80 research outputs found
Investigation of eighth-grade students' understanding of the slope of the linear function
This study aimed to investigate eighth-grade students' difficulties and misconceptions and their performance of translation between the different representation modes related to the slope of linear functions. The participants were 115 Turkish eighth-grade students in a city in the eastern part of the Black Sea region of Turkey. Data was collected with an instrument consisting of seven written questions and a semi-structured interview protocol conducted with six students. Students' responses to questions were categorized and scored. Quantitative data was analyzed using the SPSS 17.0 statistical packet program with cross tables and one-way ANOVA. Qualitative data obtained from interviews was analyzed using descriptive analytical techniques. It was found that students' performance in articulating the slope of the linear function using its algebraic representation form was higher than their performance in using transformation between graphical and algebraic representation forms. It was also determined that some of them had difficulties and misunderstood linear function equations, graphs, and slopes and could not comprehend the connection between slope and the x- and y-intercepts
Social Facilitation Due to Online Inter-classrooms Tournaments
In this paper we explore the impact of an inter-classrooms math tournament implemented through internet. The strategy is to increase learning through intra-classroom collaboration generated by inter-classroom competition. Ten fourth grade classes with all their students from eight schools participated. During previous weeks students practiced on-line and played a cloud based board game designed to learn word problems. Afterwards, all students participated on an inter-classroom tournament. They played on-line synchronously during 60 min. The game was played in dyads formed from different schools. The list of each classroom average score was published every 5 min on each student computer. We found an important social facilitation effect: a significant improvement on the performance of male students weak on math, and therefore a reduction on the performance gap between mathematically weak and strong male students. The improvement of female students weak on math was also significant but lower
Arhodomonas sp. strain Seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions
Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments.Peer reviewedMicrobiology and Molecular GeneticsBiochemistry and Molecular Biolog
- …