841 research outputs found

    Limits on isotropic Lorentz violation in QED from collider physics

    Get PDF
    We consider the possibility that Lorentz violation can generate differences between the limiting velocities of light and charged matter. Such effects would lead to efficient vacuum Cherenkov radiation or rapid photon decay. The absence of such effects for 104.5 GeV electrons at the Large Electron Positron collider and for 300 GeV photons at the Tevatron therefore constrains this type of Lorentz breakdown. Within the context of the standard-model extension, these ideas imply an experimental bound at the level of -5.8 x 10^{-12} <= \tilde{\kappa}_{tr}-(4/3)c_e^{00} <= 1.2 x 10^{-11} tightening existing laboratory measurements by 3-4 orders of magnitude. Prospects for further improvements with terrestrial and astrophysical methods are discussed.Comment: Replaced with final version published in PR

    Matter-gravity couplings and Lorentz violation

    Get PDF
    The gravitational couplings of matter are studied in the presence of Lorentz and CPT violation. At leading order in the coefficients for Lorentz violation, the relativistic quantum hamiltonian is derived from the gravitationally coupled minimal Standard-Model Extension. For spin-independent effects, the nonrelativistic quantum hamiltonian and the classical dynamics for test and source bodies are obtained. A systematic perturbative method is developed to treat small metric and coefficient fluctuations about a Lorentz-violating and Minkowski background. The post-newtonian metric and the trajectory of a test body freely falling under gravity in the presence of Lorentz violation are established. An illustrative example is presented for a bumblebee model. The general methodology is used to identify observable signals of Lorentz and CPT violation in a variety of gravitational experiments and observations, including gravimeter measurements, laboratory and satellite tests of the weak equivalence principle, antimatter studies, solar-system observations, and investigations of the gravitational properties of light. Numerous sensitivities to coefficients for Lorentz violation can be achieved in existing or near-future experiments at the level of parts in 10^3 down to parts in 10^{15}. Certain coefficients are uniquely detectable in gravitational searches and remain unmeasured to date.Comment: 59 pages two-column REVTe

    Could One Find Petroleum Using Neutrino Oscillations in Matter?

    Get PDF
    In neutrino physics, it is now widely believed that neutrino oscillations are influenced by the presence of matter, modifying the energy spectrum produced by a neutrino beam traversing the Earth. Here, we will discuss the reverse problem, i.e. what could be learned about the Earth's interior from a single neutrino baseline energy spectrum, especially about the Earth's mantle. We will use a statistical analysis with a low-energy neutrino beam under very optimistic assumptions. At the end, we will note that it is hard to find petroleum with such a method, though it is not too far away from technical feasibility.Comment: 6 pages, 4 figures, EPL LaTeX. Final version to be published in Europhys. Let

    Bounds on Lorentz and CPT Violation from the Earth-Ionosphere Cavity

    Full text link
    Electromagnetic resonant cavities form the basis of many tests of Lorentz invariance involving photons. The effects of some forms of Lorentz violation scale with cavity size. We investigate possible signals of violations in the naturally occurring resonances formed in the Earth-ionosphere cavity. Comparison with observed resonances places the first terrestrial constraints on coefficients associated with dimension-three Lorentz-violating operators at the level of 10^{-20} GeV.Comment: 8 pages REVTe

    Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir)

    Get PDF
    We model and compare the biological and financial constraints of four prescriptions that serve as alternatives to conventional clearcutting followed by planting in eastern and western boreal mixedwood stands. These alternative prescriptions for full or partial conifer stocking are (1) reliance on advance regeneration with or without augmentation by fill-planting; (2) understory scarification during a mast year; (3) direct seeding either aerially or with a scarifier-seeder; and (4) underplanting. Our main conclusions concerning the biological constraints are that (1) advance regeneration, mainly of balsam fir in the east and white spruce in the west, requires >26 000 and > 4000 trees/ha (because of different distributions), respectively, to achieve full conifer stocking; (2) reliance on a mast year requires at least 6 m2/ha of mature conifer basal area, but much less if some advance regeneration is present or only moderate stocking is desired; (3) aerial seeding with 35% scarification requires about a half-million seeds/ha to achieve full conifer stocking, while a scarifier-seeder would require only a third of this application rate; and (4) underplanting is constrained to aspen stands with >25% incident light at planting height. In all cases, alternative prescriptions become more feasible if only moderate or minimal stocking is the silvicultural objective. A costing exercise for the four prescriptions in comparison with a clearcut followed by planting shows that reliance on advance regeneration or understory planting are the cheapest alternatives to achieve full or partial conifer stocking. With the exception of full conifer stocking in situations where there is little advance regeneration (and where herbicides can be used), conventional plantations are never the cheapest approach. In such cases, fill planting and use of a scarifier-seeder become viable options. Aerial seeding and reliance on a mast year are the most expensive of the alternatives. We conclude, tentatively, that there is enough conifer basal area in most of the eastern boreal mixedwood of Canada to allow for the use of either or both a mast year and advance regeneration to achieve full or partial conifer stocking. By contrast, in the west conifer basal area will seldom be sufficient for natural seeding, and the density of advance regeneration is likewise often too low. Finally, because of light constraints, understory planting appears to have a much wider applicability in the west than in the east

    Lorentz- and CPT-violating models for neutrino oscillations

    Get PDF
    A class of calculable global models for neutrino oscillations based on Lorentz and CPT violation is presented. One simple example matches established neutrino data from accelerator, atmospheric, reactor, and solar experiments, using only two degrees of freedom instead of the usual five. A third degree of freedom appears in the model, and it naturally generates the MiniBooNE low-energy anomalies. More involved models in this class can also accommodate the LSND anomaly and neutrino-antineutrino differences of the MINOS type. The models predict some striking signals in various ongoing and future experiments.Comment: 17 pages two-column REVTe
    • …
    corecore