108 research outputs found

    Prolyl hydroxylase PHD3 activates oxygen-dependent protein aggregation

    Get PDF
    The HIF prolyl hydroxylases (PHDs/EGLNs) are central regulators of the molecular responses to oxygen availability. One isoform, PHD3, is expressed in response to hypoxia and causes apoptosis in oxygenated conditions in neural cells. Here we show that PHD3 forms subcellular aggregates in an oxygen-dependent manner. The aggregation of PHD3 was seen under normoxia and was strongly reduced under hypoxia or by the inactivation of the PHD3 hydroxylase activity. The PHD3 aggregates were dependent on microtubular integrity and contained components of the 26S proteasome, chaperones, and ubiquitin, thus demonstrating features that are characteristic for aggresome-like structures. Forced expression of the active PHD3 induced the aggregation of proteasomal components and activated apoptosis under normoxia in HeLa cells. The apoptosis was seen in cells prone to PHD3 aggregation and the PHD3 aggregation preceded apoptosis. The data demonstrates the cellular oxygen sensor PHD3 as a regulator of protein aggregation in response to varying oxygen availability

    The Myth of the Stupid Believer: The Negative Religiousness–IQ Nexus is Not on General Intelligence (g) and is Likely a Product of the Relations Between IQ and Autism Spectrum Traits

    Get PDF
    Numerous studies have found a negative relationship between religiousness and IQ. It is in the region of −0.2, according to meta-analyses. The reasons for this relationship are, however, unknown. It has been suggested that higher intelligence leads to greater attraction to science, or that it helps to override evolved cognitive dispositions such as for religiousness. Either way, such explanations assume that the religion–IQ nexus is on general intelligence (g), rather than some subset of specialized cognitive abilities. In other words, they assume it is a Jensen efect. Two large datasets comparing groups with diferent levels of religiousness show that their IQ diferences are not on g and must, therefore, be attributed to specialized abilities. An analysis of the specialized abilities on which the religious and non-religious groups difer reveals no clear pattern. We cautiously suggest that this may be explicable in terms of autism spectrum disorder traits among people with high IQ scores, because such traits are negatively associated with religiousness

    The Function of Hypoxia-Inducible Factor (HIF) Is Independent of the Endoplasmic Reticulum Protein OS-9

    Get PDF
    The protein “amplified in osteosarcoma-9” (OS-9) has been shown previously to interact with the prolyl hydroxylases PHD2 and PHD3. These enzymes initiate oxygen-dependent degradation of the α-subunit of hypoxia-inducible factor (HIF), a transcription factor that adapts cells to insufficient oxygen supply (hypoxia). A new model has been proposed where OS-9 triggers PHD dependent degradation of HIF-α. It was the aim of our study to define the molecular mode of action of OS-9 in the regulation of PHD and HIF activity. Although initial co-immunoprecipitation experiments confirmed physical interaction between OS-9 and PHD2, neither overexpression nor lentiviral inhibition of OS-9 expression affected HIF regulation. Subcellular localization experiments revealed a distinct reticular staining pattern for OS-9 while PHD2 was mainly localized in the cytoplasm. Further cell fractionation experiments and glycosylation tests indicated that OS-9 is a luminal ER protein. In vivo protein interaction analysis by fluorescence resonance energy transfer (FRET) showed no significant physical interaction of overexpressed PHD2-CFP and OS-9-YFP. We conclude that OS-9 plays no direct functional role in HIF degradation since physical interaction of OS-9 with oxygen sensing HIF prolyl hydroxylases cannot occur in vivo due to their different subcellular localization

    Oxygen Sensing in Drosophila: Multiple Isoforms of the Prolyl Hydroxylase Fatiga Have Different Capacity to Regulate HIFα/Sima

