611 research outputs found

    Motion frozen 18F-FDG cardiac PET

    Get PDF
    BackgroundPET reconstruction incorporating spatially variant 3D Point Spread Function (PSF) improves contrast and image resolution. "Cardiac Motion Frozen" (CMF) processing eliminates the influence of cardiac motion in static summed images. We have evaluated the combined use of CMF- and PSF-based reconstruction for high-resolution cardiac PET.MethodsStatic and 16-bin ECG-gated images of 20 patients referred for (18)F-FDG myocardial viability scans were obtained on a Siemens Biograph-64. CMF was applied to the gated images reconstructed with PSF. Myocardium to blood contrast, maximum left ventricle (LV) counts to defect contrast, contrast-to-noise (CNR) and wall thickness with standard reconstruction (2D-AWOSEM), PSF, ED-gated PSF, and CMF-PSF were compared.ResultsThe measured wall thickness was 18.9 ± 5.2 mm for 2D-AWOSEM, 16.6 ± 4.5 mm for PSF, and 13.8 ± 3.9 mm for CMF-PSF reconstructed images (all P < .05). The CMF-PSF myocardium to blood and maximum LV counts to defect contrasts (5.7 ± 2.7, 10.0 ± 5.7) were higher than for 2D-AWOSEM (3.5 ± 1.4, 6.5 ± 3.1) and for PSF (3.9 ± 1.7, 7.7 ± 3.7) (CMF vs all other, P < .05). The CNR for CMF-PSF (26.3 ± 17.5) was comparable to PSF (29.1 ± 18.3), but higher than for ED-gated dataset (13.7 ± 8.8, P < .05).ConclusionCombined CMF-PSF reconstruction increased myocardium to blood contrast, maximum LV counts to defect contrast and maintained equivalent noise when compared to static summed 2D-AWOSEM and PSF reconstruction

    Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis

    Get PDF
    Vertebral fractures are a major adverse consequence of osteoporosis. In a large placebo-controlled trial in postmenopausal women with osteoporosis, strontium ranelate reduced vertebral fracture risk by 33% over 4 years, confirming the role of strontium ranelate as an effective long-term treatment in osteoporosis. INTRODUCTION: Osteoporotic vertebral fractures are associated with increased mortality, morbidity, and loss of quality-of-life (QoL). Strontium ranelate (2 g/day) was shown to prevent bone loss, increase bone strength, and reduce vertebral and peripheral fractures. The preplanned aim of this study was to evaluate long-term efficacy and safety of strontium ranelate. METHODS: A total of 1,649 postmenopausal osteoporotic women were randomized to strontium ranelate or placebo for 4 years, followed by a 1-year treatment-switch period for half of the patients. Primary efficacy criterion was incidence of patients with new vertebral fractures over 4 years. Lumbar bone mineral density (BMD) and QoL were also evaluated. RESULTS: Over 4 years, risk of vertebral fracture was reduced by 33% with strontium ranelate (risk reduction = 0.67, p < 0.001). Among patients with two or more prevalent vertebral fractures, risk reduction was 36% (p < 0.001). QoL, assessed by the QUALIOST(R), was significantly better (p = 0.025), and patients without back pain were greater (p = 0.005) with strontium ranelate than placebo over 4 years. Lumbar BMD increased over 5 years in patients who continued with strontium ranelate, while it decreased in patients who switched to placebo. Emergent adverse events were similar between groups. CONCLUSION: In this 4- and 5-year study, strontium ranelate is an effective and safe treatment for long-term treatment of osteoporosis in postmenopausal women

    COMPARISON OF TRABECULAR BONE MICROARCHITECTURE AND REMODELING IN GLUCOCORTICOID-INDUCED AND POST-MENOPAUSAL OSTEOPOROSIS

    Get PDF
    Long-term treatment with glucocorticoids (GCs) leads to a rapid bone loss and to a greater risk of fractures. To evaluate the specific effects of this treatment on cancellous bone remodeling, structure, and microarchitecture, we compared 22 transiliac biopsy specimens taken in postmenopausal women (65 +/- 6 years) receiving GCs (> or = 7.5 mg/day, for at least 6 months) and 22 biopsy specimens taken in age-matched women with postmenopausal osteoporosis (PMOP), all untreated and having either at least one vertebral fracture or a T score < -2.5 SD. On these biopsy specimens, we measured static and dynamic parameters reflecting trabecular bone formation and resorption. Also, we performed the strut analysis and evaluated the trabecular bone pattern factor (TBPf), Euler number/tissue volume (E/TV), interconnectivity index (ICI), and marrow star volume (MaSV). Glucocorticoid-induced osteoporosis (GIOP), when compared with PMOP, was characterized by lower bone volume (BV/TV), trabecular thickness (Tb.Th), wall thickness (W.Th), osteoid thickness (O.Th), bone formation rate/bone surface (BFR/BS), adjusted mineral apposition rate/bone surface (Aj.AR/BS), and higher ICI and resorption parameters. After adjustment for BV/TV, the W.Th remained significantly lower in GIOP (p < 0.0001). The active formation period [FP(a+)] was not different. Patients with GIOP were divided into two groups: high cumulative dose GCs (HGCs; 23.7 +/- 9.7 g) and low cumulative dose GCs (LGCs; 2.7 +/- 1.2 g). HGC when compared with LGC was characterized by lower W.Th (p < 0.05), BV/TV (p < 0.001), Tb.Th (p < 0.05), trabecular number (Tb.N; p < 0.05), FP(a+)(p < 0.05), and nodes (p < 0.05), and higher E/TV (p < 0.05), ICI (p < 0.005), and TBPf (p < 0.05). When HGC was compared with PMOP, the results were similar except for the MaSV, which was significantly higher (p < 0.005). In summary, GIOP was characterized by lower formation and higher resorption than in PMOP, already present after LGC. With HGCs, these changes were associated with a more dramatic bone loss caused by a major loss of trabecular connectivity

