38 research outputs found

    Evaporation and growth of crystals - propagation of step density compression waves at vicinal surfaces

    Full text link
    We studied the step dynamics during crystal sublimation and growth in the limit of fast surface diffusion and slow kinetics of atom attachment-detachment at the steps. For this limit we formulate a model free of the quasi-static approximation in the calculation of the adatom concentration on the terraces at the crystal surface. Such a model provides a relatively simple way to study the linear stability of a step train in a presence of step-step repulsion and an absence of destabilizing factors (as Schwoebel effect, surface electromigration etc.). The central result is that a critical velocity of the steps in the train exists which separates the stability and instability regimes. When the step velocity exceeds its critical value the plot of these trajectories manifests clear space and time periodicity (step density compression waves propagate on the vicinal surface). This ordered motion of the steps is preceded by a relatively short transition period of disordered step dynamics.Comment: 18 pages, 6 figure

    Superheating and solid-liquid phase coexistence in nanoparticles with non-melting surfaces

    Full text link
    We present a phenomenological model of melting in nanoparticles with facets that are only partially wet by their liquid phase. We show that in this model, as the solid nanoparticle seeks to avoid coexistence with the liquid, the microcanonical melting temperature can exceed the bulk melting point, and that the onset of coexistence is a first-order transition. We show that these results are consistent with molecular dynamics simulations of aluminum nanoparticles which remain solid above the bulk melting temperature.Comment: 8 pages, 5 figure

    Lattice Effects in Crystal Evaporation

    Full text link
    We study the dynamics of a stepped crystal surface during evaporation, using the classical model of Burton, Cabrera and Frank, in which the dynamics of the surface is represented as a motion of parallel, monoatomic steps. The validity of the continuum approximation treated by Frank is checked against numerical calculations and simple, qualitative arguments. The continuum approximation is found to suffer from limitations related, in particular, to the existence of angular points. These limitations are often related to an adatom detachment rate of adatoms which is higher on the lower side of each step than on the upper side ("Schwoebel effect").Comment: DRFMC/SPSMS/MDN, Centre d'Etudes Nucleaires de Grenoble, 25 pages, LaTex, revtex style. 8 Figures, available upon request, report# UBFF30119

    The epitaxy of gold

    Full text link

    A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting

    Full text link

    Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics

    No full text
    Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~ 400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in the surrounding cratons. We speculate that these corridors may provide potential conduits for hot asthenospheric material to flow from the western Ethiopian plateau to the volcanic provinces of central and western Africa.This work was supported by the Spanish research projects SAGAS CTM2005-08071-C03-03/MAR, Consolider TopoIberia CSD2006-00041, TopoMed CGL2008-03474-E/BTE/ESF-TOPOEUROPE.Peer reviewe

    Intense foreshocks and a slow slip event preceded the 2014 Iquique M<SUB>w</SUB> 8.1 earthquake

    No full text
    International audienceThe subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. The moment magnitude (Mw) 8.1 Iquique earthquake of 1 April 2014 broke a highly coupled portion of this gap. To understand the seismicity preceding this event, we studied the location and mechanisms of the foreshocks and computed Global Positioning System (GPS) time series at stations located on shore. Seismicity off the coast of Iquique started to increase in January 2014. After 16 March, several Mw > 6 events occurred near the low-coupled zone. These events migrated northward for ~50 kilometers until the 1 April earthquake occurred. On 16 March, on-shore continuous GPS stations detected a westward motion that we model as a slow slip event situated in the same area where the mainshock occurred

    Slip behavior of the Ganzi section of the Xianshuihe fault system (China) constrained by time series analysis of Sentinel-1 InSAR data.

    No full text
    International audienceThe global and systematic coverage of Sentinel-1 radar images enables to characterize, by radar interferometry, surface deformations at the scale of large active fault systems. This represents considerable progress in fault monitoring and opens new perspectives in seismic hazard assessment. Our study focuses on the Yushu - Ganzi - Xian Shui He active fault system (YGX), one of the most seismically active left-lateral fault system on the eastern part of the Tibetan plateau, which contributes to accommodate the collision between the Indian and the Eurasian plates. We analyze in particular the present-day behavior of the Ganzi segment of the YGX fault system, which may represent a 350 km-long seismic gap, unbroken for the past ~120 years. To measure the interseismic deformation across the YGX fault system, we perform a time series analysis of 4 years of Sentinel-1 InSAR data, acquired along ascending and descending orbits, using the New Small Baseline Subset processing chain including the latest adaptations (Doin et al., 2011, Grandin, 2015). Our results are presented as mean velocity maps across the fault system and highlight creep process along different sections of the YGX fault system. We present here a spatial and temporal characterization of this creep, analyzing series of mean velocity profiles, derived from Sentinel-1 InSAR data. We also propose a preliminary block model analysis constrained from both InSAR and GPS interseismic surface velocities to discuss strain localization and rates at a regional scale in the light of the tectonic and geological evolution of this area
    corecore