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We consider the possibility that Lorentz violation can generate differences between the limiting
velocities of light and charged matter. Such effects would lead to efficient vacuum Cherenkov
radiation or rapid photon decay. The absence of such effects for 104.5 GeV electrons at the Large
Electron Positron collider and for 300 GeV photons at the Tevatron therefore constrains this type
of Lorentz breakdown. Within the context of the standard-model extension, these ideas imply an
experimental bound at the level of −5.8 × 10−12

≤ κ̃tr − (4/3)c00

e ≤ 1.2 × 10−11 tightening existing
laboratory measurements by 3–4 orders of magnitude. Prospects for further improvements with
terrestrial and astrophysical methods are discussed.

PACS numbers: 11.30.Cp, 12.20.-m, 41.60.Bq, 29.20.-c

I. INTRODUCTION

Established physics is successfully described by two
distinct theories: general relativity (GR) and the stan-
dard model (SM) of particle physics. These two theories
are commonly believed to arise as the low-energy limit
of a more fundamental Planck-scale framework that con-
sistently merges gravity and quantum mechanics. Since
direct measurements at this scale are presently imprac-
tical, experimental research in this field relies largely on
ultrahigh-precision searches for Planck-suppressed effects
at attainable energies.

One candidate effect within this context is a minute
breakdown of Lorentz invariance [1]. Lorentz symmetry
represents a cornerstone of both GR and the SM, so that
any observed deviation from this symmetry would im-
ply new physics. A number of theoretical approaches to
underlying physics, such as strings [2], noncommutative
field theories [3], cosmologically varying fields [4], quan-
tum gravity [5], random-dynamics models [6], multiverses
[7], brane-world scenarios [8], and massive gravity [9], are
known to accommodate small violations of Lorentz in-
variance at low energies. Searches for such violations are
also motivated by the seemingly fundamental character
of Lorentz symmetry: it should be buttressed as firmly
as possible by experimental evidence.

At currently attainable energies, Lorentz-violating ef-
fects are expected to be described by an effective field
theory [10]. The standard-model extension (SME) pro-
vides the general framework in this context [11, 12], con-
taining both GR and the SM as limiting cases. The ad-
ditional Lagrangian terms of the SME include all oper-
ators for Lorentz violation that are scalars under coor-
dinate changes. The SME has already provided the ba-
sis for the analysis of numerous experimental searches
for Lorentz breakdown [13], including ones with photons
[14, 15, 16, 17], electrons [18, 19, 20], protons and neu-
trons [21, 22, 23, 24, 25], mesons [26], muons [27], neu-
trinos [28], the Higgs [29], and gravity [30, 31].

The speed of light in particular has played a key role
in both the conception of Lorentz symmetry and its early
experimental tests. The continuing importance of elec-
trodynamics to the subject is illustrated by the high pre-
cision with which the SME’s photon sector is bounded.
However, the most notable exception to these tight lim-
its has been the SME κ̃tr coefficient, which parameter-
izes isotropic shifts in the speed of light. While the gap
in precision to other laboratory constraints on electrody-
namics was, until recently, at least 5 orders of magnitude,
we recently published new results employing data from
CERN’s Large Electron Positron (LEP) collider and Fer-
milab’s Tevatron, improving existing laboratory limits on
κ̃tr by 3–4 orders of magnitude [32].

In this paper, we expand on our recent work to pro-
vide a detailed analysis of the sensitivity of collider ex-
periments to κ̃tr. The outline of this paper is as fol-
lows. In Sec. II, we review the basics of Lorentz-violating
electrodynamics coupled to charged matter and present
the basic idea behind the physics leading to our con-
straints on κ̃tr. Section III employs the absence of vac-
uum Cherenkov radiation to limit positive values of κ̃tr.
Constraints on negative values of κ̃tr, inferred from pho-
ton stability, are derived in Sec. IV. Section V presents a
brief summary and mentions future possibilities for mea-
suring κ̃tr, along with some of the associated projected
bounds. Supplementary material is collected in two ap-
pendices. Unless noted otherwise, we work in natural
units c = ~ = 1, and our convention for the metric sig-
nature is (+,−,−,−).

II. BASICS

The photon and electron sectors of the minimal SME
[11] are described by the Lagrangian

L = − 1
4F

2 − 1
4 (kF )κλµνFκλFµν + (kAF )µAν F̃µν

+ 1
2 i ψ Γν

↔

Dν ψ − ψMψ , (1)
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where

Γν ≡ γν + cµν
e γµ + dµν

e γ5γµ ,

M ≡ me + bµeγ5γµ + 1
2H

µν
e σµν , (2)

Fµν = ∂µAν −∂νAµ is the electromagnetic field-strength

tensor, and F̃µν = (1/2)ǫµνρσFρσ denotes its dual. The
spinor ψ describes electrons and positrons of mass me,
and the usual U(1)-covariant derivative is denoted by
Dµ = ∂µ+ieAµ. The SME coefficients (kF )µνρλ, (kAF )µ,
bµe , cµν

e , dµν
e , and Hµν

e control the extent of Lorentz and
CPT violation.

In this work, we are primarily interested in the κ̃tr

component of (kF )κλµν , and will set (kAF )µ to zero. The
(kF )κλµν coefficient possesses the symmetries of the Rie-
mann curvature tensor, and its double trace vanishes
(kF )κλ

κλ = 0, leaving 19 independent components. To
exhibit κ̃tr, we decompose (kF )κλµν such that the elec-
tromagnetic component of the Lagrangian (1) becomes:

L =
1

2

[

(1 + κ̃tr)E
2 − (1 − κ̃tr)B

2
]

+
1

2
E · (κ̃e+ + κ̃e−) ·E

− 1

2
B · (κ̃e+ − κ̃e−) · B + E · (κ̃o+ + κ̃o−) ·B . (3)

Here, the dimensionless parameter κ̃tr and the dimen-
sionless and traceless 3 × 3 matrices κ̃e−, κ̃e+, κ̃o+, and
κ̃o− are defined in terms of the (kF )κλµν coefficients [14]
with κ̃tr ≡ (2/3)(kF )µ

0µ0. Note that the above decom-
position of (kF )κλµν into κ̃ coefficients is not manifestly
coordinate independent: under changes of the observer
inertial frame, the various κ̃ parameters mix. To facili-
tate comparisons between different experimental tests, a
reference coordinate system must therefore be selected.
A conventional choice is the Sun-centered celestial equa-
torial frame [14].

