931 research outputs found

    Three-dimensional modeling of the HI kinematics of NGC 2915

    Full text link
    The nearby blue compact dwarf, NGC 2915, has its stellar disc embedded in a large, extended (~ 22 B-band scale-lengths) HI disc. New high-resolution HI synthesis observations of NGC 2915 have been obtained with the Australia Telescope Compact Array. These observations provide evidence of extremely complex HI kinematics within the immediate vicinity of the galaxy's star-forming core. We identify and quantify double-peaked HI line profiles near the centre of the galaxy and show that the HI energetics can be accounted for by the mechanical energy output of the central high-mass stellar population within time-scales of 10^6-10^7 yr. Full three-dimensional models of the HI data cube are generated and compared to the observations to test various physical scenarios associated with the high-mass star-forming core of NGC 2915. Purely circular HI kinematics are ruled out together with the possibility of a high-velocity-dispersion inter-stellar medium at inner radii. Radial velocities of ~ 30 km/s are required to describe the central-most HI kinematics of the system. Our results lend themselves to the simple physical scenario in which the young stellar core of the galaxy expels the gas outwards from the centre of the disc, thereby creating a central HI under-density. These kinematics should be thought of as being linked to a central HI outflow rather than a large-scale galactic blow-out or wind.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    The Rich Globular Cluster System of Abell 1689 and the Radial Dependence of the Globular Cluster Formation Efficiency

    Full text link
    We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z=0.18), one of the most powerful gravitational lenses known. With 28 HST/ACS orbits in the F814W bandpass, we reach magnitude I_814=29 with >90% completeness and sample the brightest ~5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N(GC_total) = 162,850 GCs within a projected radius of 400kpc. As many as half may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this is by far the largest GC system studied to date. The specific frequency S_N is high, but not uncommon for central galaxies in massive clusters, rising from S_N~5 near the center to ~12 at large radii. Passive galaxy fading would increase S_N by ~20% at z=0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M(GC_total)=3.9x10^10 Msun, is comparable to ~80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.Comment: 13 pages, 11 figures; accepted for publication in Ap

    The dark matter content of the blue compact dwarf NGC 2915

    Full text link
    NGC 2915 is a nearby blue compact dwarf with the HI properties of a late-type spiral. Its large, rotating HI disk (extending out to R ~ 22 B-band scale lengths) and apparent lack of stars in the outer HI disk make it a useful candidate for dark matter studies. New HI synthesis observations of NGC 2915 have been obtained using the Australian Telescope Compact Array. These data are combined with high-quality 3.6 μ\mum imaging from the Spitzer Infrared Nearby Galaxies Survey. The central regions of the HI disk are shown to consist of two distinct HI concentrations with significantly non-Gaussian line profiles. We fit a tilted ring model to the HI velocity field to derive a rotation curve. This is used as input for mass models that determine the contributions from the stellar and gas disks as well as the dark matter halo. The galaxy is dark-matter-dominated at nearly all radii. At the last measured point of the rotation curve, the total mass to blue light ratio is ~ 140 times solar, making NGC 2915 one of the darkest galaxies known. We show that the stellar disk cannot account for the steeply-rising portion of the observed rotation curve. The best-fitting dark matter halo is a pseudo-isothermal sphere with a core density ρ00.17±0.03\rho_0\sim 0.17 \pm 0.03 \msun pc3^{-3} and a core radius rc0.9±0.1r_c\sim 0.9 \pm 0.1 kpc.Comment: MNRAS in press. 17 pages, 15 figure

    Cluster Analysis and Comparison of Various Chloroplast Transcriptomes and Genes in Arabidopsis thaliana

    Get PDF
    Chloroplast RNA metabolism is integrated into wider gene regulatory networks. To explore how, we performed a chloroplast genome-wide expression analysis on numerous nuclear Arabidopsis mutants affected in diverse chloroplast functions and wild-type plants subjected to various stresses and conditions. On the basis of clustering analysis, plastid genes could be divided into two oppositely regulated clusters, largely congruent with known targets of nucleus- and plastid-encoded RNA polymerases, respectively. Further eight sub-clusters contained co-transcribed and functionally tightly associated genes. The chloroplast transcriptomes could also be classified into two major groups comprising mutants preferentially affected in general plastid gene expression and other chloroplast functions, respectively. Deviations from characteristic expression profiles of transcriptomes served to identify novel mutants impaired in accumulation and/or processing of specific plastid RNAs. Expression profiles were useful to distinguish albino mutants affected in plastid gene expression from those with defects in other plastid functions. Remarkably, biotic and abiotic stressors did not define transcriptionally determined clusters indicating that post-transcriptional regulation of plastid gene expression becomes more important under changing environmental conditions. Overall, the identification of sets of co-regulated genes provides insights into the integration of plastid gene expression into common pathways that ensures a coordinated response

