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Abstract 
A method for determining the infectious reservoir of malaria (K) and vector survival rate (P) by measuring 
oocyst size and discriminating between the most recent and other infections is described. In the laboratory 
the mean diameter of 3 d oocysts in Anopheles gambiae, kept at 26°C was 115 pm and the mean diameter at 
day 5 was 245 Km. Oocyst sizes in wild caught mosquitoes from southern Tanzania, that had fed on the oc- 
cupants of bed nets with holes in the sides, were more variable. 2060 A. gambiae s.1. and 1982 A. funestus 
were examined for oocysts 3 d after feeding; 796 and 654 oocysts from the 153 and 170 infected females, re- 
spectively, were measured. Because of misclassification errors, the use of a simple cut-off model, in which 
all oocysts less than 17.5 pm in diameter were considered to have arisen from the most recent feed, was 
thought to overestimate K and underestimate P. A statistical model which allows for overlap in the oocyst 
size distributions is described. Estimates of the infectious reservoir derived from this model were 2.8% for 
A. gambiae s.Z. and 4.2% for A. funestus, and the estimated survival rates per gonotrophic cycle were 65.5% 
and 52.9%, respectively. The utility of measuring oocyst size in naturally infected mosquitoes is discussed. 
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Introduction 
Epidemiological studies of transmission of malaria 

from humans to mosquitoes have been carried out both 
to assess the infectious reservoir in humans for mosqui- 
toes (MUIRHEAD-THOMSON & MERCIER, 1952; DRAPER. 
19531 MUIRHEAD-THOMSON, 1954, 1957; GRAVES et al.; 
1988, 1990; GITHEKO et al., 1992; THUIKAM et al., 1993; 
CHARLWOOD et al., 1995; J. D. Charlwood et al., in 
preparation) and to identify factors which modify the in- 
fectiousness of individual hosts (HAD et al., in press). 

Infectivity can be studied in feeding experiments us- 
ing local vectors, raised from wild-caught larvae or pu- 
pae (MUIRHEAD-THOMAS & MERCIER, l-952; MUIRHEAD- 
THOMSON. 1954. 1957; GRAVES et al.. 1990) or 
colony-adapted mosquitoes (GITHEKO et aZ.,‘1992; THUI- 
KAM et al., 1993). In either case mosquitoes that have fed 
on known hosts are generally kept alive for 5-7 d, long 
enough for oocyst infections to be apparent by micro- 
scopical examination of their midguts. The proportion 
with infections (D; the delayed oocyst rate) then gives 
an estimate of infectivity. On the other hand, laboratory- 
adapted insects may differ from the local population in 
their susceptibility to infection. 

In contrast, the use of bed nets with holes in them to 
catch mosquitoes does not require the establishment of 
mosquito colonies, estimates infectivity using local vec- 
tors, and allows the mosquitoes to feed naturally. De- 
layed oocyst rates from bed nets with holes have been 
used to estimate the infectious reservoir (K> 
(CHARLWOOD et al., in press), but when the study re- 
quires the identification of the source of the mosquito 
infections it is less than ideal because oocysts may be de- 
rived from more than one feed (HAJI et al., in press); 
l-K/D then gives an estimate of the proportion of the 
detected infections that were acquired before the last 
feed. Estimates of K derived from parous rates together 
with values of D from collections using bed nets with 
holes in Namawala (J. D. Charlwood et al., in prepara- 
tion) indicated that about 60% of oocysts may have been 
derived from previous feeds. Using mark-recapture 
methods, BABIKER et al. (1995) estimated that about one- 
quarter of the infected Anopheles gambiae s.1. and one- 
eighth of the infected A. funestus caught in bed nets with 
holes had obtained their infections elsewhere. 

In this study we report on a modification of the bed 
nets with holes technique that seeks to avoid the poten- 
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tial contamination of recent oocysts with pre-existing in- 
fections. This makes it possible both to estimate K di- 
rectly and to study the infectiousness of individual 
hosts. The method relies on the detection of the oocysts 
shortly after the blood meal disappears from the stom- 
ach of the mosquito. At this stage the oocysts are much 
smaller than those aged 5 d or more, and can be distin- 
guished by their size from previously acquired infections 
(SHUTE & MARYON, 1952; MUIRHEAD-THOMSON, 1957). 