The parameterization determined by Eq. (3) is par-
ticularly intuitive because of its analogy to conventional
electrodynamics in macroscopic media [11, 14]. For ex-
ample, all κ̃ coefficients modify the photon dispersion
relation, and thus the phase speed of light cph. A sub-
set of them, namely κ̃o− and κ̃e+, affect each of the two
electromagnetic-wave polarizations differently leading to
birefringence. The absence of this type of birefringence in
spectropolarimetric studies of cosmological sources con-
strains κ̃o− and κ̃e+ at the level of 10−37 [33]. The re-
maining coefficients κ̃e−, κ̃o+, and κ̃tr arise from the

k̃µν ≡ (kF )α
µαν (4)

component. They lead to polarization-independent shifts
in cph, so that other types of measurements are necessary.
A particularly sensitive measurement involves optical- or
microwave-cavity experiments that search for parity-even
anisotropies in cph. Assuming negligible Lorentz vio-
lation effects on the cavity itself, these tests set limits
on the elements of κ̃e− at the level of 10−17 [34]. The
parity-odd matrix κ̃o+ and the isotropic κ̃tr can be con-
strained indirectly with such measurements via higher-
order effects: the laboratory is boosted with respect to

the Sun-centered celestial equatorial frame, so that κ̃e−,
κ̃o+, and κ̃tr mix. The absence of any observed resultant
effect upon the cavity resonances yields κ̃o+ ∼< 10−13 [34],
and |κ̃tr| < 1.8 × 10−8 [35]. The latter had represented
the best laboratory bound on κ̃tr prior to the recent pa-
per [32] expanded here.

The present study exploits direct physical effects of κ̃tr

to obtain improved constraints on this coefficient. The
basic idea is that dispersion-relation modifications due
to κ̃tr would not only change cph, but also affect the
kinematics of the electromagnetic vertex. In contrast
to the conventional case, the three external legs of the
vertex can go simultaneously on shell allowing various
particle reactions to proceed that are normally forbidden
by Lorentz symmetry. We focus on two such reactions,
each occurring only for a specific sign of κ̃tr. The first is
vacuum Cherenkov radiation

f → f + γ for κ̃tr > 0 , (5)

and the second is photon decay

γ → f +f for κ̃tr < 0 . (6)

Here, γ denotes a photon, f a charged fermion, andf the
corresponding antifermion. These processes are depicted
in Fig. 1.

In what follows, we will explore how the observed ab-
sence of the reactions (5) and (6) provides bounds on
κ̃tr, expanding on our recently published paper on this
subject [32]. Similar ideas have been exploited previ-
ously [16, 36], primarily in the context of purely kine-
matical dispersion-relation tests [37]. In the present case,
the underlying SME Lagrangian permits the inclusion of
dynamical features, such as the rate at which the reac-
tions (5) and (6) proceed. Dynamical considerations are
often necessary to obtain convincing and conservative re-
sults [38, 39].

In addition to κ̃tr, other Lorentz-violating SME coeffi-
cients can lead to dispersion-relation modifications, and
thus to the reactions (5) or (6). However, the effects of
such additional coefficients can be safely neglected as long
as their scale S is small compared to the κ̃tr constraint to
be determined. The other relevant coefficients are those
of the fermion f , the remaining kF components (i.e., the
κ̃ matrices), and the kAF coefficient in Lagrangian (1).
Since we will primarily consider f to be an electron, the
relevant matter-sector coefficients in the minimal SME
are bµe , cµν

e , dµν
e , and Hµν

e of the electron. With these
considerations, the scale S is given by

S ≡ max

(

κ̃e±, κ̃o±,
kAF

me

,
be
me

, ce, de,
He

me

)

. (7)

Here, the absolute values of the individual components
of the SME coefficients are implied, and me the electron
mass, as before.

To interpret and determine the scale S correctly, cer-
tain subtleties need to be taken into account. One
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FIG. 1: Two possible electromagnetic-vertex configurations.
Charged fermions and antifermions are denoted by f and f ,
respectively. The photon is labeled by γ. In the conventional
case, energy–momentum conservation together with ordinary
dispersion relations prohibits the three external legs from go-
ing simultaneously on-shell. In the presence of the Lorentz-
violating κ̃tr modification of the photon dispersion relation
kinematically allows reactions (a) and (b) for κ̃tr > 0 and
κ̃tr < 0, respectively.

such is that elements of the electron’s cµν
e coefficient

are physically equivalent to the nonbirefringent κ̃ pa-
rameters, as can be established by a coordinate redefini-
tion. This means that only the anisotropic components
of cµν

e should enter the determination of S because only
anisotropic κ̃’s occur in S. More importantly, the equiv-
alence of cµν

e and the nonbirefringent κ̃’s implies that
our ultimate constraint upon κ̃tr is, strictly speaking, a
constraint upon the linear combination κ̃tr− (4/3)c00e . In
what follows, we will often scale the coordinates such that
c00e = 0, but undo this special choice of scaling and rein-
state c00e when stating results. A more complete discus-
sion of the above issues is contained in Appendix A. The
result of interest in the present context is that currently
S ∼ 10−13 dominated by the κ̃o+ matrix coefficient [13].
So we may indeed focus on κ̃tr and ignore other types of
Lorentz violation for photon–electron interactions.

