d1 + d2)

)

, (5.23)

with the condition α1 = α2 in hindsight and the matrix equation:

T̃∗Tα = 1α . (5.24)

The scaling parameter Υ can be found to be:

Υ =

√

Z̃

2
, (5.25)

where Z̃ =
∫

x∈S1
exp(U(x)∆β) +

∫

x∈S2
exp(U(x)∆β). The variable

Ξ, follows from this, as Ξ and Υ are related by their inverse. This is
information is easily obtained from the simulation data and can readily
be extended to a large number of spatial as well as temperature states.
To be precise for any number of k temperatures Υ is given by:

Υ =

√

Z̃

M
, (5.26)

and Z̃ is the integral over all discrete states K. In practice this integral
is approximated by the sum over all available simulation data. If the
sampling is good then the estimate for Υ becomes accurate. However,
it is always useful to approximate Υ, by a sum over all observed data
for each discrete state, as it will tend towards a more equal distribution
of the temperatures and therefore make the extended matrix numeri-
cally more stable.
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5.3.3 Estimating T̃ from Simulation Data

Having established a way of optimally assigning the scaling parame-
ter Υ, a recipe of how to use diUerent types of simulation data for the
estimation of T̃ will be discussed. Initially, the state space needs to be
discretised according to some relevant states. This will vary depend-
ing on the system of interest. The discretisation can for example be
obtained using the Markov model building software EMMA [32]. Al-
ternatively it can also be done by hand through some obvious coarse
graining of an order parameter for example. The Markov model can
be build from each recorded frame, meaning the lagtime τ for the
transition matrix estimate is that of the recorded data. Again, only
neighbouring temperature jumps will be taken into account in this
case, even large systems can be considered. Any type of multi temper-
ature simulation can be used to feed into the estimation of T̃, such as
a PT, ST or individual simulation runs at diUerent temperatures. Ideally
a random swapping (RS) protocol should be employed, in which a sin-
gle replica diUuses through temperature space, but each temperature
move is always accepted. The resulting out of equilibrium state after
the temperature swap is compensated by discarding some initial simu-
lation steps at the new temperature to ensure that a local equilibrium
is reached. This is a feasible approach, as the transition matrix only
requires local equilibrium and not a global equilibrium, generated by
algorithms such as PT and ST. However, a good theory of how to de-
termine whether a system is in local equilibrium or not, is not yet
available, therefore such an RS schedule should be used with caution,
if at all. From the discrete trajectories the transition counts at each
temperature are obtained and give an estimate of the transition ma-
trix Tm at each temperature. Entries for U are set to Υ as deVned in
equation (5.25). The down transitions are estimated according to the
metropolis Hastings criterion and result in a discrete version of equa-
tion (5.17):

d1m,i =
1

Υ

∑

x∈Si

exp [U(x)∆β1] . (5.27)

Following these steps, allows for a non-reversible estimate of T̃, which
can then be used as an input for a reversible estimate according to [28].
The transition matrix then holds all the relevant information about
the stationary probabilities of the system and in such represents the
proposed estimator.

5.4 results

In order to illustrate the validity and superiority of the estimator over
standard PT and ST techniques, three examples have been considered.
First, the previous example of the double well potential which was
used to illustrate the validity of the PT method is reused. Then, a d-
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dimensional artiVcial folding potential is used and lastly REMD simula-
tion data from MD simulations of alanine dipeptide generated with the
MD toolkit OpenMM [114].

5.4.1 Double Well Potential

The simulation set up for the double well given by equation (5.8) is as
follows. As previously described a single particle is integrated using a
Langevin leapfrog algorithm from equation (5.7). Additionally, solvent
particles are added to perturb the system and increase the number of
degrees of freedom. The solvent particles diUuse in a harmonic poten-
tial of U(x) = x2. Three diUerent simulation protocols are used: a PT,
ST and RS simulation. This deVnes the simulation techniques and the
potential. Next, the temperature space needs to be deVned. Six temper-
atures are exponentially spaced between T = [1, . . . , 15]. The potential
is discretised into a set of two states S = [S1,S2] each of the states cor-
responding to one of the wells, with the state boundary at x = 0, as
seen in Vgure 5.4(a). The stationary probability distribution at T = 1

is shown in Vgure 5.4(b). This means the system is now deVned in an
extended space of T̃ ∈ R