Materials and methods 
Experiments using bed nets with holes 

From February to December 1994 mosquitoes were 
collected from volunteers in the village of Kisegese, 
southern Tanzania (described by HAJI et al., in press) by 
the use of traps consisting of a cone-shaped bed net with 
2-4 juxtaposed holes about 6 cm in diameter halfway up 
the sides. 

Mosquitoes were collected each morning into paper 
cups and transported to the field laboratory where they 
were kept until digestion of the blood meal had been 
completed (which took 2-3 d, depending on the tem- 
perature). 

Midguts were dissected in 2% mebromine solution 
and transferred into 4% phosphate-buffered formalde- 
hyde in 2 mL plastic vials for preservation. Up to 40 
midguts were stored per vial. They remained in good 
condition for more than a vear. which facilitated batch 
processing. Preserved midguts were mounted in 4% 
phosphate-buffered formaldehyde, covered with a cover- 
glass, and examined at x40 with a compound micro- 
scope. The presence of very small oocysts was sometimes 
confirmed using an oil immersion objective. Oocysts 
from preserved midguts were measured to an accuracy of 
0.3 nm using an ocular graticule. 

Laboratory determination of oocyst growth rate 
The rate of development of oocysts was determined 

using a colony of A. gambiae S.S. in the laboratory, fed on 
cultured aametocvtes of the Pf54 strain of PZasmodium 
falciparui After feeding, mosquitoes were kept at 26°C 
for 3-5 d when they were processed as described above. 

Data analysis 
Let K be the probability that an anthropophagic mos- 

auito acauired an infection at the latest feed. R the nrob- 
ability that it was already infected (equivalent to thk im- 
mediate oocyst rate in mosquitoes coming to feed), and 
D the overall probability that a mosquito is infected (the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85212032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RESERVOIR OF PLASMODIUM FALCIPARUM 495 

delayed oocyst rate). The ratio R/D can be used as an es- 
timate of P, the survival per gonotrophic cycle (SERVICE, 
1993; J. D. Charlwood et al., in preparation). D is esti- 
mated directly as the overall infection prevalence, whilst 
the estimation of K and R is more problematical. 

In order to estimate K, it was necessary to estimate the 
proportion of mosquitoes infected at the most recent 
feed, and therefore to determine the proportion of oo- 
cysts that were derived from that feed. Let x denote the 
size of an oocyst, 8(x) the distribution of oocyst sizes 
when the infection was acquired at the most recent feed, 
and o(x) the distribution of oocyst sizes from previous 
infections. The overall distribution of oocyst sizes is 
then: 

f(x) -(l-h) 0(x) + Q(x) 

where the mixing proportionz h, is the proportion of oo- 
cysts that resulted from previous feeds. Note that this is 
different from the distribution of oocyst sizes in mosqui- 
toes with infections derived from both the latest and 
previous feed(s), which has a mixing proportion p and is 
consequently 

f’(x) - (1-P) 86) + PW) 
(i) The simplest approach was to consider all oocysts 

with diameters below a given cut-off size as those from 
the most recent feed, and all others to be from earlier 
feeds: This allowed classification of individual mosqui- 
toes and therefore provided direct estimates of h, D and 
R. It did not allow for overlap between the 2 distribu- 
tions, 13(x) and Q(x), and therefore presumably resulted 
in some misclassification of mosquitoes. 

(ii) The second method estimated the extent of over- 
lap between the distributions. The distribution of oo- 
cysts in laboratory mosquitoes kept for 3 d can be con- 
sidered as an estimate of O(x). By comparing the 
observed f(x) with this distribution, estimates of h and 
a(x) were obtained, using the method of VOUNATSOU et 
hi. (in press). 