We note in passing that vacuum Cherenkov radiation
can also occur for antifermions and that further uncon-
ventional processes, such as fermion–antifermion annihi-
lation into a single photon, are possible. Moreover, two-
photon emission and absorption processes, synchrotron
radiation, and inverse Compton processes can also be
modified. Some of these effects have been employed
in astrophysical contexts to extract general bounds on
∆cph/cph down to the 10−16 level [19].

III. VACUUM CHERENKOV RADIATION

In the present context, the vacuum Cherenkov ef-
fect (5) can only occur for positive κ̃tr. To leading order,
the modified dispersion relation for a photon with wave
vector pµ ≡ (Eγ , ~p) is [14]

E2
γ − (1 − κ̃tr)~p

2 = 0 . (8)

We scale the coordinates such that the fermion disper-
sion relation remains conventional. Energy-momentum
conservation for the process (5) then yields a threshold
energy EVCR,

EVCR =
1 − κ̃tr

√

(2 − κ̃tr)κ̃tr

m =
1√
2κ̃tr

m+O
(

√

κ̃tr

)

, (9)

which corresponds to the kinetic energy of a fermion with
mass m moving as fast as photons obeying (8) in the vac-
uum [40]. For charges with energies aboveEVCR, vacuum
Cherenkov radiation is kinematically allowed.

Here we constrain positive values of κ̃tr from the ob-
served absence of vacuum Cherenkov radiation in na-
ture. To set such constraints, vacuum Cherenkov radia-
tion would have to be efficient enough to be observable.
Close to the threshold energy EVCR, the dominant pro-
cess is single-photon emission, such that the charge falls
below threshold; an estimate for the corresponding rate
is [40]:

ΓVCR = αZ2m2 (Ef − EVCR)2

2E3
f

, (10)

where α is the fine-structure constant, Z the charge mea-
sured in multiples of the elementary charge, and Ef the
fermion energy. This shows the effect is undoubtedly effi-
cient: for example, a 104.5 GeV electron with an energy
of 1% above the threshold (9) would reach subluminal
speeds after traveling an average distance of 23 cm. We
therefore conclude that limits on κ̃tr can indeed be es-
tablished from the observed absence at particle colliders
of the vacuum Cherenkov effect for low-mass charges at
the highest possible energies.

A. Bounds from collider experiments

Common to all analyses of collider experiments is
a precise knowledge of the species and energy of the
potential vacuum Cherenkov emitter. At present, the
LEP experiment provides the best compromise between
a charge’s mass vs. its energy for terrestrial Cherenkov
constraints. As a result, we can immediately determine
that measurements of EVCR derived from the LEP e+e−

beams will constrain k̃µν −2cµν
e , independent of Lorentz-

violating effects for other particles. As shown in Ap-
pendix A, for the energies attained at LEP (∼ 100 GeV),
κ̃tr − (4/3)c00e is the only SME coefficient combination
that can contribute to vacuum Cherenkov radiation, per-
mitting a significantly simplified study. An analysis of
LEP data has the potential to yield rigorous one-sided
improvements upon previous laboratory constraints on
κ̃tr.

The LEP collider was a circular particle accelerator
approximately 27 km in circumference. This accelerator
was an exquisitely precise and carefully controlled de-
vice with a relative uncertainty in the center-of-mass en-
ergy ∆ECM/ECM less than 2.0 × 10−4 [41]. To keep the
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uncertainty at this level, minute effects such as Earth
tides, variations in the pressure of the local water ta-
ble, and even seasonal variations in the volume of the
nearby lake needed to be taken into account [41]. The
highest laboratory-frame energy attained at LEP was
ELEP = 104.5 GeV. We can obtain a first estimate for
a limit on κ̃tr by arbitrarily setting EVCR = 100 GeV.
Then, 104.5 GeV electrons or positrons would fall be-
low threshold after traveling approximately 1.2 cm. This
length is far shorter than the distance between super-
conducting radio-frequency cavities at LEP or even the
dimensions (5.8 m) of each of the dipole bending mag-
nets [41], so that such an effect would have been readily
apparent. The observed absence of such effects at LEP
implies EVCR > 100 GeV; together with Eq. (9), we then
obtain 0 ≤ κ̃tr ≤ 1.3 × 10−11. A more refined line of
reasoning is presented in the next paragraphs.

At ELEP = 104.5 GeV, the energy loss due to con-
ventional synchrotron radiation was U0 = 3.486 GeV per
electron or positron per turn [41]. The LEP circumfer-
ence of 26 659 m then predicts an average energy loss per
distance travelled of

dEsyn

dL
= 2.580 × 10−20 GeV2 . (11)

One of the three energy-calibration methods at LEP re-
lied upon the dependence of the synchrotron tune on
the energy loss. For this reason, a precise determina-
tion of the energy loss was paramount. Deviations from
the value (11) arise through parasitic-mode losses, finite
beam size and other quadrupole effects, and losses in the
corrector dipoles. The sum of these contributions is con-
servatively estimated to be 0.5 MeV per turn per particle
with at most a 20% uncertainty [41]. This implies that

dECher

dL
≤ 10−4 dEsyn

dL
, (12)

where dECher/dL denotes the energy loss per distance
due to vacuum Cherenkov radiation.