12×12. Initially the system was perturbed
with 2 solvent particles. The idea is now to quantify the error of the
estimate of the stationary probability of being in any of the two given
states. For illustration purposes, the relative error of the estimate of
the stationary probability for state S1 at temperature T = 1 is cho-
sen. The exact probability of being in state S1, P(S1) = 0.008, readily
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Figure 5.4: (a) Shows the potential and (b) the corresponding stationary distri-
bution at T = 1. The two discrete states and their probabilities are
also indicated. (c) Shows the the results obtained from PT simula-
tion data in a log-log plot of the number of simulation steps taken
versus the relative error of the estimate of the probability of being
in S1. The black broken line is obtained through direct summing
of the histogram of the ST data and the solid red line is the same
data used in conjunction with the estimator. Standard errors are
indicated.
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evaluated by means of numerical integration. The relative error in the
estimate is given by:

ǫ =
∣

∣

∣

π(S1)exact − π(S1)estimate

π(S1)exact

∣

∣

∣ . (5.28)

First, data obtained from a ST simulation is considered. As the poten-
tial can be evaluated exactly, the exact weightfactor gm, presented in
equation (5.11) was used, in order to get an optimal simulation schedule.
The histogram obtained from the ST simulation is summed according
to the two discrete states and a direct estimate of P(S1) is obtained.
The same data is used to reversibly estimate entries for T̃. The sta-
tionary vector π is calculated by solving the eigenvalue problem as
given by equation (5.13 and the stationary probability at temperature
T = 1 of being in state S1 evaluated. In order to obtain good statis-
tics averages are taken over 1000 trajectories, where each individual
simulation is initiated in S1.
The convergence of the relative error with respect to the number of

simulation steps taken is evaluated from histogramming the data and
compared to an estimate of the stationary probability obtained from
the estimator. This is depicted in Vgure 5.4 for the results of a simu-
lated tempering simulation. Here a log-log plot of the relative error
with respect to the number of simulation steps is shown. The stan-
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Figure 5.5: (a) log-log plot of relative error with respect to number of simula-
tion steps from PT data. In red data obtained from the estimator is
shown in black direct histogram counts form the PT simulation are
shown. (b) Shows the results of the RS simulation on a log-log plot
relative error with respect to simulation steps for a PT simulation
using 16 replicas (black broken line) and 50 solvent molecules, in
comparison with the RS simulation using only 6 replicas (red con-
tinuous line). The error level of ǫ = 1 had to be extrapolated for
the PT simulation and is shown in green. Blue arrows indicate the
number of simulation steps needed for a given error level of e.g.
ǫ = 1

dard ST simulation, as well as the results from the estimator converge
sublinilarly following a powerlaw of O(t−0.5). However, in order to
reach the same relative error of ǫ = 1 for the direct ST estimate in
comparison with the estimator estimate, the simulation needs to be
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run an order of magnitude longer. This is indicated by the blue arrow
in Vgure 5.4(c).
The same set up as for the ST simulation was also used for the PT sim-

ulation. Figure 5.5(a), shows the results of the simulation using 1000
independent realisations. Again, an order of magnitude more simula-
tions steps were required in order to achieve a relative error ǫ = 1

from the PT histograms. The third simulation set up used was a RS

simulation, which is compared to a parallel tempering simulation. The
results of this are depicted Vgure 5.5(b).
For this simulation set up the number of solvent molecules perturb-

ing the system is increased to 50. For this system, if the same num-
ber of replicas i.e. 6 was retained, the acceptance for exchanges would
on average be: Paccept = 0.038 ± 0.08 for a PT simulation, which is
not suXcient for an eUective simulation. Therefore the number of
replicas needs to be increased for which the acceptance is Paccept =

0.218± 0.10, which is much more desirable. As mentioned before, ac-
ceptance is governed by the overlap of the energy distribution func-
tions. Through the additional degrees of freedom the overlap was re-
duced and therefore more replicas needed. Figure 5.6(b) shows the
overlap of the energy distribution function for 6 exponentially spaced
temperatures and Vgure 5.6(a) for 16 exponentially spaced tempera-
tures, with 50 solvent molecules in the system. It is clearly seen that
the overlap is much smaller for the 6 replicas.
Figure 5.5(b) compares the relative estimation error of the direct his-

togram from the PT simulation using 50 solvent molecules, to the sim-
ulation of only 6 temperature and using RS data in conjunction with
the estimator. Here the convergence to a relative error of ǫ = 1 needs
to be extrapolated from the PT simulation, according to a power law
distribution Vt. This means that the estimator outperforms the PT sim-
ulation by three orders of magnitude.
It can be concluded, that for the simple 1-d potential well the estima-

tor on average improves the estimate by up to three orders of magni-
tude using the same amount of simulation data and therefore shows to
be a promising tool for large system which can be approximated well
using Markov models.