    Vertebral anti-fracture efficacy of strontium ranelate according to pre-treatment bone turnover

    Get PDF
    Osteoporotic post-menopausal women patients in two randomised trials comparing the anti-fracture efficacy of strontium ranelate with placebo were separated into tertiles according to their baseline levels of biochemical markers of bone formation and resorption. The vertebral anti-fracture efficacy of strontium ranelate was shown to be independent of baseline bone turnover levels. INTRODUCTION: Bone turnover (BTO) levels vary among women at risk of osteoporotic fracture. Strontium ranelate is an anti-osteoporotic treatment increasing bone formation and reducing bone resorption. It was hypothesised that its anti-fracture efficacy would be independent of baseline BTO levels. METHODS: Post-menopausal women with osteoporosis from two pooled studies were stratified in tertiles according to baseline levels of two BTO markers: bone-specific alkaline phosphatase (b-ALP, n = 4995) and serum C-telopeptide cross-links (sCTX, n = 4891). Vertebral fracture risk was assessed over 3 years with strontium ranelate 2 g/day or placebo. RESULTS: In the placebo group, relative risk of vertebral fractures increased with BTO tertiles by 32% and 24% for patients in the highest tertile for b-ALP and CTX, respectively, compared to those in the lowest tertile. In the strontium ranelate group, incidences of vertebral fracture did not differ significantly across BTO tertiles. Significant reductions in vertebral fractures with strontium ranelate were seen in all tertiles of both markers, with relative risk reductions of 31% to 47% relative to placebo. Risk reduction did not differ among tertiles (b-ALP: p = 0.513; sCTX: p = 0.290). CONCLUSION: The vertebral anti-fracture efficacy of strontium ranelate was independent of baseline BTO levels. Strontium ranelate offers clinical benefits to women across a wide range of metabolic states

    Hybrid Shell Engineering of Animal Cells for Immune Protections and Regulation of Drug Delivery: Towards the Design of “Artificial Organs”

    Get PDF
    BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient

    Semi-Automated Reconstruction of Neural Processes from Large Numbers of Fluorescence Images

    Get PDF
    We introduce a method for large scale reconstruction of complex bundles of neural processes from fluorescent image stacks. We imaged yellow fluorescent protein labeled axons that innervated a whole muscle, as well as dendrites in cerebral cortex, in transgenic mice, at the diffraction limit with a confocal microscope. Each image stack was digitally re-sampled along an orientation such that the majority of axons appeared in cross-section. A region growing algorithm was implemented in the open-source Reconstruct software and applied to the semi-automatic tracing of individual axons in three dimensions. The progression of region growing is constrained by user-specified criteria based on pixel values and object sizes, and the user has full control over the segmentation process. A full montage of reconstructed axons was assembled from the ∼200 individually reconstructed stacks. Average reconstruction speed is ∼0.5 mm per hour. We found an error rate in the automatic tracing mode of ∼1 error per 250 um of axonal length. We demonstrated the capacity of the program by reconstructing the connectome of motor axons in a small mouse muscle

    Spatiotemporally Controlled Cardiac Conduction Block Using High-Frequency Electrical Stimulation