The final step is to determine a lower bound for EVCR

such that the inequality (12) together with the value (11)
is satisfied. To this end, recall that for charges near EVCR

the dominant Cherenkov process for reaching subthresh-
old energies proceeds via single-photon emission (10).
The energy loss per Cherenkov event must therefore be
greater than E − EVCR. The average distance L tra-
versed by an electron before Cherenkov emission occurs
is 1/ΓVCR. With Eq. (10), this yields

dECher

dL
≥ αm2

e

(ELEP − EVCR)3

2E3
LEP

, (13)

where me = 5.11 × 10−4 GeV denotes the electron mass,
as before. It follows that EVCR can at most be 1.5 MeV
below ELEP = 104.5 GeV. With Eq. (9), we then obtain

0 ≤ κ̃tr − 4
3 c

00
e ≤ 1.2 × 10−11 , (14)

explicitly including the contribution of c00e . The
above reasoning also shows that the uncertainty in the
bound (14) is primarily determined by the accuracy of
the electron-energy measurement. As this limit is still
much larger than the scale S defined in Eq. (7), other
photon- or electron-sector coefficients are not further con-
strained by this reasoning. At the same time, this pro-
vides the justification for dropping these additional coef-
ficients from our analysis.

B. Cosmic-ray analyses

Vacuum Cherenkov tests compare the respective group
velocities ~vX and ~vγ of the charge X and the photon γ.
Since both particles may exhibit independent Lorentz-
violating effects, vacuum Cherenkov radiation will typ-
ically depend on parameters originating from both the
photon and the charge sectors of the SME. This means
that any analysis of Lorentz-symmetry violation based
on vacuum Cherenkov physics must address the following
points: First, in the absence of independent constraints
from other experiments, a Cherenkov analysis must in-
corporate all relevant Lorentz-symmetry violating coeffi-
cients from the photon as well as the charge. Second, the
nature of the charge must be known, since it would other-
wise be unclear as to which SME coefficients are actually
constrained. The analysis of the previous subsection eas-
ily addresses the second point, as it involves the electrons
and positrons at LEP. The first point is also addressed in
detail in Appendix A: the availability of complementary
experimental results leads to an estimation of the scale S
in Eq. 7 which justifies dropping all but the single com-
bination κ̃tr − (4/3)c00e from consideration.

Charged ultrahigh-energy cosmic rays (UHECRs) offer
the potential to yield the tightest limits on positive values
of κ̃tr, as they possess energies orders of magnitude above
those available in any laboratory [16]. Unfortunately, ef-
forts to use observations of UHECRs to constrain Lorentz
violation in the photon sector are currently beleaguered
by a number of interpretational difficulties. Chief among
them is the lack of certainty as to the composition of
UHECR primaries, leading to an associated uncertainty
as to which SME coefficients are constrained. Although
the observed UHECR primaries are believed to be sin-
gle protons, the possibility that the observations could
be due to the scattering of more massive nuclei, high-
energy photons, or Lorentz-violating particles exhibiting
no or a qualitatively different Cherenkov effect, such as
stable neutral pions or neutrons [36], cannot yet be ex-
cluded. This uncertainty will likely be ameliorated in
coming years with continued observations.

If the UHECR primaries are found to be single pro-
tons, then in principle the analysis in Ref. [16] establishes
that constraints on a combination of photon and proton
SME coefficients at the 10−21 . . . 10−22 level can be ob-
tained. In contrast to our LEP-electron study, however,
there is an insufficient number of complementary exper-
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imental bounds to solely focus on the nine parameters
2cµν

p − k̃µν [42, 43]. For example, the dµν
p SME coeffi-

cient also affects the maximal attainable velocity of the
proton and can therefore lead to vacuum Cherenkov radi-
ation. But thus far, only two of its nine components have
been bounded [22], so in general this coefficient needs
to be taken into consideration when performing vacuum
Cherenkov tests with protons.

If, instead, the UHECR primaries are identified as
atomic nuclei such as He, 12C, or even 56Fe nuclei, as
is assumed in Ref. [16], various additional considera-
tions are necessary. For example, the physical system
under consideration now also contains neutrons in addi-
tion to photons and protons. This means that in prin-
ciple neutron SME coefficients need to be considered as
well. Moreover, the potential Cherenkov emitter is now a
bound state without its own SME coefficients. One could
introduce effective Lorentz-violating parameters for the
nucleus, but this would hamper comparison with other
limits on Lorentz violation for the photon, proton, or
neutron. It is therefore preferable to determine the group
velocity of the nucleus in terms of the proton’s and neu-
tron’s SME coefficients via simplified nuclear modeling.
To this end, it may be possible to employ the nuclear
Schmidt model along the lines of the analysis in Ref. [22].

IV. PHOTON DECAY

For negative κ̃tr, the phase speed of light is greater
than unity [44]. Vacuum Cherenkov radiation is then
forbidden and cannot be used to set experimental lim-
its. However, the kinematics of the electromagnetic ver-
tex now allows photon decay into fermion–antifermion
pairs (6). The dispersion relation (8) remains valid and
establishes that photons with energies

Epair =
2m

√

κ̃tr(κ̃tr − 2)
=

√

2

−κ̃tr
m+ O

(

√

κ̃tr

)

(15)

or above are unstable, where m, as before, is the fermion
mass. In Appendix B, we derive the corresponding tree-
level decay rate (B9), which to leading order in κ̃tr is

Γpair =
2

3
αEγ

m2

E2
pair

√

1 −
E2

pair

E2
γ

(

2 +
E2

pair

E2
γ

)

. (16)

Here, Eγ denotes the photon energy and α is again the
fine-structure constant [46]. The efficiency of this photon
decay can be established by example: a 40 GeV photon
with energy 1% above threshold would decay after trav-
eling an average distance of about 15µm.

The above results show that we may obtain limits
on negative values of κ̃tr from the existence of high-
energy long-lived photons. As for the Cherenkov anal-
ysis, cosmic-ray observations provide the potential to
reach the highest sensitivity. For example, primary pho-
tons from the Crab nebula with energies up to 80 TeV

have been reported by HEGRA [47]. Equation (15) then
implies the possibility of one-sided limits on κ̃ coefficients
at the 10−16 level. In addition to some of the nonbire-
fringent κ̃ matrices, certain SME coefficients of the elec-
tron cannot be neglected at these scales. In view of the
small event sample for TeV gamma rays, the extraction
of comprehensive and clean bounds on this potentially
large number of SME coefficients appears unlikely at the
present time. Estimates for limits from astrophysical
TeV gamma rays would certainly be useful, but such an
analysis lies outside the scope of the present study.