5.4.2 Folding Potential

In the following, a more complicated, yet exact potential will be con-
sidered. The potential mimics a folding funnel, with an energetically
favourable native state and an entropically favourable unfolded state.
The potential is represented by a vector r in d dimensions and is given
by:

U(|r|) =






−2.5|r|2 if |r| < 3

0.5|r|3 − |r|2 if |r| > 3 .
(5.29)
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Figure 5.6: (a) The potential energy distribution for 16 replica temperatures
between 1 and 15. (b) Potential energy distribution for 6 replica
temperatures. In both cases the system is perturbed with 50 sol-
vent molecules.

Again, the potential allows the exact evaluation of the stationary dis-
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Figure 5.7: (a) Shows the potential and (b) the corresponding stationary dis-
tribution at T0 = 1.1 and the two discretely chosen states. (c) Is a
schematic of an idealised folding funnel.

tribution, which is done for a system where r ∈ R
5. However, the

dimensionality is reduced to two distinct states for the Markov model.
S1 corresponds to the native state and S2 corresponds to the unfolded
state, with the state boundary at |r| = 2.5, the radius of lowest proba-
bility density. The potential and the stationary distribution evaluated
through numerical integration of the potential is seen in Vgure 5.7(a)
and (b) respectively. The same simulation set up was conducted, as
was done for the previous section 5.4.1, i.e a set of ST and PT simu-
lations, as well as the RS schedule, with all simulations initialised in
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state S1 (the ’native’ state). A single particle is integrated in the poten-
tial 5.29 using the same Langevin dynamics as previously described.
A total of six temperatures were again spaced exponentially between
T = [1.1, . . . , 1.7]. The temperature spacing is chosen in such a way,
that at the low temperature the folded state (S1) is the most popu-
lated state and at the highest temperature the unfolded entropic state
(S2) is the most populated one. The results of all simulations are pre-
sented in Vgure 5.8. Figure 5.8(a) shows the results from ST simulations
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Figure 5.8: Shows the results of PT, ST and RS simulations in a log-log plot
of the relative error of the stationary probability of being in the
folded state (P(S1)). (a) Shows plots the ST data obtained from the
direct histogramming (black) as and the estimator used with the
same data. (b) Shows the same plot but using PT data and panel
(c) compares PT data with RS data used in conjunction with the
proposed estimator. The number of simulation steps to reach a
relative error of ǫ = 0.3 is indicated in all three cases.

and shows that the estimator (red) outperforms the direct histogram-
ming(black). The same applies to data obtained from PT and RS simu-
lations, where results are depicted in 5.8(b) and (c) respectively. With
the folding potential it can again be seen, that the relative error of
the stationary estimate is up to over a magnitude better than with the
direct histogram evaluation, meaning that fewer simulation steps are
required for a good estimate of the stationary probabilities of the sys-
tem.
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5.4.3 Alanine Dipeptide

As a last example we consider a set of replica exchange molecular dy-
namics (Monte Carlo dynamics) (REMD) simulations of alanine dipep-
tide. Replica exchange here means nothing other than the previously
deVned PT, as we only consider temperature replicas. The name REMD

is more broad and would allow for replicas of a diUerent ensemble
other than temperatures. Here we shall only consider temperature, yet
use the name REMD, to be consistent with many MD software packages.
The choice of this molecule is evident, as it has been studied before and
thus validation of the simulation can be achieved through the com-
parison of existing studies, such as [115, 116]. Figure 5.9(a) shows the
peptide with the two dihedral angles indicated in its α-helical conVg-
uration. This will also serve as the initial structure for all simulations
(State IV in Vgure 5.9(b)).

The dominant conformations of this system are the diUerent ro-
tamers set by the dihedral angles ψ and φ. At a temperature of T =

300K, these conformations are separated by relatively low energy bar-
riers, such that a free energy surface at T = 300K can be readily esti-
mated, as seen in 5.9(b). Before the start of the simulation two choices
are made: the MD software package used for the simulation and the
desired force Veld.
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Figure 5.9: (a) Graphical representation of Alanine dipeptide: ACE-ALA-NME.
(b) Free energy surface as projected onto the torsional angles φ
andψ for Alanine dipeptide, from 75ns REMD simulation at 300K.
The energy scale is given in kBT .

OpenMM, with its easy to use Python API was the chosen MD smu-
lation toolkit, whose advantage is that it can be run on GPUs [114].

We used three GTX 580 GPUs, using the Amber99-sb forceVeld [117].

