1,307 research outputs found

    The Abdominal Musculature and Cycling Performance

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Genomic selection requires genomic control of inbreeding

    Get PDF
    BACKGROUND: In the past, pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently. The aim of this study was to understand the consequences for genetic variability across the genome when genomic information is used to estimate breeding values and in managing the inbreeding generated in the course of selection on genome-enhanced estimated breeding values. METHODS: These consequences were measured by genetic gain, pedigree- and genome-based rates of inbreeding, and local inbreeding across the genome. Breeding schemes were compared by simulating truncation selection or optimum contribution selection with a restriction on pedigree- or genome-based inbreeding, and with selection using estimated breeding values based on genome- or pedigree-based BLUP. Trait information was recorded on full-sibs of the candidates. RESULTS: When the information used to estimate breeding values and to constrain rates of inbreeding were either both pedigree-based or both genome-based, rates of genomic inbreeding were close to the desired values and the identical-by-descent profiles were reasonably uniform across the genome. However, with a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding were much higher than expected. With pedigree-instead of genome-based estimated breeding values, the impact of the largest QTL on the breeding values was much smaller, resulting in a more uniform genome-wide identical-by-descent profile but genomic rates of inbreeding were still higher than expected based on pedigree relationships, because they measure the inbreeding at a neutral locus not linked to any QTL. Neutral loci did not exist here, where there were 100 QTL on each chromosome. With a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding substantially exceeded the value of its constraint. In contrast, with a genome-based inbreeding constraint and genome-based estimated breeding values, marker frequencies changed, but this change was limited by the inbreeding constraint at the marker position. CONCLUSIONS: To control inbreeding, it is necessary to account for it on the same basis as what is used to estimate breeding values, i.e. pedigree-based inbreeding control with traditional pedigree-based BLUP estimated breeding values and genome-based inbreeding control with genome-based estimated breeding values

    Absence of relationships between selected human factors and natural infectivity of Plasmodium falciparum to mosquitoes in an area of high transmission

    Get PDF
    The effects of sex, age of the human host, patency of asexual and sexual stages and seasonality on infectiousness of Plasmodium falciparum to mosquitoes were investigated in a rural village in southern Tanzania between 1992 and 1994. Villagers from randomized subgroups of households were surveyed for malaria parasites. Gametocyte and trophozoite prevalences were age dependent and fluctuated without any clear pattern of seasonality. A sample of 107 participants, selected to include an excess of gametocyte carriers, slept under bednets with holes cut into the sides for 3 weeks. A total of 3837 Anopheles gambiae s.l. and 5403 A. funestus recovered from these bednets, was examined for all oocysts 5-7 days after feeding or for oocysts less than 17·5 µn in diameter 2-3 days after feeding. Additional blood slides from participants were taken twice weekly. The 5-7 day oocyst rates were 12·1% in A. gambiae s.l. and 10·9% in A. funestus and 2-3 day rates were 3·6 and 4·9%, respectively. The higher rates using the former method were attributed to previous infection. There were strong correlations in the levels of infection in both vectors when they fed on the same hosts. However, patent gametocytaemia was only weakly associated with the development of oocysts in the mosquito. Infectiousness was not related to host age, sex, or the seaso

    Estimation of the infectious reservoir of Plasmodium falciparum in natural vector populations based on oocyst size

    Get PDF
    A method for determining the infectious reservoir of malaria (K) and vector survival rate (P) by measuring oocyst size and discriminating between the most recent and other infections is described. In the laboratory the mean diameter of 3 d oocysts in Anopheles gambiae, kept at 26 °C, was 11·5 μm and the mean diameter at day 5 was 24·5 μm. Oocyst sizes in wild caught mosquitoes from southern Tanzania, that had fed on the occupants of bed nets with holes in the sides, were more variable. 2060 A. gambiae s.l. and 1982 A. Funestus were examined for oocysts 3 d after feeding; 796 and 654 oocysts from the 153 and 170 infected females, respectively, were measured. Because of misclassification errors, the use of a simple cut-off model, in which all oocysts less than 17.5 μm in diameter were considered to have arisen from the most recent feed, was thought to overestimate K and underestimate P. A statistical model which allows for overlap in the oocyst size distributions is described. Estimates of the infectious reservoir derived from this model were 2.8% for A. gambiae s.l. and 4.2% for A. funestus, and the estimated survival rates per gonotrophic cycle were 65.5% and 52.9%, respectively. The utility of measuring oocyst size in naturally infected mosquitoes is discusse

    Using the Pareto principle in genome-wide breeding value estimation

    Get PDF
    Genome-wide breeding value (GWEBV) estimation methods can be classified based on the prior distribution assumptions of marker effects. Genome-wide BLUP methods assume a normal prior distribution for all markers with a constant variance, and are computationally fast. In Bayesian methods, more flexible prior distributions of SNP effects are applied that allow for very large SNP effects although most are small or even zero, but these prior distributions are often also computationally demanding as they rely on Monte Carlo Markov chain sampling. In this study, we adopted the Pareto principle to weight available marker loci, i.e., we consider that x% of the loci explain (100 - x)% of the total genetic variance. Assuming this principle, it is also possible to define the variances of the prior distribution of the 'big' and 'small' SNP. The relatively few large SNP explain a large proportion of the genetic variance and the majority of the SNP show small effects and explain a minor proportion of the genetic variance. We name this method MixP, where the prior distribution is a mixture of two normal distributions, i.e. one with a big variance and one with a small variance. Simulation results, using a real Norwegian Red cattle pedigree, show that MixP is at least as accurate as the other methods in all studied cases. This method also reduces the hyper-parameters of the prior distribution from 2 (proportion and variance of SNP with big effects) to 1 (proportion of SNP with big effects), assuming the overall genetic variance is known. The mixture of normal distribution prior made it possible to solve the equations iteratively, which greatly reduced computation loads by two orders of magnitude. In the era of marker density reaching million(s) and whole-genome sequence data, MixP provides a computationally feasible Bayesian method of analysis