We focus instead on high-energy photons generated in
Earth-based laboratories. As for vacuum Cherenkov ra-
diation, the superior experimental control allows cleaner,
more conservative limits albeit with reduced sensitivity.
In this context, LEP becomes again one possible exper-
iment to consider: e.g., past studies of quark-to-photon
fragmentation involved a careful analysis of final-state
photons in LEP scattering events. In such analyses, pho-
tons with energies up to 42 GeV have been studied at
OPAL [48], implying such photons survived long enough
to interact normally with the OPAL calorimeter. Equa-
tion (15) then allows limits at the level −3×10−10 ∼< κ̃tr.
Other LEP studies at L3 [49] and OPAL [50] detectors,
which were optimized for QED precision tests, have mea-
sured pair annihilation e+e− → γγ at center-of-mass en-
ergies up to 209 GeV. This would yield an even better
bound of −5 × 10−11 ∼< κ̃tr.

Nevertheless, the highest energies at terrestrial accel-
erators are not reached with electrons but with hadrons.
For example, Fermilab’s Tevatron pp collider produces
center-of-mass energies up to 1.96 TeV and offers there-
fore excellent potential for producing high-energy pho-
tons. One particular process, namely isolated-photon
production with an associated jet, is of importance for
QCD studies and has therefore been investigated with
the D0 detector. In this context, photons of energies up
to 442 GeV have been observed [51]. The implied stabil-
ity of photons with such energies suggests an estimate of
−3 × 10−12 ∼< κ̃tr. However, the small number of events
observed at this energy did not warrant inclusion into
these QCD investigations.

Our present analysis uses only D0 photon data at
lower energies, where comparisons to QCD predictions
were made. With this conservative restriction, photon-
energy bins up to 340.5 GeV were measured [52]. For
this data, the aforementioned jet-plus-photon produc-
tion was measured as a function of Eγ in four angu-
lar regions. These four directional configurations were
characterized by the photon and jet pseudorapidities yγ

and yjet. The largest deviations between experiment and
QCD theory in the 340.5 GeV energy bin occurred in the
{|yjet| < 0.8, yγyjet < 0} angular region [52]. The mea-
sured cross section was about 52% of the QCD predic-
tion. The relative uncertainties in the experimental value
were 46.1% statistical, 12.9% systematic, and a 7.8% nor-
malization error [52]. To account for uncertainties, the
employed theoretical scales were varied by a factor of 2,
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which led to a relative spread of about 11% for theoret-
ical predictions [52]. Combining these errors in quadra-
ture yields an overall relative uncertainty of about 50%.
The experiment-to-theory ratio in the 340.5 GeV energy
bin is therefore 0.52 ± 0.26 for the selected angular con-
figuration. We can thus estimate that at least 26% of the
produced photons have reached the detector.

The layout of the D0 detector implies that measured
photons traverse a minimum distance of lmin ≃ 78 cm:
they have to travel through various drift chambers and
the transition-radiation detector before they interact and
are detected in the central calorimeter [53]. With the
above photon-flux estimate, we then obtain

exp (−Γpair lmin) ≥ 0.26 . (17)

The 340.5 GeV energy bin extended from 300 GeV to
400 GeV. We therefore conservatively take Eγ = 300
GeV in our analysis. With Eq. (16), we then find that
Epair cannot be more than about 0.1 keV below Eγ . Ex-
plicitly including the contribution of c00e , we therefore
conclude that

− 5.8 × 10−12 ≤ κ̃tr − 4
3c

00
e . (18)

The uncertainty in the constraint (18) is essentially de-
termined by the accuracy of the photon-energy measure-
ment. As with the Cherenkov bound, the limit (18) is
larger than the scale S, so other photon- or electron-
sector coefficients are not further constrained by this ar-
gument. At the same time, this justifies the exclusion of
these additional coefficients from our study.

V. SUMMARY AND OUTLOOK

In this paper, we have considered new physical effects
arising from a Lorentz-violating CPT-even deviation of
the phase speed of light cph from its conventional value
c. At the theoretical level, such a deviation is controlled
by the κ̃tr coefficient of the SME. This coefficient is de-
fined with respect to the Sun-centered celestial equatorial
coordinate system, in which the phase-speed deviation is
isotropic. At the phenomenological level, a positive value
for κ̃tr would lead to vacuum Cherenkov radiation (5) at
the rate (10) for charges with energies above the thresh-
old (9); whereas a negative value would cause photon-
decay (6) at the rate (16) for photons with energies above
the threshold (15).

We have exploited the fact that both phenomena are
efficient threshold effects to extract constraints on κ̃tr

from the nonobservation of vacuum Cherenkov radia-
tion and photon decay. In particular, the absence of
the Cherenkov effect at LEP leads to the bound (14),
and from the stability of photons at the Tevatron the
constraint (18) can be inferred. These results give the
combined conservative limit

− 5.8 × 10−12 ≤ κ̃tr − 4
3c

00
e ≤ 1.2 × 10−11 . (19)

This limit represents an improvement of previous labo-
ratory bounds by 3–4 order of magnitude.

There are various ways for complementary or improved
bounds to be set on κ̃tr. For instance, planned low-energy
laboratory tests could reach a level of 10−11 or better [17].
Another idea is to exploit photon triple splitting, as it is
known that the amplitude for this effect is nonzero in
the presence of cµν Lorentz violation [54]. This effect
does not involve a threshold, and so high energies are
not necessarily required.