In fact this force Veld was altered slightly by adding a set of circular

van Mises potentials to the observed minima to further increase the
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metastability of the system in order to demonstrate the clear superior-
ity of the estimator. The van Mises potential is given by:

U(Θ) = e exp
(q cos(Θ−Θ0)

2πI0

)

, (5.30)

where Θ is the angle (i.e. φ or ψ to which the potential is added and
I0 is a zeroth order Bessel function). With the additional potential in
place, the peptide was solvated in 645 water molecules and minimised
with a steepest decent algorithm for 200 steps. Then an equilibration
with modiVed a Berendsen thermostat and position restrains on the
peptide was carried out for 100ps.
This system was then cloned for the REMD setup, with all 32 replicas

only diUering in their reference temperature. The lowest temperature
is set to T1 = 300K and the highest to T32 = 600K. All other tem-
peratures are spaced such that a roughly equal exchange probability
for all replicas is given. This was achieved by short trial runs readjust-
ing the temperature until a desired optimal spacing was reached. Each
system (i.e. at each temperature) was equilibrated further at the given
temperature for 500ps, followed by a REMD production run.
For production run,s the time step was chosen to be 2 fs, the saving

interval for coordinates was 0.1ps. Long range electrostatic interac-
tions were evaluated with Particle Mesh Ewald and a bonded cut-oU
of 1nm. All hydrogen bonds were constrained. The production run
was carried out using a Langevin integrator with a collision rate of
1ps−1 and replicas being exchanged every 1ps. All parameter choices
are commonly used and generally recommended in the user manual of
OpenMM [114].
Accepted exchange attempts were observed to occur around 15− 20%
of the time. Exchanges were attempted every 1ps. For the REMD sim-
ulations 15 independent realisations each of 5ns were carried out. The
minima for the van Mises potential were evaluated from a short unper-
turbed equilibration simulation, from which choices of Θ0 for each of
the torsional angles were made, as given by table 5.1:

Minimum φ in ◦ ψ in ◦

I -150 150

II -70 135

III -150 -65

IV -70 -50

Table 5.1: Angle minima Θ0 for von Mises potential

Other values were chosen such that: e = −40KJ/mol the angular
deviation σ = 45◦ and q = σ−2. Using all the data available from all

15 realisations at 300K, the free energy surface in φ,ψ space was con-

structed, as seen in Vgure 5.9(b). From the simulations a set of uncor-

related data with a time series analysis was extracted which was then
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used to generate the free energy surface. This was achieved by using
bins of 10◦ width, with a cut-oU of 10 kBT for the free energy. From
this surface 4 distinct states can be established as metastable states on
this 2-dimensional projection. The states have been distinguished by
eye according to the free energy surface and are indicated by white
boxes and numbered accordingly and displayed in Vgure 5.9(b).
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Figure 5.10: (a)-(d) Relative error convergence of the estimate using his-
togram counts (dashed lines) and estimator (continuous line). Ref-
erence value are all histogram counts from all realisations, with
the initial 3ns data discarded toward equilibration. Error bars are
from averages of the 15 realisations.

From the generated data, the following data analysis was carried out.
The generated trajectories were discretised according to the 4 deVned
states. As a reference (i.e. πexact before, where the exact stationary
probabilities were known.) histogram counts for each state from the
last 2ns of all realisations was used. This clearly is not the right value,
but provides a "worst case estimate" scenario. As before for the double
well potential and the folding potential the relative error over progress-
ing simulation time is estimated, now for all 4 states. The estimate is
again achieved in two ways. Firstly, by the proposed estimator, where
the extended transition matrix (now in R

132×132) is evaluated and
the obtained estimate is used in equation (5.28) as the estimated value.
The results obtained this way for each state are shown in Vgure 5.10(a)-
(d) respectively denoted by the continuous line, with the relative error
plotted with respect to the simulation time in ps. Secondly, an estimate
from direct counting of how many times each state is observed in each
realisation, gives an estimate on the stationary probability, which is
then used in equation (5.28) and plotted as the histogram estimate in
Vgure 5.10(a)-(d), denoted by the dashed lines. All errors are obtained



5.5 discussion and conclusion 116

as standard errors from the mean over the 15 diUerent realisations. It
can be seen again, that the novel estimator outperforms standard his-
togram methods, even in this much more complex molecular system.
Lastly, we would like to look at how the actual stationary probabil-
ity of each sate slowly converges with respect to the simulation time
spent. This is shown in Vgure 5.11(a)-(d) for all 4 states. All estimates
using the novel estimator already reach a stationary plateau for the
estimate with only small observed changes and only small deviations
within the diUerent realisations, whereas the direct counting estimate
shows no plateaued convergence yet. This is true for all four states as
seen in Vgure 5.11(a)-(d), where again continuous lines represent the
novel estimator and dashed lines the histogram method. This results
in a converged estimate for the novel estimator after around 500ps

already – indicated by the grey vertical line in 5.11 – which the direct
count does not even reach after 5ns simulation time.
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Figure 5.11: The stationary probability for each state (a)-(d) with respect to
the simulation time is show for both direct counting estimates
(broken line) and estimator estimates (solid lines). Convergence
using the estimator is signiVcantly better than from histograms.