Using these estimates of D, h, 8(x) and Q(x), estimates 
of I< were obtained bv maximum likelihood (see the AD- 
pendix). The estimation procedure assumed that all 
mosquitoes were equally susceptible, and that the prob- 
abilities of acquiring an infection at successive feeds 
were independent. It follows that 

D=R+K-RK 

and hence R =(D-K)/( 1-K) 

Considering all infections, the expected number of oo- 
cysts from the most recent feed per infected mosquito is 
N(l-p)K/D and from previous feed(s) it is NPR/D; the 
ratio of the 2 values is pR/(( l-J3)K). Therefore: 

h/(1-h)=PR/((l-j3)K) 

Rearranging this gives 

p=?X/(R+?L(K-R)) 

and estimates of p and R can therefore be obtained from 
the maximum likelihood estimates of K. 

Results 
The Figure shows the distribution of oocyst sizes 3 

and 5 d after feeding in the laboratory, and the distribu- 
tion of oocyst sizes in field-caught mosquitoes 3 d after 
feeding. The mean diameter of 29 oocysts from 13 mos- 
quitoes examined 3 d after an infectious blood meal in 
the laboratory was 11.5 Lrn (SD=2.4), whilst after 5 d the 
mean diameter of 78 odcysts from 15 mosquitoes exam- 
ined was 24.5 urn (SD=4.5) Geometric mean numbers of 
oocyst per gut were 2.0 for the 3 d oocysts and 2.9 for 
those examined at 5 d. The difference in oocyst numbers 
was largely due to 2 midguts in the latter category that 
contained 16 and 10 oocysts respectively. 
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Figure. Distributions of oocyst sizes in laboratory-reared A. 
gambiae S.S. (A) and field-caught A. gambiae s.1. (B) and A. fines- 
tus (C). In panels B and C, solid columns indicate oocysts esti- 
mated to result from the latest feed and hatched columns 
indicate oocysts estimated to result from previous feeds. 

153 A. gumbiae s.Z. (from a total of 1987 examined) and 
170 A. funestus (from a total of 1982 examined) from the 
bed nets with holes catches contained oocysts (of all 
sizes) 2-3 d after feeding. The consequent values of D 
are given in the Table. The geometric mean number of 
oocysts per gut was 3.03 (total of 796 oocysts) in A. gam- 
biae s.1. and 2.55 (654 oocysts) in A. funestus, twice that 
found in a nearby village (1.55 for A. gambiae s.1. and 
0.93 for/l. funestus) (BILLINGSLEY et al., 1994). 

In field-caught mosquitoes the distribution of size 
ranges was not as clear cut as the distribution in mosqui- 
toes that had fed in the laboratory. This suggests that oo- 
cysts from more than one feed were present. 

After inspection of only the laboratory data, the cut- 
off value to discriminate 3 d oocysts from older ones was 
chosen as 17.5 Km. Using this approach, 293 (42.9%) of 
the oocysts in field-caught A. funestus and 406 (49.2%) of 
those in A. gambiae s.1. were considered to be derived 
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Table. Estimates of percentages of mosquitoes with infections of P. falciparum resulting from different feeds 

A. funestus A. gambiae s.1. 

Cut-off Decomposition Cut-off Decomposition 

All infections (0) 8.6 8.6 7.7 7.7 

Infective feed 
Last feed only 4.2 4.1 
Previous feed(s) only 3.6 4.4 ::; ;:; 

Mixed infection? 
Estimated 0.71 0.65 
Expected 0.21 0;9 0.16 o-14 

Immediate rate (R) oocyst 4.3 4.5 4.5 5.0 
Infectious reservoir (K) 4.9 4.2 3.6 2.8 

Survival gonotrophic cycle per (P) 50 52.9 58 65.5 

aThe estimated and expected proportions of the mixed infections (i.e., infections acquired at both the last and previous feeds) deter- 
mined by the mixture decomposition method are constrained to be the same. 

from the most recent feed. This allowed us to classify 
each oocyst separately and hence to classify mosquitoes 
according to whether they had acquired an infection at 
only the latest, at only the previous, or at both the latest 
and previous feeds (Table). If the probability that a mos- 
quito will become infected at any given feed (K) is inde- 
nendent of the probability that it is already infected (R), 
ihen the expected number of mosquitoes with mixed in- 
fections in this sense is RK. In both snecies, this ex- 
pected number of mixed infections was &much’less than 
the number of mixed infections estimated by using the 
cut-off size of 17.5 urn (Table). 