Other future terrestrial bounds could employ the ab-
sence of vacuum Cherenkov radiation and photon decay
at even higher energies than the ones considered here.
One example would be the prospective International Lin-
ear Collider. If we take the laboratory-frame energy to
be 500 GeV, the International Linear Collider gives a pro-
jected one-sided Cherenkov limit of 0 ≤ κ̃tr − (4/3)c00e ≤
5.2 × 10−13. Similarly, the Large Hadron Collider will
reach about 7 times the energy of the Tevatron. Un-
der the assumption that the energy of produced photons
scales by the same factor, the limit (18) can be tightened
by a factor of 50. Other improvements of the photon-
decay bound would be possible with a dedicated D0
(or possibly Large Hadron Collider) analysis: Ultrahigh-
energy events not considered for QCD tests could be used
because the statistics of such events is not of primary im-
portance for photon-decay studies. Moreover, the end of
the photon-energy spectrum could be exploited more ef-
ficiently by avoiding large energy bins.

We note that during the preparation of this
manuscript, Brett Altschul performed a more detailed
analysis of synchrotron radiation processes at LEP, ob-
taining an improved two-sided limit on isotropic viola-
tions of Lorentz symmetry for light relative to electrons
of |κ̃tr − (4/3)c00e | ≤ 1.2 × 10−15 [55].

The largest potential for improved bounds on κ̃
coefficients—in the context of both vacuum Cherenkov
radiation and photon decay—lies probably in UHECR
physics [16, 46]: e.g., with a more reliable identification of
the UHECR primary particle, observations at still higher
energies, better coverage of the sky with more events, and
data analysis allowing for Lorentz violation in both the
primary and the decay products should open an avenue to
tap this potential more completely. A fundamental limit
on the experimental reach is that the Universe becomes
opaque to cosmic rays above certain thresholds due to
processes such as Greisen-Zatsepin-Kuzmin suppression
or scattering from IR photons.
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APPENDIX A: COORDINATE RESCALINGS

In this appendix, we present the details of our de-
termination of the scale S defined in Eq. (7) at which
Lorentz violation has been constrained for photons rel-
ative to electrons, based upon limits obtained from ter-
restrial tests. To accomplish this, we compare the re-
sults of experiments reporting bounds on Lorentz viola-
tion for photons, electrons, and protons. Making use of
these bounds is somewhat complicated by the assump-
tions made regarding the possibility of Lorentz violation
in other sectors of the SME.

Measurements of shifts and anisotropies in the vacuum
speed of light must be defined in terms of the velocity
of a chosen reference particle. In the SME, the limit-
ing velocity of any such reference particle is also subject
to Lorentz-violating shifts and anisotropies. As a result,
constraints upon the deviation of the speed of light based
upon interactions of light with electrons must be nar-
rowly interpreted as limits on the difference between the
degree to which Lorentz symmetry is violated in each
sector. This is a general feature of all tests of Lorentz
symmetry, which generally must be described as setting
limits on combinations of coefficients associated with not
one, but all involved particle species. In this sense, the
number of independent SME coefficients controlling the
type and extent of Lorentz violation in a given physical
system is increased.

Under certain circumstances, various SME coefficients
describing a given system may be physically equivalent
and can therefore not be distinguished. From a mathe-
matical viewpoint, there typically exist canonical trans-
formations that can eliminate one coefficient in favor of
the other. From an experimental viewpoint, this means
that such coefficients cannot be bounded or measured in-
dependently in the physical system in question. In such
a case, the number of independent SME coefficients is
therefore effectively reduced.

It is the interplay of the above two issues that is often
unappreciated in the literature. The interpretation of ex-
perimental constraints therefore requires special care. In
the present context, the former issue has been discussed
in various places in main text. The latter issue is not
only paramount for the precise formulation of our actual
bounds, but also for the interpretation of existing con-
straints necessary for the determination of the scale S.
The particular issue to be clarified in this appendix con-
cerns the k̃µν coefficient (i.e., κ̃e−, κ̃o+, κ̃tr) and cµν -type
coefficients. To simplify the discussion, we will set all
other types of SME coefficients to zero in what follows.

In the context of the SME for one-flavor QED, a the-
ory characterized by a nonzero symmetric, traceless cµν

e

tensor and a vanishing (kF )κλµν tensor exhibits the same
phenomenology as a theory in which cµν

e = 0 [14, 56] and

(kF )µνρσ =
1

2
(ηµρk̃νσ−ηµσ k̃νρ+ηνσ k̃µρ−ηνρk̃µσ), (A1)

provided that

k̃µν = −2cµν
e (A2)

at linear order. Thus, a k̃µν model is physically equiva-
lent to a cµν

e model if the models are related by Eq. (A2).
This fact can also be formally established via coordinate
rescalings [14, 56]. We may use this freedom to select a
particularly convenient scaling of the coordinates to sim-
plify calculations. For example, our analysis in the main
text is performed within a k̃µν model (i.e., the coordi-
nates are scaled such that cµν

e = 0), whereas our photon-
decay calculation in Appendix B employs a cµν

e model

(i.e., the coordinates are rescaled such that k̃µν = 0).
One way of quoting results, such as experimental con-
straints, is to employ a particular coordinate scaling and
clearly state this special scaling choice together with the
actual result.

The choices of rescaling form a continuous set and are
not only confined to the two canonical cases of cµν

e = 0

and k̃µν = 0 discussed above. An infinite number of
coordinate scalings with both cµν

e 6= 0 and k̃µν 6= 0 can
certainly be selected. In the present context, one can
show that with such general rescalings, physical effects
can only depend upon (and thus provide bounds for) the

value of 2cµν
e −k̃µν . This is intuitively reasonable because

the two Lorentz-violating effects considered in this work,
vacuum Cherenkov radiation and photon decay, depend
only on certain velocity differences between the electron
and the photon. Note in particular that the combination
2cµν

e − k̃µν does not pertain to a particular choice of scale
for the coordinates and therefore provides a second way
to quote results that is coordinate-scaling independent.
When formulating our final bounds in the main text, we
have adopted this latter choice of stating results.