5.5 discussion and conclusion

The advantage of the novel estimation estimation method is that it
can be used with standard generalised ensemble simulations such as
PT or ST simulations and in comparison to obtaining probabilities of
the conVgurations of interest via direct counting or histogramming,
it exhibits a much faster convergence of the error in the estimated
stationary probabilities. Due to its much faster convergence, an order
of magnitude fewer simulation steps are on average needed in order
to achieve good estimates of the stationary behaviour. Thus it poses
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an ideal tool for complex simulation where often the problem is that
required simulation times for good stationary estimates are too long
to be reached easily with current computational tools. This estimator
aims to remedy this.

Here we can use the justiVcation for the speed up, in a slightly
adapted version as presented in the publication related to this estima-
tor [102]: At least two aspects are responsible to achieve this signiV-
cant speedup.
Firstly, the estimator achieves a reduction of the burn-in time after
which the bias set by the starting conVgurations in a PT or ST simu-
lation is lost. Traditional counting of conVguration frequencies relies
on the overall simulation (PT or ST) to be in global equilibrium, i.e. af-
ter the burn-in time, when suXciently many replicas have moved to
other conVgurations and mixed between temperatures, it can be ex-
pected that the temperature of interest samples from its stationary dis-
tribution in an unbiased fashion. As the novel estimate uses ideas from
Markov modelling and constructs an estimate of the stationary prob-
abilities from a transition matrix in the joint space of conVgurations
and temperatures, global equilibrium is no longer a requirement and
Vnding the system in a local equilibrium of the state and that temper-
ature is suXcient. In ST, PT and REMD simulations, local equilibrium is
maintained by the appropriate Metropolis trials conducted before any
temperature transition. As a result of discarding the global equilibrium
requirement, the burn-in phase is signiVcantly reduced and in contrast
to direct counting estimations, no simulation data must be discarded.
Secondly, the estimator achieves a reduction of the correlation time

required to draw new uncorrelated samples at the temperature(s) of
interest. It estimates transition probabilities with all available data,
therefore maximising the use of all available data for analysis, and
thus proVts from the knowledge of how likely a transition between
temperatures is, but not that the transition probability is large in order
for the temperature step to be accepted. Thus, even in situations when
the underlying PT or ST simulation does not mix well, the stationary
probabilities can still be recovered.
In order to make the estimator widely available and readily usable,

an implementation of it will be included in the next release of the
Markov model estimation tool EMMA [32].
The fast and eXcient estimation of stationary behaviour of com-

plex systems will in general be useful for many diUerent systems. The
versatility of the estimator makes it a perfect tool for a broad range
of applications and not only molecular systems which served here
as a demonstration. One could think of other situations such as spin
glasses or magnets, where a discretisation of the order parameter can
be used to achieve very accurate estimates of stationary probabilities,
from multi ensemble simulations. In particular bearing in mind, that
this type of estimator is not restricted to the temperature ensemble.



6
SUMMARY AND OU T LOOK

This thesis looked at the equilibrium and dynamic behaviour of dif-

ferent stochastic models varying in their complexity. After a general

introduction to the theoretical framework used to present this work,

chapter 3 discusses the results of an exhaustive computational study of

the dynamic properties of the 1-d Ising model. A rich dynamics is un-

covered in the context of trajectories. The work was initially motivated

in order to computationally verify the dynamic second-order phase

transition predicted by Jack et al. [45]. The transition in the model was

computationally observed by using a biasing ensemble (s-ensemble),

in which the activity of trajectories was restricted. The veriVcation of

the second-order transition between a ferromagnetic and low activity

phase and a paramagnetic high activity phase was achieved by means

of Vnite time scaling. In the case of Vnite time scaling the observation

time tobs served as the scaling variable, instead of the generally used

spatial system size. The activity of the observed trajectories served as

the order parameter.

The theoretical model by Jack has limitations and did not reach

beyond the prediction of the line of critical points as given by equa-

tion (3.28), i.e. the second-order phase transition. This is where the

computational model was able to contribute further results to the sys-

tem, by considering the inWuence of an external magnetic Veld on the

1-d Ising chain in trajectory space. In this way a phase space spanned

by the parameters of {s, T ,h} could be described and resulted in the

phase diagram given by 3.5. With the introduction of the external mag-

netic Veld, a surface of Vrst-order transitions below the line of critical

points for the case with no external magnetic bias was observed. The

magnetic behaviour was investigated further by means of hysteresis

loops, with a particular interest in how the biasing Veld s inWuences

the size of these loops.

