research

Zener double exchange from local valence fluctuations in magnetite

Abstract

Magnetite (Fe3_{3}O4_{4}) is a mixed valent system where electronic conductivity occurs on the B-site (octahedral) iron sublattice of the spinel structure. Below TV=122T_{V}=122 K, a metal-insulator transition occurs which is argued to arise from the charge ordering of 2+ and 3+ iron valences on the B-sites (Verwey transition). Inelastic neutron scattering measurements show that optical spin waves propagating on the B-site sublattice (\sim80 meV) are shifted upwards in energy above TVT_{V} due to the occurrence of B-B ferromagnetic double exchange in the mixed valent metallic phase. The double exchange interaction affects only spin waves of Δ5\Delta_{5} symmetry, not all modes, indicating that valence fluctuations are slow and the double exchange is constrained by electron correlations above TVT_{V}.Comment: 4 pages, 5 figure

    Similar works