    Removing data and using metafounders alleviates biases for all traits in Lacaune dairy sheep predictions

    Get PDF
    Bias in dairy genetic evaluations, when it exists, has to be understood and properly addressed. The origin of biases is not always clear. We analyzed 40 yr of records from the Lacaune dairy sheep breeding program to evaluate the extent of bias, assess possible corrections, and emit hypotheses on its origin. The data set included 7 traits (milk yield, fat and protein contents, somatic cell score, teat angle, udder cleft, and udder depth) with records from 600,000 to 5 million depending on the trait,-1,900,000 animals, and-5,900 genotyped elite artificial insemination rams. For the-8% animals with missing sire, we fit 25 unknown parent groups. We used the linear regression method to compare "partial" and "whole" predictions of young rams before and after progeny testing, with 7 cut-off points, and we obtained estimates of their bias, (over)dispersion, and accuracy in early proofs. We tried (1) several scenarios as follows: multiple or single trait, the "official" (routine) evalua-tion, which is a mixture of both single and multiple trait, and "deletion" of data before 1990; and (2) sev-eral models as follows: BLUP and single-step genomic (SSG)BLUP with fixed unknown parent groups or metafounders, where, for metafounders, their relation-ship matrix gamma was estimated using either a model for inbreeding trend, or base allele frequencies esti-mated by peeling. The estimate of gamma obtained by modeling the inbreeding trend resulted in an estimated increase of inbreeding, based on markers, faster than the pedigree-based one. The estimated genetic trends were similar for most models and scenarios across all traits, but were shrunken when gamma was estimated by peeling. This was due to shrinking of the estimates of metafounders in the latter case. Across scenarios, all traits showed bias, generally as an overestimate of genetic trend for milk yield and an underestimate for the other traits. As for the slope, it showed overdisper-sion of estimated breeding values for all traits. Using multiple-trait models slightly reduced the overestimate of genetic trend and the overdispersion, as did including genomic information (i.e., SSGBLUP) when the gam-ma matrix was estimated by the model for inbreeding trend. However, only deletion of historical data before 1990 resulted in elimination of both kind of biases. The SSGBLUP resulted in more accurate early proofs than BLUP for all traits. We considered that a snowball ef-fect of small errors in each genetic evaluation, combined with selection, may have resulted in biased evaluations. Improving statistical methods reduced some bias but not all, and a simple solution for this data set was to remove historical records

    Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of Plasmodium falciparum in humans

    Get PDF
    Delayed and immediate oocyst rates; parous rates and sporozoite rates were obtained in Anopheles gambiae Giles, A. arabiensis Patten and A. funestus Giles from two villages in the Kilombero Valley, southern Tanzania during the wet season of 1991. Collection methods included light trap, indoor resting collection and nets with holes cut in their side. Mosquito survival estimates from parous rates obtained from light trap collections, were compared with estimates from capture-recapture experiments and from that obtained during a population decline. Methods of estimating the proportion of feeds infectious to mosquitoes, K, were also compared. This proportion varied between villages and species and was highest in the village with the greatest proportion of A. gambiae. We propose that absolute estimates of K should be obtained by determining the immediate oocyst rate and measuring the parous rate using the same host seeking mosquitoes. This estimate was only available from one village and ranged from 1.9% for A. gambiae s.l. to 3.4% for A. funestu

    Can Reproductive Health Voucher Programs Improve Quality of Postnatal Care? A Quasi-Experimental Evaluation of Kenya’s Safe Motherhood Voucher Scheme

    Get PDF
    This study tests the group-level causal relationship between the expansion of Kenya’s Safe Motherhood voucher program and changes in quality of postnatal care (PNC) provided at voucher-contracted facilities. We compare facilities accredited since program inception in 2006 (phase I) and facilities accredited since 2010-2011 (phase II) relative to comparable non-voucher facilities. PNC quality is assessed using observed clinical content processes, as well as client-reported outcome measures. Two-tailed unpaired t-tests are used to identify differences in mean process quality scores and client-reported outcome measures, comparing changes between intervention and comparison groups at the 2010 and 2012 data collection periods. Difference-in-differences analysis is used to estimate the reproductive health (RH) voucher program’s causal effect on quality of care by exploiting group-level differences between voucher-accredited and non-accredited facilities in 2010 and 2012. Participation in the voucher scheme since 2006 significantly improves overall quality of postnatal care by 39% (p=0.02), where quality is defined as the observable processes or components of service provision that occur during a PNC consultation. Program participation since phase I is estimated to improve the quality of observed maternal postnatal care by 86% (p=0.02), with the largest quality improvements in counselling on family planning methods (IRR 5.0; p=0.01) and return to fertility (IRR 2.6; p=0.01). Despite improvements in maternal aspects of PNC, we find a high proportion of mothers who seek PNC are not being checked by any provider after delivery. Additional strategies will be necessary to standardize provision of packaged postnatal interventions to both mother and new-born. This study addresses an important gap in the existing RH literature by using a strong evaluation design to assess RH voucher program effectiveness on quality improvement
    • …
    corecore