Other experimental tests of Lorentz and CPT symme-
try are not generally confined to one-flavor QED; other
particle species are often involved. In such situations,
the above analysis is readily generalized: we may choose
one particle species to serve as the reference “ruler,” and
thus work in a coordinate system in which that species’
cµν coefficient (or k̃µν , if the reference is light) is zero.

With these considerations, we estimate the value S
provided by terrestrial experiments for the interaction of
light with electrons. Specifically, we will use the results
of a Cs-fountain clock experiment [23], and those of a se-
ries of tests involving optical resonators [34]. These tests
are sensitive to Lorentz violation in conventional matter,
which is made up of protons, neutrons, and electrons,
interacting electromagnetically. In this four-species sys-
tems, the Lorentz-violating effects under consideration
are described by four sets of SME coefficients: cµν

p , cµν
n ,

cµν
e , and k̃µν , where the subscripts p, n, and e respec-

tively denote the coefficients of protons, neutrons, and
electrons. One of these four sets of terms may be elimi-
nated by a scaling of coordinates, and so in practice only
three of these sets of parameters may independently con-
tribute to the physics.
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Although the Cs-fountain test [23] involves protons,
neutrons, electrons, and electromagnetism, the observed
frequencies turn out to be only sensitive to the value
of 2cµν

p − k̃µν . The constraints upon the eight spatially
anisotropic components are at the level of

|2cµν
p − k̃µν | < 10−21 . . . 10−25 . (A3)

We note that these results are presented in Ref. [23] in

coordinates such that k̃µν = 0, which corresponds to us-
ing light as a reference. In coordinates with protons as
the reference (i.e., cµν

p = 0), the Cs-fountain experiment

provides the constraint |k̃µν | < 10−21 . . . 10−25 for the

anisotropic components of k̃µν .
Next, we consider optical-resonator experiments [34],

which measure the resonance frequencies ν of light propa-
gating in vacuum inside two orthogonally oriented Fabry-
Pérot cavities. As previously shown [13, 15], these exper-
iments are sensitive to spatial anisotropies in the speed
of light (k̃µν) and to variations in the dimensions of the
resonators themselves. The cavity size is primarily deter-
mined by the electromagnetic interactions in the chemical
bonds. It therefore follows that the neutron’s contribu-
tion to the cavity size must be suppressed because it is
uncharged, having only a magnetic moment. Moreover,
the cavities are made of fused silica SiO2, and the com-
mon isotopes of oxygen and silicon have even numbers of
neutrons and spin zero. Pairing effects would therefore
tend to further suppress the influence of the neutron spin,
and so we conclude that the cavity frequencies should be
largely unaffected by cµν

n .
Bearing this suppression of neutron effects in mind,

two independent combinations of parameters remain that
can influence the observable F determined from the cav-
ity frequencies ν. This observable must therefore be
given, to leading order, by an expression of the form

F = const.+Aµν(2cµν
e − k̃µν)+Bµν(2cµν

p − k̃µν) , (A4)

where Aµν and Bµν are constants. Constraints on the
anisotropic pieces in Eq. (A4) at the 10−13 . . . 10−17 level
can be obtained by these cavity tests [34].

The Bµν term in Eq. (A4) can be dropped from these
optical-resonator bounds for the following reason: The
constants Aµν and Bµν are likely to be of similar size, as
there appears to be no convincing argument suggesting
that the SME effects in one of the three involved particle
species would dominate the length of chemical bonds. For
certain sample chemical bonds including fused silica, this
has indeed been verified [57]. The next step is to observe
that the independent Cs-fountain bound (A3) places a
much tighter constrained on the coefficient combination
multiplying Bµν than the best sensitivity 10−17 of the
optical-resonator test. We thus conclude that

|2cµν
e − k̃µν | < 10−13 . . . 10−17 (A5)

follows from the cavity experiments [34]. It is understood
that this bound refers to the anisotropic components of

2cµν
e − k̃µν. We remark that Ref. [34] chooses to state the

resulting experimental limit assuming scaled coordinates
such that cµν

e = 0.
The constraint (A5) taken together with Refs. [13, 20]

establish that S ∼ 10−13, dominated by the contribution
of the parity-odd κ̃o+ and c0J

e coefficients. Because the
limit we will derive on isotropic κ̃tr component lies above
this scale, we may indeed drop all other Lorentz-violating
corrections from our analysis.

APPENDIX B: PHOTON-DECAY RATE

Photon-decay rates in the presence of Lorentz violation
have been determined [58] for the dimension-three Chern-
Simons type SME coefficient (kAF )µ which governs pho-
ton triple splitting. In this appendix, we derive the tree-
level photon-decay rate into a fermion–antifermion pair
arising from the dimension-four SME κ̃tr coefficient, ap-
propriate for our purposes.

The starting point is a model with Lorentz-violating
photons and conventional charged leptons. In the present
situation it is convenient to consider a physically equiv-
alent model constructed with the coordinate redefinition
discussed in Sec. II and Appendix A. In particular, we
remove all Lorentz violation from the photon sector at
the cost of introducing a Lorentz-breaking cµν

e coefficient
in the lepton sector:

L′ = 1
2 iψ (γµ + cµν

e γν)
↔

Dµψ −mψψ − 1
4F

2 , (B1)

where Dµ = ∂µ + ieAµ is the usual covariant derivative.
The Lorentz-violating SME coefficient cµν

e is given in ex-
plicit form as

cµν
e = −1

4
κ̃tr diag(3, 1, 1, 1). (B2)