    Get PDF
    Background: The Hypoxia Inducible Factor (HIF) mediates cellular adaptations to low oxygen. Prolyl-4-hydroxylases are oxygen sensors that hydroxylate the HIF alpha-subunit, promoting its proteasomal degradation in normoxia. Three HIFprolyl hydroxylases, encoded by independent genes, PHD1, PHD2, and PHD3, occur in mammals. PHD2, the longest PHD isoform includes a MYND domain, whose biochemical function is unclear. PHD2 and PHD3 genes are induced in hypoxia to shut down HIF dependent transcription upon reoxygenation, while expression of PHD1 is oxygen-independent. The physiologic significance of the diversity of the PHD oxygen sensors is intriguing. Methodology and Principal Findings: We have analyzed the Drosophila PHD locus, fatiga, which encodes 3 isoforms, FgaA, FgaB and FgaC that are originated through a combination of alternative initiation of transcription and alternative splicing. FgaA includes a MYND domain and is homologous to PHD2, while FgaB and FgaC are shorter isoforms most similar to PHD3. Through a combination of genetic experiments in vivo and molecular analyses in cell culture, we show that fgaB but not fgaA is induced in hypoxia, in a Sima-dependent manner, through a HIF-Responsive Element localized in the first intron of fgaA. The regulatory capacity of FgaB is stronger than that of FgaA, as complete reversion of fga loss-of-function phenotypes is observed upon transgenic expression of the former, and only partial rescue occurs after expression of the latter. Conclusions and Significance: Diversity of PHD isoforms is a conserved feature in evolution. As in mammals, there are hypoxia-inducible and non-inducible Drosophila PHDs, and a fly isoform including a MYND domain co-exists with isoforms lacking this domain. Our results suggest that the isoform devoid of a MYND domain has stronger regulatory capacity than that including this domain.Fil:Acevedo, J.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Centanin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dekanty, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wappner, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Endothelin-1 Inhibits Prolyl Hydroxylase Domain 2 to Activate Hypoxia-Inducible Factor-1α in Melanoma Cells

    Get PDF
    The endothelin B receptor (ET(B)R) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1alpha is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation.Here we found that in melanoma cells ET-1, ET-2, and ET-3 through ET(B)R, enhance the expression and activity of HIF-1alpha and HIF-2alpha that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-alpha stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1alpha oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ET(B)R markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ET(B)R-mediated PHD2 inhibition, HIF-1alpha, HIF-2alpha, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1alpha, ET(B)R expression is associated with low PHD2 levels. In melanoma xenografts, ET(B)R blockade by ET(B)R antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1alpha, and HIF-2alpha expression, and an increase in PHD2 levels.In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1alpha stability and thereby regulates angiogenesis and melanoma cell invasion. These results further indicate that targeting ET(B)R may represent a potential therapeutic treatment of melanoma by impairing HIF-1alpha stability

    Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems

    Get PDF
    P. 1-15Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.S

    Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer

    Get PDF
    INTRODUCTION: Hypoxia-inducible factor (HIF)-1alpha levels in invasive breast carcinoma have been shown to be an adverse prognostic indicator. Cellular HIF-1alpha activity is regulated by factor-inhibiting hypoxia-inducible factor 1 (FIH-1). In hypoxia, FIH-1 hydroxylation of Asn803 within the C-terminal transactivation domain does not occur and HIF-1alpha forms a fully active transcriptional complex. The present study investigates the role of FIH-1 in invasive breast carcinoma and its correlation with hypoxia. METHODS: Microarrayed tissue cores from 295 invasive carcinomas were stained for FIH-1, for HIF-1alpha and for carbonic anhydrase 9. FIH-1 expression was correlated with standard clinicopathological parameters and with the expression of the surrogate hypoxic markers HIF-1alpha and carbonic anhydrase 9. RESULTS: FIH-1 was positive in 239/295 (81%) tumours, 42/295 (14%) exclusively in the nucleus and 54/295 (18%) exclusively in the cytoplasm. Exclusive nuclear FIH-1 expression was significantly inversely associated with tumour grade (P = 0.02) and risk of recurrence (P = 0.04), whereas exclusive cytoplasmic FIH-1 was significantly positively associated with tumour grade (P = 0.004) and carbonic anhydrase 9 expression (P = 0.02). Patients with tumours that excluded FIH-1 from the nucleus had a significantly shorter survival compared with those with exclusive nuclear expression (P = 0.02). Cytoplasmic FIH-1 expression was also an independent poor prognostic factor for disease-free survival. CONCLUSION: FIH-1 is widely expressed in invasive breast carcinoma. As with other HIF regulators, its association between cellular compartmentalization and the hypoxic response and survival suggests that tumour regulation of FIH-1 is an additional important mechanism for HIF pathway activation

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs
    corecore