The second approach was to use the mixture decom- 
position method to resolve the overall oocyst size distri- 
butions into 2 components corresponding to e(x) and 
q(x). This analysis indicated that the proportion of oo- 
cysts in A. funestus derived from previous feed(s) (1) was 
0.622 (SE=@@#). In those A. funestus which carried in- 
fections derived from both the last feed and previous 
feed(s), the proportion of oocysts from the previous 
feed(s) (B) was estimated to be 0.878. The equivalent es- 
timates for A. gambiae s.Z. were h=0.860 (SE=@044) and 
p=O.773. Corresponding to this, the proportions of oo- 
cysts attributed to the most recent feeds (1-A) were 
much less than the percentages of infected mosquitoes 
thought to have gained an infection at that feed (48.8% 
of infected A. funestus and 36.4% of infected A. gambiae 
s.l.). The overlap in distributions was particularly notice- 
able for A. gambiae s.1. Careful examination of the Figure 
suggests that the overlap was due mainly to oocysts from 
previous feeds which had grown slowly. Corresponding 
oocysts from the latest feed would not be detectable at 3 
d. This could explain the large discrepancy between the 
total numbers of oocysts attributed to the latest and to 
previous feeds. 

Estimates of K (the infectious reservoir) and of the 
survival rate, based on these 2 methods of analysis, are 
shown in the Table. 

Discussion 
Measurements of oocyst sizes in wild-caught mosqui- 

toes after blood meal digestion provide a simple way of 
obtaining estimates of mosquito survival and of the size 
of the infectious reservoir. 

The method has not been applied previously, prob- 
ably because of concern that oocyst growth rates are 
variable (SHUTE & MARYON, 1952), leading to the mis- 
classification of many infections if a single cut-off value 
is used to discriminate between them. The laboratory 
controls presumably indicated correctly the extent of 
variability in oocyst size under optimal conditions and 
with genetically homogenous parasites. In a natural 
population of parasites one would expect oocyst growth 
rates to be more heterogenous, because of variability in 
the conditions experienced by the mosquitoes and ge- 

netic variation of the parasites, even within one mos- 
quito (BABIKER et al., 1994). 

Misclassification of oocysts can lead to overestimation 
of either K or R. If the oocysts are classified using a sin- 
gle cut-off value chosen to assign correctly as many labo- 
ratory-derived oocysts as possible, then the number of 
mosquitoes with mixed infections is also overestimated, 
resulting in overestimates of both K and R (and P). For 
example, our cut-off size of 17.5 urn would classify an in- 
sect with 5 oocysts, 4 of which were 22 pm in diameter 
and one of which was 17 urn, as containing a mixed in- 
fection. Such a mosquito has, however, probably become 
infected only once. Such misclassification seems likely 
to account for the excess in the numbers of mixed infec- 
tions (although there are several other possibilities, such 
as that some mosquitoes preferentially feed on infected 
hosts). 

Our proposed statistical model addresses overestima- 
tion of mixed infections. This model determines the ex- 
tent of misclassification and allows for it in the estima- 
tion of I< and R, assuming independence of infections. 
This analysis suggested that the cut-off value of 17.5 urn 
wrongly allocated 39.8% of oocysts in A. gambiae s.Z. and 
18.3% in A. finestus, and that more of the oocysts ob- 
served were derived from previous feeds than use of the 
cut-off diameter suggested. 

