45 research outputs found

    Exponential distribution of long heart beat intervals during atrial fibrillation and their relevance for white noise behaviour in power spectrum

    Full text link
    The statistical properties of heart beat intervals of 130 long-term surface electrocardiogram recordings during atrial fibrillation (AF) are investigated. We find that the distribution of interbeat intervals exhibits a characteristic exponential tail, which is absent during sinus rhythm, as tested in a corresponding control study with 72 healthy persons. The rate of the exponential decay lies in the range 3-12 Hz and shows diurnal variations. It equals, up to statistical uncertainties, the level of the previously uncovered white noise part in the power spectrum, which is also characteristic for AF. The overall statistical features can be described by decomposing the intervals into two statistically independent times, where the first one is associated with a correlated process with 1/f noise characteristics, while the second one belongs to an uncorrelated process and is responsible for the exponential tail. It is suggested to use the rate of the exponential decay as a further parameter for a better classification of AF and for the medical diagnosis. The relevance of the findings with respect to a general understanding of AF is pointed out

    Age-related changes in P wave morphology in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously documented significant differences in orthogonal P wave morphology between patients with and without paroxysmal atrial fibrillation (PAF). However, there exists little data concerning normal P wave morphology. This study was aimed at exploring orthogonal P wave morphology and its variations in healthy subjects.</p> <p>Methods</p> <p>120 healthy volunteers were included, evenly distributed in decades from 20–80 years of age; 60 men (age 50+/-17) and 60 women (50+/-16). Six-minute long 12-lead ECG registrations were acquired and transformed into orthogonal leads. Using a previously described P wave triggered P wave signal averaging method we were able to compare similarities and differences in P wave morphologies.</p> <p>Results</p> <p>Orthogonal P wave morphology in healthy individuals was predominately positive in Leads X and Y. In Lead Z, one third had negative morphology and two-thirds a biphasic one with a transition from negative to positive. The latter P wave morphology type was significantly more common after the age of 50 (P < 0.01). P wave duration (PWD) increased with age being slightly longer in subjects older than 50 (121+/-13 ms vs. 128+/-12 ms, P < 0.005). Minimal intraindividual variation of P wave morphology was observed.</p> <p>Conclusion</p> <p>Changes of signal averaged orthogonal P wave morphology (biphasic signal in Lead Z), earlier reported in PAF patients, are common in healthy subjects and appear predominantly after the age of 50. Subtle age-related prolongation of PWD is unlikely to be sufficient as a sole explanation of this finding that is thought to represent interatrial conduction disturbances. To serve as future reference, P wave morphology parameters of the healthy subjects are provided.</p

    Recent Asian origin of chytrid fungi causing global amphibian declines

    Get PDF
    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide

    Recent Asian origin of chytrid fungi causing global amphibian declines

    Get PDF
    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide

    Detection of Fatigue Cracks in Train Structures Using Nonlinear Lamb Waves

    No full text
    1st International Workshop on High-Speed and Intercity Railways, IWHIR 2011, Shenzhen, Hong Kong, 19-22 July 2011Envisioning the rapid development of high-speed railway network worldwide but envisaging potential threats to the safe operation of the network due to continuous ageing of train structures, a fatigue damage detection technique for train structures was developed. For metal structures used in high-seeped trains, fatigue crack may take place under cyclic loads, causing unexpected accident. However inspection of fatigue damage can be a difficult task during the normal operation of the train using tradition nondestructive evaluation techniques. In this study, nonlinear Lamb waves were used to interrogate train structures. Higher-order harmonic wave fields were generated, to observe that under certain conditions the second harmonic was cumulative. The fatigue damage modulated the nonlinearity of the structure due to the plastic deformation or micro-cracks, influencing the cumulative character of the second harmonic Lamb wave. To quantify the degree of such cumulative second harmonic, a nonlinearity parameter was used. A short-time Fourier transformation-based signal processing was applied to the collected signals to extract the amplitudes of the first and second harmonics. Experiments on an aluminum plate containing fatigue damage validated the proposed method. The results indicated that the fatigue crack can break the cumulative character of the nonlinearity parameter whereby the fatigue damage can be detected. It is noteworthy that this method can be carried out without any baseline data or a benchmark structure, increasing the flexibility of the application.Department of Mechanical EngineeringRefereed conference pape
    corecore