25 research outputs found

    Novel cargo-binding site in the β and δ subunits of coatomer

    Get PDF
    Arginine (R)-based ER localization signals are sorting motifs that confer transient ER localization to unassembled subunits of multimeric membrane proteins. The COPI vesicle coat binds R-based signals but the molecular details remain unknown. Here, we use reporter membrane proteins based on the proteolipid Pmp2 fused to GFP and allele swapping of COPI subunits to map the recognition site for R-based signals. We show that two highly conserved stretches—in the β- and δ-COPI subunits—are required to maintain Pmp2GFP reporters exposing R-based signals in the ER. Combining a deletion of 21 residues in δ-COP together with the mutation of three residues in β-COP gave rise to a COPI coat that had lost its ability to recognize R-based signals, whilst the recognition of C-terminal di-lysine signals remained unimpaired. A homology model of the COPI trunk domain illustrates the recognition of R-based signals by COPI

    Structure of the Pds5-Scc1 Complex and Implications for Cohesin Function

    Get PDF
    Sister chromatid cohesion is a fundamental prerequisite to faithful genome segregation. Cohesion is precisely regulated by accessory factors that modulate the stability with which the cohesin complex embraces chromosomes. One of these factors, Pds5, engages cohesin through Scc1 and is both a facilitator of cohesion, and, conversely also mediates the release of cohesin from chromatin. We present here the crystal structure of a complex between budding yeast Pds5 and Scc1, thus elucidating the molecular basis of Pds5 function. Pds5 forms an elongated HEAT repeat that binds to Scc1 via a conserved surface patch. We demonstrate that the integrity of the Pds5-Scc1 interface is indispensable for the recruitment of Pds5 to cohesin, and that its abrogation results in loss of sister chromatid cohesion and cell viability

    The GET Complex Mediates Insertion of Tail-Anchored Proteins into the ER Membrane

    Get PDF
    Tail-anchored (TA) proteins, defined by the presence of a single C-terminal transmembrane domain (TMD), play critical roles throughout the secretory pathway and in mitochondria, yet the machinery responsible for their proper membrane insertion remains poorly characterized. Here we show that Get3, the yeast homolog of the TA-interacting factor Asna1/Trc40, specifically recognizes TMDs of TA proteins destined for the secretory pathway. Get3 recognition represents a key decision step, whose loss can lead to misinsertion of TA proteins into mitochondria. Get3-TA protein complexes are recruited for endoplasmic reticulum (ER) membrane insertion by the Get1/Get2 receptor. In vivo, the absence of Get1/Get2 leads to cytosolic aggregation of Get3-TA complexes and broad defects in TA protein biogenesis. In vitro reconstitution demonstrates that the Get proteins directly mediate insertion of newly synthesized TA proteins into ER membranes. Thus, the GET complex represents a critical mechanism for ensuring efficient and accurate targeting of TA proteins

    Remote monitoring of welfare parameters

    No full text
    vo

    Evaluation of prognostic factors and role of participation in a randomized trial or a prospective registry in pediatric and adolescent nonmetastatic medulloblastoma: a report from the HIT 2000 trial

    Get PDF
    Purpose We aimed to compare treatment results in and outside of a randomized trial and to confirm factors influencing outcome in a large retrospective cohort of nonmetastatic medulloblastoma treated in Austria, Switzerland and Germany. Methods and Materials Patients with nonmetastatic medulloblastoma (n = 382) aged 4 to 21 years and primary neurosurgical resection between 2001 and 2011 were assessed. Between 2001 and 2006, 176 of these patients (46.1%) were included in the randomized HIT SIOP PNET 4 trial. From 2001 to 2011 an additional 206 patients were registered to the HIT 2000 study center and underwent the identical central review program. Three different radiation therapy protocols were applied. Genetically defined tumor entity (former molecular subgroup) was available for 157 patients. Results Median follow-up time was 7.3 (range, 0.09-13.86) years. There was no difference between HIT SIOP PNET 4 trial patients and observational patients outside the randomized trial, with 7 years progression-free survival rates (PFS) of 79.5% ± 3.1% versus 78.7% ± 3.1% (P = .62). On univariate analysis, the time interval between surgery and irradiation (≤ 48 days vs ≥ 49 days) showed a strong trend to affect PFS (80.4% ± 2.2% vs 64.6% ± 9.1%; P = .052). Furthermore, histologically and genetically defined tumor entities and the extent of postoperative residual tumor influenced PFS. On multivariate analyses, a genetically defined tumor entity wingless-related integration site-activated vs non-wingless-related integration site/non-SHH, group 3 hazard ratio, 5.49; P = .014) and time interval between surgery and irradiation (hazard ratio, 2.2; P = .018) were confirmed as independent risk factors. Conclusions Using a centralized review program and risk-stratified therapy for all patients registered to the study center, outcome was identical for patients with nonmetastatic medulloblastoma treated on and off the randomized HIT SIOP PNET 4 trial. The prognostic values of prolonged time to RT and genetically defined tumor entity were confirmed
    corecore