85 research outputs found

    The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

    Get PDF
    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease

    Phylogeny Disambiguates the Evolution of Heat-Shock cis-Regulatory Elements in Drosophila

    Get PDF
    Heat-shock genes have a well-studied control mechanism for their expression that is mediated through cis-regulatory motifs known as heat-shock elements (HSEs). The evolution of important features of this control mechanism has not been investigated in detail, however. Here we exploit the genome sequencing of multiple Drosophila species, combined with a wealth of available information on the structure and function of HSEs in D. melanogaster, to undertake this investigation. We find that in single-copy heat shock genes, entire HSEs have evolved or disappeared 14 times, and the phylogenetic approach bounds the timing and direction of these evolutionary events in relation to speciation. In contrast, in the multi-copy gene Hsp70, the number of HSEs is nearly constant across species. HSEs evolve in size, position, and sequence within heat-shock promoters. In turn, functional significance of certain features is implicated by preservation despite this evolutionary change; these features include tail-to-tail arrangements of HSEs, gapped HSEs, and the presence or absence of entire HSEs. The variation among Drosophila species indicates that the cis-regulatory encoding of responsiveness to heat and other stresses is diverse. The broad dimensions of variation uncovered are particularly important as they suggest a substantial challenge for functional studies

    A microarray study of MPP(+)-treated PC12 Cells: Mechanisms of toxicity (MOT) analysis using bioinformatics tools

    Get PDF
    BACKGROUND: This paper describes a microarray study including data quality control, data analysis and the analysis of the mechanism of toxicity (MOT) induced by 1-methyl-4-phenylpyridinium (MPP(+)) in a rat adrenal pheochromocytoma cell line (PC12 cells) using bioinformatics tools. MPP(+ )depletes dopamine content and elicits cell death in PC12 cells. However, the mechanism of MPP(+)-induced neurotoxicity is still unclear. RESULTS: In this study, Agilent rat oligo 22K microarrays were used to examine alterations in gene expression of PC12 cells after 500 μM MPP(+ )treatment. Relative gene expression of control and treated cells represented by spot intensities on the array chips was analyzed using bioinformatics tools. Raw data from each array were input into the NCTR ArrayTrack database, and normalized using a Lowess normalization method. Data quality was monitored in ArrayTrack. The means of the averaged log ratio of the paired samples were used to identify the fold changes of gene expression in PC12 cells after MPP(+ )treatment. Our data showed that 106 genes and ESTs (Expressed Sequence Tags) were changed 2-fold and above with MPP(+ )treatment; among these, 75 genes had gene symbols and 59 genes had known functions according to the Agilent gene Refguide and ArrayTrack-linked gene library. The mechanism of MPP(+)-induced toxicity in PC12 cells was analyzed based on their genes functions, biological process, pathways and previous published literatures. CONCLUSION: Multiple pathways were suggested to be involved in the mechanism of MPP(+)-induced toxicity, including oxidative stress, DNA and protein damage, cell cycling arrest, and apoptosis

    The Bidirectional Relationship Between Sleep and Inflammation Links Traumatic Brain Injury and Alzheimer's Disease

    Get PDF

    Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone.

    No full text
    Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been simulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. We report here that the hsp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reporter constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is a primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes

    Identification of a sequence element in the promoter of the Drosophila melanogaster hsp23 gene that is required for its heat activation.

    No full text
    The expression of Drosophila melanogaster hsp23-Escherichia coli beta-galactosidase hybrid genes containing different segments of the 5' non-transcribed sequence of the hsp23 gene has been examined at the RNA and protein levels in Xenopus oocytes. Transcription of the hybrid genes is initiated correctly. Mutant genes with hsp23 gene promoter segments of at least 140 bp in length are strongly heat-activated while genes with shorter promoter segments are expressed constitutively and at low levels. This maps an element required for the heat-controlled expression of the D. melanogaster hsp23 gene to a region, approximately 140 bp upstream from the start of the transcription site, which contains a sequence (CGAGAAGTT-TCGTGT) that is closely related to the one responsible for the heat regulation of the hsp70 gene. These findings demonstrate the importance of this regulatory sequence for a second hsp gene and support the notion that hsp genes are heat-regulated by a common mechanism. The functional element in the hsp23 gene promoter is located greater than 80 bp further upstream from the TATA box than the relevant element in the hsp70 gene promoter. Even though other related sequences are present further upstream and downstream from the functional element, they play at most an auxiliary role in the regulation of hsp23 gene expression

    Organization of the Drosophila melanogaster hsp70 heat shock regulation unit.

    No full text
    Expression from the Drosophila melanogaster hsp70 promoter was controlled by a regulatory unit that was composed of two sequence elements that resembled the heat shock consensus sequence. The unit functioned in both orientations and at different distances from downstream promoter sequences. Each element of the unit alone was essentially inactive. Association of two elements resulted in a dramatic increase of transcription from the hsp70 promoter. This synergistic effect was independent of the relative orientation of the elements and, to a large extent, of the distance between them. Duplication of a region containing only one element also yielded a highly active, heat-regulated promoter. Genes with three to five elements were three to four times more active than those with a single regulatory unit
    corecore