3,412 research outputs found

    Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis

    Full text link

    Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes

    Full text link

    Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase

    Get PDF
    Biochemical studies have revealed two distinct classes of Coenzyme B-Coenzyme M heterodisulfide (CoB-S-S-CoM) reductase (Hdr), a key enzyme required for anaerobic respiration in methaneproducing archaea. A cytoplasmic HdrABC enzyme complex is found in most methanogens, whereas a membrane-bound HdrED complex is found exclusively in members of the order Methanosarcinales. Unexpectedly, genomic data indicate that multiple copies of both Hdr classes are found in all sequenced Methanosarcinales genomes. The Methanosarcina acetivorans hdrED1 operon is constitutively expressed and required for viability under all growth conditions examined, consistent with HdrED being the primary Hdr. HdrABC appears to be specifically involved in methylotrophic methanogenesis, based on reduced growth and methanogenesis rates of an hdrA1C1B1 mutant on methylotrophic substrates and downregulation of the genes during growth on acetate. This conclusion is further supported by phylogenetic analysis showing that the presence of hdrA1 in an organism is specifically correlated with the presence of genes for methylotrophic methanogenesis. Examination of mRNA abundance in methanol-grown DhdrA1C1B1 strains relative to wild-type revealed upregulation of genes required for synthesis of (di)methylsulfide and for transport and biosynthesis of CoB-SH and CoM-SH, suggesting that the mutant has a defect in electron transfer from ferredoxin to CoB-S-S-CoM that causes cofactor limitation

    An Optimal Design for Universal Multiport Interferometers

    Full text link
    Universal multiport interferometers, which can be programmed to implement any linear transformation between multiple channels, are emerging as a powerful tool for both classical and quantum photonics. These interferometers are typically composed of a regular mesh of beam splitters and phase shifters, allowing for straightforward fabrication using integrated photonic architectures and ready scalability. The current, standard design for universal multiport interferometers is based on work by Reck et al (Phys. Rev. Lett. 73, 58, 1994). We demonstrate a new design for universal multiport interferometers based on an alternative arrangement of beam splitters and phase shifters, which outperforms that by Reck et al. Our design occupies half the physical footprint of the Reck design and is significantly more robust to optical losses.Comment: 8 pages, 4 figure

    Laser Phase and Frequency Stabilization Using Atomic Coherence

    Full text link
    We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic coherence (dipole oscillations) as a phase memory of the transmitting laser field. A preliminary experiment using a distributed feedback laser diode and a rubidium vapor cell demonstrates a shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This method would improve the performance of gas-cell-based optical atomic clocks and magnetometers and facilitate laser-cooling experiments using narrow transitions.Comment: 7 pages, 6 figures, appendix on the derivation of Eq.(3) (transfer function for a polarization-spectroscopy-based frequency discriminator) has been adde

    Zener double exchange from local valence fluctuations in magnetite

    Get PDF
    Magnetite (Fe3_{3}O4_{4}) is a mixed valent system where electronic conductivity occurs on the B-site (octahedral) iron sublattice of the spinel structure. Below TV=122T_{V}=122 K, a metal-insulator transition occurs which is argued to arise from the charge ordering of 2+ and 3+ iron valences on the B-sites (Verwey transition). Inelastic neutron scattering measurements show that optical spin waves propagating on the B-site sublattice (∼\sim80 meV) are shifted upwards in energy above TVT_{V} due to the occurrence of B-B ferromagnetic double exchange in the mixed valent metallic phase. The double exchange interaction affects only spin waves of Δ5\Delta_{5} symmetry, not all modes, indicating that valence fluctuations are slow and the double exchange is constrained by electron correlations above TVT_{V}.Comment: 4 pages, 5 figure

    Quantum rainbow scattering at tunable velocities

    Full text link
    Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances

    Systematic errors in strong gravitational lensing reconstructions, a numerical simulation perspective

    Get PDF
    We present the analysis of a sample of twenty-four SLACS-like galaxy-galaxy strong gravitational lens systems with a background source and deflectors from the Illustris-1 simulation. We study the degeneracy between the complex mass distribution of the lenses, substructures, the surface brightness distribution of the sources, and the time delays. Using a novel inference framework based on Approximate Bayesian Computation, we find that for all the considered lens systems, an elliptical and cored power-law mass density distribution provides a good fit to the data. However, the presence of cores in the simulated lenses affects most reconstructions in the form of a Source Position Transformation. The latter leads to a systematic underestimation of the source sizes by 50 per cent on average, and a fractional error in H0H_{0} of around 25−19+3725_{-19}^{+37} per cent. The analysis of a control sample of twenty-four lens systems, for which we have perfect knowledge about the shape of the lensing potential, leads to a fractional error on H0H_{0} of 12−3+612_{-3}^{+6} per cent. We find no degeneracy between complexity in the lensing potential and the inferred amount of substructures. We recover an average total projected mass fraction in substructures of fsub<1.7−2.0×10−3f_{\rm sub}<1.7-2.0\times10^{-3} at the 68 per cent confidence level in agreement with zero and the fact that all substructures had been removed from the simulation. Our work highlights the need for higher-resolution simulations to quantify the lensing effect of more realistic galactic potentials better, and that additional observational constraint may be required to break existing degeneracies.Comment: Accepted by MNRA

    Non-degenerate four-wave mixing in rubidium vapor: transient regime

    Full text link
    We investigate the transient response of the generated light from Four-Wave Mixing (FWM) in the diamond configuration using a step-down field excitation. The transients show fast decay times and oscillations that depend on the detunings and intensities of the fields. A simplified model taking into account the thermal motion of the atoms, propagation, absorption and dispersion effects shows qualitative agreement with the experimental observations with the energy levels in rubidium (5S1/2, 5P1/2, 5P3/2 and 6S1/2). The atomic polarization comes from all the contributions of different velocity classes of atoms in the ensemble modifying dramatically the total transient behavior of the light from FWM.Comment: 11 pages, 11 figures, to be published in Physical Review
    • …
    corecore