Lastly, the dynamics of the 1-d Ising model were changed which al-

lowed to show that the dynamic phase behaviour is drastically altered

by the choice of dynamics. This change meant moving from a single

spin Wip algorithm to a spin exchange algorithm (Kawasaki dynamics).

Now the overall magnetisation of the system was conserved and for

the purpose of the study set to zero. The line of critical points in the s-

ensemble was no longer valid. Instead for no external bias (i.e. s = 0),

a dynamic coexistence of an active paramagnetic and inactive ferro-

magnetic phase was observed. This observation was not unexpected,

as similar behaviour had previously been observed in kinetically con-
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strained models [5, 2].

The Ising model served as a starting point in the study of ensembles
of trajectories. In this case a theoretical model was available and the
phase behaviour was readily observed. Next, we turned to a more chal-
lenging system; that of a lattice protein. The results from the compu-
tational investigation of the s-ensemble biasing in the lattice protein
model were presented in chapter 4. The choice of this model repre-
sented a good compromise between increased complexity and man-
ageability. By this we mean that this model displays more complexity
than many of the previously studied models in the s-ensemble frame-
work. It is a simple lattice model, yet it displays features of real world
proteins. In this context a general overview into protein dynamics and
folding behaviour was given. The model was initially introduced in 2-
d discussing some of its well known equilibrium properties. The 3-d
case was considered next and served as the main model of study in the
dynamical s-ensemble framework.

Three diUerent variants of the lattice model were considered, dis-
tinguishable according to their diUerent interaction potential. First a
variety of the Gō model was studied, where all nearest neighbour in-
teractions are uniform and deVned according to the native state of the
protein (here that of a 48mer). It was demonstrated that static prop-
erties, such as the nativeness q(T) with respect to temperature are
separated by a Vrst-order like crossover. Furthermore, it was shown
that this crossover is also present in the dynamics, meaning that dy-
namic trajectories are separated according to their activity. Low activ-
ity trajectories were mainly found to be native, whereas high activity
trajectories were found to be unfolded. With the s-ensemble it was
possible to reweight the trajectory dynamics, such that a Vrst-order
like crossover away from the folding temperature Tfold persisted at
other temperatures as well. This was illustrated in a schematic phase
diagram of Vgure 4.20.

As real life proteins build on heterogeneous amino acid sequences,
the speciVc example of an amino acid sequence for the heterogeneous
Gō potential (HeGō) and Full interaction potential was studied. In both
cases the dynamic behaviour observed with the s-ensemble biasing
was very similar, showing more complexity in the Full model than
the HeGō model. In both models a Vrst-order like dynamic transition
between trapped and equilibrium trajectories was observed. The ob-
served low activity trajectories were looked at in detail by means of
MFPT and RMSD analysis, and it was possible to show that indeed the
protein conformations belonging to low activity trajectories are trap-
ping conformations, slowing down the overall dynamics of the system.
The analysis also made use of Vnite time scaling with tobs as the choice
of the scaling variable. In conjunction with this investigation, diUerent
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dynamic observables and diUerent sequences were considered, propos-
ing the general argument that a s-ensemble analysis can serve as a
good tool in order probe the robustness of equilibrium dynamics.

What we have learnt so far from the s-ensemble is that rare Wuc-
tuations in the dynamics can inWuence the equilibrium behaviour of
systems. These Wuctuations are assumed to be the root cause of the
slow relaxation times observed in glasses, but also seem to play a role
in the lattice protein model. So far mainly very idealised systems have
been considered, therefore the next step would be to try and employ
the s-ensemble formalism to e.g. an all atom model of a protein us-
ing the full biased dynamics. This poses a computational challenge
as signiVcant timescales cannot be reached easily in an all atom pro-
tein simulation. Hopefully such challenges can be overcome, as more
sophisticated algorithms are developed and faster computers become
available.

So far the Ising model was the Vrst toy system of a magnet whose
non-equilibrium dynamic behaviour was considered. At this point it is
unclear what implications such rare dynamic Wuctuations have on real
life magnets. Therefore, it would be desirable to Vnd a way of experi-
mentally probing observations due to the s-ensemble biasing. At this
point in time, we are not aware of the availability of such methods, but
this problem may be resolved in the future.