The statistical model also gave lower estimates of K 
and of R than did the cut-off diameter, but the differ- 
ence between the methods was not very large. This im- 
plies that the use of a single cut-off value to classify oo- 
cysts gives estimates of infectiousness and of mosquito 
survival that could serve as acceptable first approxima- 
tions for many purposes. Nevertheless, the most reliable 
estimates of I< for the neighbouring village of Namawala 
were smaller than any found in the present study (J. D. 
Charlwood et al., in preparation). This suggests that the 
estimates from the statistical model, which were lower, 
are probably more reliable. The estimated survival per 
gonotrophic cycle was similar using the 2 different 
methods, and comparable to determinations made from 
parous rates in Namawala (J. D. Charlwood et al., in 
preparation) (61.1% for A. funestus and 62.3% for A. gam- 
biae s.Z.). The higher survival estimates (those from the 
statistical model) were more consistent with those from 
other techniques. 

A reason for care in applying the new approach is that 
the microscopical detection of young oocysts with a dry 
x40 objective is likely to be much less sensitive than 
that of older oocysts. In both species of mosquitoes, the 
percentage of oocysts attributed to the most recent feeds 
&as much less -than the percentage of mosquitoes 
thought to have gained an infection at that feed. These 
differences canno; be entirely explained by a small pro- 
portion of mosquitoes with a high multiplicity of infec- 
tions, but the presence of slowly growing oocysts that 
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had not yet become visible could provide an explana- 
tion. These small oocysts are presumably less likely to 
mature before the insect dies, and are therefore of lesser 
epidemiological significance. However, further studies 
are needed to determine the distributions of oocyst sizes 
in naturally infected mosquitoes over the whole of the 
extrinsic cycle. 

Because the control oocysts were obtained by a tech- 
nique that was less than optimal, it would be useful to 
evaluate the method using alternative controls. Im- 
proved controls with which to estimate oocyst sizes from 
the previous feed, e(r), might be either examination of 
one-parous mosquitoes killed on arriving for their sec- 
ond feed or determination of oocyst sizes in ‘wild’ mos- 
quitoes raised from pupae, allowed to feed on infected 
hosts, and then kept for one gonotrophic cycle. As a sim- 
pler alternative! Q(x) could be determined from the oo- 
cyst sizes in wild-caught mosquitoes that had fed on a 
known non-infective host and again been maintained in 
captivity for the duration of one cycle. 

The identification of oocysts derived from the most 
recent feed by measuring their diameters is a simple 
modification to procedures for determining the infection 
status of mosquitoes. If the mebromine staining tech- 
nique is used, the mosquitoes need be kept only until the 
blood meal has been digested. The preservation of mos- 
quito midguts also allows for batch processing of mate- 
rial. All these considerations make the technique practi- 
cable for lame-scale field studies of the transmission of 
malaria fromhumans to mosquitoes. 
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Appendix 
Estimation of infection rates allowing for poor resolu- 
tion of oocyst sizes 

In order to compute the likelihood for K (or, equiva- 
lently, R), the likelihood of the observed vector of oocyst 
sizes s=(xlj, xzj, x3i,...x,j) for each mosquitoj, with n ooc- 
ysts, must be computed. Conditional on mosquito j hav- 
ing acquired infections only at the last feed, this like- 
lihood is 

L&infected at latest feed only)= iitO(xi,j) 

Conditional on mosquito j having acquired infections 
only at previous feed(s), the likelihood is 

L(Q infected at previous feed(s) only)= Lelo(x,,i) 

The oocyst sizes in mosquitoes with infections acquired 
from both the last and previous feed(s) are a sample from 

f’(x)-(l-P)e(x)+P~(x) 

and the contribution to the likelihood for such mosqui- 
toes is then 

L(% infected both latest and previous feeds)= 

;;!(l-P)e(xi,j)+P~Cxi,j)) 
i=l 

it follows that the unconditional likelihood for mosquito 
j is 

LCXJ =K(l-R)~e(x,)+R(l-~~~(x~)+RKn((l-P)B(xij)+ B$(x&). 

By maximizing the product of these likelihoods for 
the whole population of infected mosquitoes, with re- 
spect to K (or, equivalently, R), an estimate of the prob- 
ability of infection per feed can be obtained. 