    Evolution of the Lyman-alpha Halos around High-Redshift Radio Galaxies

    Full text link
    We have obtained the first constraints on extended Ly-alpha emission at z ~ 1 in a sample of five radio galaxies. We detect Ly-alpha emission from four of the five galaxies. The Ly-alpha luminosities range from 0.1 - 4 times 10^43 erg/s and are much smaller than those observed for halos around higher redshift radio galaxies. If the z ~ 1 radio galaxies are the descendents the z >~ 2 radio galaxies, then their Ly-alpha luminosities evolve strongly with redshift as ~(1+z)^5. There do not appear to be strong correlations between other parameters, such as radio power, suggesting that this observed evolution is real and not an observational artifact or secondary correlation. We speculate that this evolution of luminous halos may be due to gas depletion (as gas cools, settles, and forms stars) accompanied by an overall rise in the mean gas temperature and a decrease in specific star-formation rate in and around these massive galaxies.Comment: 5 pages, 4 figures, published in ApJ Letters, 694, L31-35 March 20 200

    The Shape and Figure Rotation of NGC 2915's Dark Halo

    Get PDF
    NGC 2915 is a blue compact dwarf galaxy with a very extended HI disk showing a short central bar and extended spiral arms, both reaching far beyond the optical component. We use Tremaine & Weinberg (1984) method to measure the pattern speed of the bar from HI radio synthesis data. Our measurements yield a pattern speed of 0.21+/-0.06 km/s/arcsec (8.0+/-2.4 km/s/kpc for D=5.3 Mpc), in disagreement with the general view that corotation in barred disks lies just outside the end of the bar, but consistent with recent models of barred galaxies with dense dark matter halos. Our adopted bar semi-length puts corotation at more than 1.7 bar radii. The existence of the pattern is also problematic. Because NGC 2915 is isolated, interactions cannot account for the structure observed in the HI disk. We also demonstrate that the low observed disk surface density and the location of the pseudo-rings make it unlikely that swing amplification or bar-driven spiral arms could explain the bar and spiral pattern. Based on the similarity of the dark matter and HI surface density profiles, we discuss the possibility of dark matter distributed in a disk and following closely the HI distribution. The disk then becomes unstable and can naturally form a bar and spiral pattern. However, this explanation is hard to reconcile with some properties of NGC 2915. We also consider the effect of a massive and extended triaxial dark matter halo with a rotating figure. The existence of such halos is supported by CDM simulations showing strongly triaxial dark halos with slow figure rotation. The observed structure of the HI disk can then arise through forcing by the rotating triaxial figure. We associate the measured pattern speed in NGC 2915 with the figure rotation of its dark halo.Comment: 37 pages, including 8 figures and 2 tables (AASTeX, aaspp4.sty). Fig.1 and 2 available as jpg. Accepted for publication in The Astronomical Journal. Online manuscript with PostScript figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm

    Coulombically Interacting Electrons in a One-dimensional Quantum Dot

    Full text link
    The spectral properties of up to four interacting electrons confined within a quasi one--dimensional system of finite length are determined by numerical diagonalization including the spin degree of freedom. The ground state energy is investigated as a function of the electron number and of the system length. The limitations of a description in terms of a capacitance are demonstrated. The energetically lowest lying excitations are physically explained as vibrational and tunneling modes. The limits of a dilute, Wigner-type arrangement of the electrons, and a dense, more homogeneous charge distribution are discussed.Comment: 10 pages (excl. Figures), Figures added in POSTSCRIPT, LaTe

    ACS Observations of a Strongly Lensed Arc in a Field Elliptical

    Full text link
    We report the discovery of a strongly lensed arc system around a field elliptical galaxy in Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images of a parallel field observed during NICMOS observations of the HST Ultra-Deep Field. The ACS parallel data comprise deep imaging in the F435W, F606W, F775W, and F850LP bandpasses. The main arc is at a radius of 1.6 arcsec from the galaxy center and subtends about 120 deg. Spectroscopic follow-up at Magellan Observatory yields a redshift z=0.6174 for the lensing galaxy, and we photometrically estimate z_phot = 2.4\pm0.3 for the arc. We also identify a likely counter-arc at a radius of 0.6 arcsec, which shows structure similar to that seen in the main arc. We model this system and find a good fit to an elliptical isothermal potential of velocity dispersion σ300\sigma \approx 300 \kms, the value expected from the fundamental plane, and some external shear. Several other galaxies in the field have colors similar to the lensing galaxy and likely make up a small group.Comment: Accepted for publication in ApJ Letters. 10 pages, 3 figures. Figures have been degraded to meet size limit; a higher resolution version and addtional pictures available at http://acs.pha.jhu.edu/~jpb/UDFparc
    corecore