Chapter 5 looked at eUective ways of estimating equilibrium proba-
bilities in systems exhibiting metastability. Metastability often hinders
the system to explore conVgurational space eXciently, thus making
it very diXcult to obtain estimates of the equilibrium behaviour, due
to oversampling of the metastable states. It was shown that combin-
ing Markov model tools with multi-ensemble algorithms allows fast
and eXcient estimation of stationary properties. The main advantage
of this method is its use of simulation data, meaning that on average
an order of magnitude fewer simulation data is needed to get a suX-
ciently accurate estimate for the stationary probability of a given sys-
tem. The direct consequence of this is that estimates of the stationary
behaviour of even large and complex biological systems are no longer
unattainable. Before, lacking suXciently long simulations, only poor
equilibrium estimates are often achievable. Furthermore, one should
remember that these ideas are by no means restricted to biological
systems, but the extended ensemble estimator can also be applied to
metastable systems such as glasses, where the discretisation of the re-
spective order parameter would be necessary.

In the near future this estimator can be applied to more complex
simulations of protein systems generated with software tools such as
GROMACS [85]. It is planned to incorporate this estimation method
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into future releases of the Markovmodel analysis software EMMA [32].
It is not far fetched to assume that this analysis tool could also be use-
ful for simulations in entirely diUerent Velds of physics, as long as
systems exhibiting metastability are investigated. Another interesting
aspect is that generally a good knowledge of the stationary behaviour
allows a much more eXcient and accurate estimation of dynamic prop-
erties of metastable systems. One could envision that such an estima-
tion method forms part in a broader adaptive sampling schedule in or-
der to optimally Vnd states in conVguration space that would require
further sampling for the improvement in accuracy of timescales of pro-
cesses. Therefore this would be a valid approach towards lowering the
timescale gap which currently plagues simulations of many complex
systems, by not sampling for longer but more cleverly.
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X-ray diUraction

X-Ray diUraction is a method that had been known for a while but in

1962 it was possible to create a crystal of myoglobin and haemoglobin.

From this crystal it was possible for the Vrst time to resolve the 3

dimensional structure of a protein through the eUorts of Kendrew and

Perutz [118, 119]. The diXculty with this method is, that it requires the

production of a perfect protein crystal. This can be a challenge, and

may also lead to the question how representative a crystal structure

is of the actual three dimensional structure of the protein. Due to the

strong interactions through hydrogen bridges and disulphide bridges

it has been experimentally been tested that the crystal structure and

the structure in solution is very similar, which justiVes the use of x-ray

diUraction as a method to probe secondary structure of proteins.

Nuclear magnetic resonance – NMR

NMR was developed in the late 1930’s by Rabi et al, who obtained a

Nobel price for his work [120]. As the method was developed further

it soon found application in determination f protein structures [121].

Most commonly used is proton NMR where the spin relaxation of

a hydrogen isotope in a magnetic Veld is measured. Measurements

give information about the distance between hydrogen atoms within

the diUerent amino acids, from which then the underlying structure

can be deduced. The signals for α helices and β sheets is very dis-

tinctive, which makes the identiVcation of such structures easy us-

ing this technique. Furthermore for NMR experiments the protein can

be looked at in solution. This is an advantage for small proteins, but

with larger ones getting distinctive signals from the proteins core can

be diXcult. Another limiting factor is the high protein concentration

needed within the solution, which favours aggregation of proteins,

which needs to be evaded.

Singe molecule pulling

Single molecule pulling experiments were developed from the early

1990’s onwards, where a molecule is set up in such a way that it has

anchors at two diUerent sides from which can be pulled [122, 123]. This

is possible with optical tweezers. The setup is as follows: A Styrofoam

ball is held in an optical trap, to which a DNA or RNA handle (a strand

of around 1000 base pairs for example) is attached, via an antibody in-
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teraction. Onto the DNA handle the molecule of interested is attached
(e.g.) a protein. The setup is symmetric, as in on the other side of the
protein a second DNA handle attaches which is then again help by a
Styrofoam ball in an an optical trap. Generally the second trap is move-
able so that a force can be exerted onto the molecule of interest, allow-
ing either the molecule to be studied under a constant force, or a con-
stantly increasing force pulling the molecule apart. From these experi-
ments it is possible to study unfolding and refolding behaviour [76, 77].