The advantage of the above description (B1) for κ̃tr

Lorentz violation is the following. Perturbation theory
in quantum field theory relies on the quantization of
the free-field sectors of the model. For Lorentz-violating
photons, such a quantization is lacking, but the quan-
tization of SME fermions is comparatively well under-
stood [11]. Moreover, we may employ the methodology
and notation of a previous tree-level calculation involving
cµν
e fermions [59].
Since κ̃tr − (4/3)c00e is nonzero, the lepton sector of

the model (B1) in our chosen coordinates contains un-
conventional time derivatives. The time evolution of ψ
can then be nonunitary, so its asymptotic states cannot
directly be identified with physical free-particle states.
A standard approach to avoid this potential interpreta-
tional difficulty is a redefinition of the spinor field chosen
to eliminate the additional time derivatives [59, 60]. In
the present situation, the field redefinition amounts to a
rescaling

ψ ≡ 1
√

1 − 3
4 κ̃tr

χ , (B3)
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FIG. 2: Tree-level Feynman diagram for photon decay.
Lorentz-violating effects are contained in the modified dis-
persion relation for the lepton and antilepton 4-momenta qα

and kα, respectively, as well as in the electromagnetic vertex
containing η̃µν .

so it is not strictly mandatory. We nevertheless imple-
ment the redefinition (B3) for compatibility with previ-
ous studies [59] of this type. The Lagrangian (B1) then
becomes

L = 1
2 iχ η̃

µνγν

↔

Dµχ− m̃χχ− 1
4F

2 , (B4)

where we have defined

m̃ ≡ m

1 − 3
4 κ̃tr

,

η̃µν ≡ diag(1,−λ,−λ,−λ) ,

λ ≡ 1 + 1
4 κ̃tr

1 − 3
4 κ̃tr

. (B5)

The field redefinition (B3) is a canonical transformation,
and as such it leaves unchanged the physics. In partic-
ular, the free fermions in model (B1) possess the same
dispersion relation as those in (B4).

Because κ̃tr is frame dependent, Eq. (B3) is not man-
ifestly Lorentz coordinate covariant. Therefore, the spe-
cific form of Lagrangian (B4) holds only in the frame
in which the field redefinition has been performed [61].
Note that the Lagrangians (B1) and (B4) are singular for
κ̃tr = −4 and κ̃tr = 4/3 while the dispersion relation (8)
is singular at κ̃tr = 1. This difference arises because the
coordinate rescaling used to generate Lagrangian (B1)
from the original κ̃tr model has been implemented only
at leading order in κ̃tr.

The Feynman rules can now be inferred from the La-
grangian (B1). The appropriate tree-level Feynman di-

agram for photon decay is depicted in Fig. 2. For the
corresponding matrix element, we obtain

iMrs = −ie ǫµ(p) η̃µν u(r)(q) γν v
(s)(k) , (B6)

where the various polarization and momentum assign-
ments are defined in Fig. 2. The next step is the calcu-
lation of |Mrs|2 followed by the usual summation over
final spin states and averaging over the initial photon
polarizations |M|2 ≡ (1/2)

∑

ǫ

∑

r,s |Mrs|2. We obtain

|M|2 = e2
[

4m̃2 + 2λ2(1 − λ2)(~q 2 + ~k2) + (1 − λ2)2E2
γ

]

,

(B7)
where Eγ = |~p| is the photon energy and ~q and ~k are the
lepton and antilepton 3-momenta, respectively. To ar-
rive at this result, energy–momentum conservation, the
usual relation for photon-polarization sums, and trace
identities for Dirac matrices have been used. Moreover,
we have employed the results for SME spinor projec-
tors in Ref. [59] with the normalization chosen such that

N(~q) = 2Eq = 2
√

m̃2 + λ2~q 2, etc.

The final step is the phase-space integration. In the
conventional Lorentz-symmetric case, the decay rate for
massive particles is defined in the particle’s rest frame
with a kinematic factor inversely proportional to its mass.
This procedure cannot be applied to present massless
case. We adopt instead the convention [54] to define the
decay rate in terms of the photon energy Eγ in the Sun-
centered celestial equatorial frame:

Γpair =
1

4π2

1

2Eγ

∫

d3q

2Eq

d3k

2Ek

|M|2 δ(4)(p− q − k) . (B8)

This yields

Γpair = α
[κ̃tr(κ̃tr − 4)E2

γ + 4m2]
√

κ̃tr(κ̃tr − 4)E2
γ − 8m2

3
8E

2
γ(4 + κ̃tr)(4 − 3κ̃tr)

√

κ̃tr(κ̃tr − 4)
(B9)

for the exact tree-level decay rate within the context of
Lagrangian (B4). Equation (B9) applies only for per-
turbative κ̃tr < 0 and for photons above threshold. We
remark that undoing our initial coordinate redefinition
would generate subleading corrections to Eq. (B9).
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R. Tayloe, Phys. Rev. D 74, 105009 (2006); V. Barger,
D. Marfatia, and K. Whisnant, Phys. Lett. B 653, 267
(2007).

[29] D.L. Anderson, M. Sher, and I. Turan, Phys. Rev. D 70,
016001 (2004); E.O. Iltan, Mod. Phys. Lett. A 19, 327
(2004).

[30] J.B.R. Battat, J.F. Chandler, and C.W. Stubbs, Phys.
Rev. Lett. 99, 241103 (2007); H. Müller, S.W. Chiow, S.
Herrmann, S. Chu, and K.Y. Chung, Phys. Rev. Lett.
100, 031101 (2008); W.M. Jensen, S.M. Lewis, and J.C.
Long, in CPT and Lorentz Symmetry IV, edited by V.A.
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076006 (2004).
[57] H. Müller, Phys. Rev. D 71, 045004 (2005).
[58] C. Adam and F.R. Klinkhamer, Nucl. Phys. B 657, 214

(2003).
[59] D. Colladay and V.A. Kostelecký, Phys. Lett. B 511, 209
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