    Get PDF
    Background: Methods for the electrical inhibition of cardiac excitation have long been sought to control excitability and conduction, but to date remain largely impractical. High-amplitude alternating current (AC) stimulation has been known to extend cardiac action potentials (APs), and has been recently exploited to terminate reentrant arrhythmias by producing reversible conduction blocks. Yet, low-amplitude currents at similar frequencies have been shown to entrain cardiac tissues by generation of repetitive APs, leading in some cases to ventricular fibrillation and hemodynamic collapse in vivo. Therefore, an inhibition method that does not lead to entrainment – irrespective of the stimulation amplitude (bound to fluctuate in an in vivo setting) – is highly desirable. Methodology/Principal Findings: We investigated the effects of broader amplitude and frequency ranges on the inhibitory effects of extracellular AC stimulation on HL-1 cardiomyocytes cultured on microelectrode arrays, using both sinusoidal and square waveforms. Our results indicate that, at sufficiently high frequencies, cardiac tissue exhibits a binary response to stimulus amplitude with either prolonged APs or no effect, thereby effectively avoiding the risks of entrainment by repetitive firing observed at lower frequencies. We further demonstrate the ability to precisely define reversible local conduction blocks in beating cultures without influencing the propagation activity in non-blocked areas. The conduction blocks were spatiotemporally controlled by electrode geometry and stimuli duration, respectively, and sustainable for long durations (300 s). Conclusion/Significance: Inhibition of cardiac excitation induced by high-frequency AC stimulation exhibits a binary response to amplitude above a threshold frequency, enabling the generation of reversible conduction blocks without the risks of entrainment. This inhibition method could yield novel approaches for arrhythmia modeling in vitro, as well as safer and more efficacious tools for in vivo cardiac mapping and radio-frequency ablation guidance applications

    Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis

    Get PDF
    In an open-label extension study, BMD increased continuously with strontium ranelate over 10 years in osteoporotic women (P < 0.01). Vertebral and nonvertebral fracture incidence was lower between 5 and 10 years than in a matched placebo group over 5 years (P < 0.05). Strontium ranelate's antifracture efficacy appears to be maintained long term. INTRODUCTION: Strontium ranelate has proven efficacy against vertebral and nonvertebral fractures, including hip, over 5 years in postmenopausal osteoporosis. We explored long-term efficacy and safety of strontium ranelate over 10 years. METHODS: Postmenopausal osteoporotic women participating in the double-blind, placebo-controlled phase 3 studies SOTI and TROPOS to 5 years were invited to enter a 5-year open-label extension, during which they received strontium ranelate 2 g/day (n = 237, 10-year population). Bone mineral density (BMD) and fracture incidence were recorded, and FRAX(R) scores were calculated. The effect of strontium ranelate on fracture incidence was evaluated by comparison with a FRAX(R)-matched placebo group identified in the TROPOS placebo arm. RESULTS: The patients in the 10-year population had baseline characteristics comparable to those of the total SOTI/TROPOS population. Over 10 years, lumbar BMD increased continuously and significantly (P < 0.01 versus previous year) with 34.5 +/- 20.2% relative change from baseline to 10 years. The incidence of vertebral and nonvertebral fracture with strontium ranelate in the 10-year population in years 6 to 10 was comparable to the incidence between years 0 and 5, but was significantly lower than the incidence observed in the FRAX(R)-matched placebo group over 5 years (P < 0.05); relative risk reductions for vertebral and nonvertebral fractures were 35% and 38%, respectively. Strontium ranelate was safe and well tolerated over 10 years. CONCLUSIONS: Long-term treatment with strontium ranelate is associated with sustained increases in BMD over 10 years, with a good safety profile. Our results also support the maintenance of antifracture efficacy over 10 years with strontium ranelate

    The relative efficacy of nine osteoporosis medications for reducing the rate of fractures in post-menopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of head-to-head trials, indirect comparisons of randomized placebo-controlled trials may provide a viable option to assess relative efficacy. The purpose was to estimate the relative efficacy of reduction of fractures in post-menopausal women, and to assess robustness of the results.</p> <p>Methods</p> <p>A systematic literature review of multiple databases identified randomized placebo-controlled trials with nine drugs for post-menopausal women. Odds ratio and 95% credibility intervals for the rates of hip, non-vertebral, vertebral, and wrist fractures for each drug and between drugs were derived using a Bayesian approach. A drug was ranked as the most efficacious if it had the highest posterior odds ratio, or had the highest effect size.</p> <p>Results</p> <p>30 studies including 59,209 patients reported fracture rates for nine drugs: alendronate (6 studies), denosumab (1 study), etidronate (8 studies), ibandronate (4 studies), raloxifene (1 study), risedronate (7 studies), strontium (2 study), teriparatide (1 study), and zoledronic acid (1 study). The drugs with the highest probability of reducing non-vertebral fractures was etidronate and teriparatide while the drugs with the highest probability of reducing vertebral, hip or wrist fractures were teriparatide, zoledronic acid and denosumab. The drugs with the largest effect size for vertebral fractures were zoledronic acid, teriparatide and denosumab, while the drugs with the highest effect size for non-vertebral, hip or wrist fractures were alendronate or risedronate. Estimates were consistent between Bayesian and classical approaches.</p> <p>Conclusion</p> <p>Teriparatide, zoledronic acid and denosumab have the highest probabilities of being most efficacious for non-vertebral and vertebral fractures, and having the greatest effect sizes. The estimates from indirect comparisons were robust to differences in methodology.</p
    corecore