Förster resonance energy transfer – FRET

This technique works between two molecules with Wuorescently ac-
tive chromophores. One of them will be the donor the other one the
acceptor. The donor is in an excited electronic state, transferring en-
ergy to the acceptor via non-radiative dipole dipole interaction. From
the eXciency of this energy transfer depends on the two acceptor and
donor molecules, thus it is possible to obtain information about the
location of molecules within the experimental setup. As the eXciency
depends on the 6th power of the distance, even small changes within
the distance will alter the FRET eXciency drastically, which makes this
method so viable. [124]

dSTORM

dStrom stands for direct stochastic optical reconstruction microscopy
and is a technique of getting high resolution images of up to 20nm

within living cells [74, 75], in comparison to conventional methods,
which achieve a resolution of around 200nm. The technique relies on
standard Wuorescent dies, such as ATTO, covering the entire spectral
range. The high resolution is possible, as in this method the exact loca-
tion from which the Worescent signal is emitted is reconstructed. The
signal obtained from a sensitive CCD camera, is taken as a position
function and with the help of Vtting Gaussians the most likely loca-
tion of the light emitting molecule is determined. This allows to study
molecular movement within cells.
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RE SU LT S

b.1 amino acid letter code

Table B.1 contains all amino acids with their 1 and 3 letter code. This

is presented so that the single letter amino acid sequences used in the

thesis can be associated to an amino acid sequence.

Alanine Ala A

Cysteine Cys C

Aspartic Acid Asp D

Glutamic Acid Glu E

Pheylalanine Phe F

Glycine Gly G

Histidine His H

Isoleucine Ile I

Lysine Lys K

Leucine Ley L

Methionine Met M

Asparagine Asn N

Proline Pro P

Glutamine Glu Q

Serine Ser S

Theronine Thr T

Valine Val V

Tryptophane Trp W

Tyrosine Tyr Y

Table B.1: Amino acid 3 letter and single letter code

b.2 additional results of the 3-d lattice protein in the
s-ensemble

In this section we present some additional results of the dynamic anal-
ysis of the 3-d lattice protein model from chapter 4 in section 4.5 and
following. The same native state as seen in Vgure 4.7(a) is used, but
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this time the sequence is changed to the one seen in Vgure B.1. The
sequence was obtained using the previously mentioned evolutionary
dynamics algorithm [82]. The ground state energy of this sequence
is: Eg = −12.91ǫ0 and its folding temperature is Tfold ≈ 0.155. The
ground state energy can be calculated straight away. The dependence
of the nativeness q(T) and T was established through a series of sim-
ulations similar to those for the original sequence, but all equilibrium
results will be omitted here. Instead, we will concentrate on the s-
ensemble dynamic analysis, as presented in Vgure B.1. In Vgure B.1(a)-
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Figure B.1: The single letter code for the sequence used for the analysis is
displayed on top of the Vgure. All data is taken from 2× 104 tra-
jectories unless otherwise stated. (a) Shows 〈κ〉 with respect to s,
(b) the Wuctuations of κ and (c) the density of the joint distribution
of κ and Q form a subsample 5000 critical trajectories.

(c) the results of the investigation of the second protein sequence is
given. Results are displayed from a series of simulations at tempera-
ture T = 0.15, slightly below Tfold for this sequence. Finite time scal-
ing is achieved with observational times between tobs = 1× 106 and
tobs = 5× 106, which are times near the mean Vrst passage time of
that sequence for the given temperature. The native activity κ serves
as the main observable and order parameter. Figure B.1(a) is evalu-
ated from reweighted coexistence histograms. The Wuctuations in κ
are evaluated and displayed in (b). The density plot of the joint dis-
tribution of κ and the integrated number of native contacts is found
in Vgure B.1(c), from a trajectory of s ≈ sc. The low activity biased
trajectories occupy states with very similar number of native contacts
as in the equilibrium trajectories. The cigar like shape as observed in
the dynamics of the original sequence as seen in Vgure 4.15, is not ob-
served at all for this sequence. Instead, two highly populated regions
in the density plot are observed. Both have diUerent activity but sim-
ilar intergted nativeness of Q ∼ 42. In fact the two dynamic states
are very closely connected and the lower activity state already sees a
signiVcant population in the equilibrium dynamics. The critical bias-
ing parameter s ∼ 0.0001 however is of the same order of magnitude
as found for sequence presented in the main text. To what extend the
MFPT is aUected by these lower activity trajectories would need to be
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probed further. It can be said however, that the equilibrium MFPT to
the native state at T = 0.15 is around 4× 106 MC steps, whereas for
the sequence of the main text this is four times smaller, i.e. 1× 106 MC

steps on average.

It can be conjectured that the set of low activity trajectories sample
a similar set of trapping conVgurations as those of the sequence of the
main text. This however, would have to be investigated further. From
Vgure B.1(c) it would seem that the nativeness of the trapping states
are similar for both sequences in observation. The increased mean
Vrst passage time of the second sequence to the native state would
mean that it is more likely for this sequence to go oU route into the
set of trapping states Vrst, before being able to fold. Nonetheless, the
sequence is by no means a slow folder, yet easily accessible trapping
states slow the overall dynamics in equilibrium.
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