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A class of calculable global models for neutrino oscillations based on Lorentz and CPT violation is

presented. One simple example matches established neutrino data from accelerator, atmospheric, reactor,

and solar experiments, using only 2 degrees of freedom instead of the usual five. A third degree of freedom

appears in the model, and it naturally generates the MiniBooNE low-energy anomalies. More involved

models in this class can also accommodate the LSND anomaly and neutrino-antineutrino differences of

the MINOS type. The models predict some striking signals in various ongoing and future experiments.
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I. INTRODUCTION

The minimal standard model (SM) of particle physics
contains three flavors of massless left-handed neutrinos.
However, experiments with solar, reactor, accelerator, and
atmospheric neutrinos have convincingly demonstrated the
existence of neutrino flavor oscillations. This effect cannot
be accommodated within the SM and so represents forceful
evidence for new physics.

A popular hypothesis attributes neutrino oscillations to
the existence of a tiny neutrino mass matrix with off-
diagonal components. Extending the SM to incorporate
this notion produces a model with three flavors of massive
neutrinos (3�SM), in which oscillations are controlled by a
3� 3 matrix involving six parameters: two mass-squared
differences �m2�, �m2

atm, three angles �12, �23, �13, and a
phase � controlling CP violation. The first four of these
parameters must be nonzero to match established experi-
mental data, while recent results provide indications that
the angle �13 must also be nonzero [1,2].

In this work, we explore an alternative hypothesis attrib-
uting part of the observed neutrino oscillations to tiny
Lorentz and CPT violation, which might arise in a
Planck-scale theory unifying gravity and quantum physics
such as string theory [3]. One motivation for studying
alternative hypotheses for neutrino oscillations is based
on existing data. Several neutrino experiments have re-
ported potential evidence for anomalous neutrino oscilla-
tions that is incompatible with the 3�SM. This includes the
LSND signal [4], the MiniBooNE low-energy excess [5],
and neutrino-antineutrino differences in the MiniBooNE
[6] and MINOS [7] experiments. Another motivation is
philosophical: having more than one viable hypothesis is
known to be of great value in guiding experimental and
theoretical investigations of new physics. Lorentz andCPT
violation is interesting in this context because it naturally
generates neutrino oscillations and moreover leads to sim-
ple global models describing all established and anomalous
neutrino data [8,9].

An appropriate theoretical framework for studying real-
istic signals of Lorentz violation is effective field theory

[10]. In this context, CPT violation is necessarily accom-
panied by Lorentz violation [11], and the comprehensive
description for Lorentz and CPT violation containing the
SM and general relativity is given by the standard-model
extension (SME) [12,13]. In the SME action, each Lorentz-
violating term is a coordinate-independent quantity
constructed from the product of a Lorentz-violating opera-
tor and a controlling coefficient. The combination of
observer coordinate invariance and Lorentz violation
implies free particles in the SME follow geodesics in a
pseudo–Riemann-Finsler geometry [14].
Over the last decade or so, many experimental analyses

using a broad variety of techniques have been performed to
seek nonzero SME coefficients for Lorentz and CPT vio-
lation [15]. The interferometric nature of particle oscilla-
tions suggests that sensitive neutrino or neutral-meson
experiments might well yield the first detectable signals
of tiny Lorentz violation. In the neutrino sector, recent
SME-based phenomenological studies [8,9,16–34] and
methodologies for experimental analysis [35,36] have
spurred searches for Lorentz and CPT violation by the
LSND [37], Super-Kamiokande (SK) [38], MINOS
[39,40], MiniBooNE [41], and IceCube Collaborations
[42]. Searches have also been performed with neutral
mesons [43,44], and recent D0 results suggest some evi-
dence for anomalous CP violation [45] that could be
attributed to Lorentz and CPT violation [46].
Here, we focus on a special class of ‘‘puma’’ models in

which the 3� 3 effective Hamiltonian h�eff governing os-

cillations of three flavors of active left-handed neutrinos is
characterized by two simple properties: isotropic Lorentz
violation, and a zero eigenvalue [9]. The isotropic Lorentz
violation implies boost invariance is broken while leaving
rotations unaffected, so h�eff is independent of the direction
of the neutrino momentum but must contain unconven-
tional dependence on the neutrino energy E. This leads
to unconventional energy dependences even in vacuum
oscillations, producing a broad range of unique neutrino
behavior. The zero eigenvalue can be attributed to a dis-
crete symmetry of h�eff . It ensures quadratic calculability of
the mixing matrix and of oscillation probabilities for all
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models, even when matter effects are included. These two
features differ qualitatively from the 3�SM, in which the
Lorentz-invariant mass terms force a 1=E energy depen-
dence of all terms in h�eff and the lack of symmetry results

in calculational complexity.
The unconventional energy dependence in h�eff generi-

cally takes the form of polynomials in E arising from
Lorentz-violating operators of arbitrary mass dimension
in the SME Lagrange density [47]. The polynomial
coefficients are therefore determined in terms of SME
coefficients for Lorentz violation. For much of this work
we make the plausible assumption that a few terms of
comparatively low mass dimension dominate the neutrino
behavior, either by chance or due to the presently un-
known structure of the underlying theory, and hence that
only a few coefficients are needed to reproduce the bulk of
existing neutrino data. Indeed, the basic puma models
considered below have only 3 degrees of freedom, which
includes one mass and two Lorentz-violating coefficients.
Remarkably, two of these degrees of freedom suffice to
reproduce all established neutrino behavior, a frugal re-
sult. Moreover, the third degree of freedom naturally
reproduces the anomalous results found by MiniBooNE
[5,6] without introducing new particles or forces.
Comparatively minor modifications of these simple
puma models that preserve the discrete symmetry of h�eff
can also accommodate the LSND signal [4] and anomalies
of the MINOS type [7].

The structure of this paper is as follows. The basic
properties of the general puma models are presented in
Sec. II. Applications to existing experiments are discussed
in Sec. III. A specific model involving one mass parameter
and two Lorentz-violating operators, one of which is CPT
odd, is used for illustrative purposes. Predictions for future
experiments are presented in Sec. IV. Some of these are
strikingly different from models based on the 3�SM.
Variant puma models using three different degrees of
freedom or more than three parameters are considered in
Sec. V. Finally, Sec. VI contains some comments on the
general nature of the models.

The notation adopted here is that of Refs. [8,9]. A mass
parameter is denoted m, a coefficient for isotropic

CPT-odd Lorentz violation is denoted a
� ðdÞ

, a coefficient

for isotropic CPT-even Lorentz violation is denoted c
� ðdÞ

,

and a coefficient that could be either a
� ðdÞ

or c
� ðdÞ

is denoted

k
� ðdÞ

, where d is the mass dimension of the corresponding
operator. Note that the value of d fixes the derivative
structure of the operator, which implies d must be odd
for CPT-violating operators and even for CPT-preserving
ones [8]. To identify the various specific puma models
according to their coefficient content, we introduce a con-
venient nomenclature listing coefficients in descending
order of operator mass dimension. For example, a model
with 3 degrees of freedom including a mass term m and

coefficients a
� ð5Þ

and c
� ð8Þ

for Lorentz violation is called a
c8a5m model.

II. GENERAL MODEL

In the general puma model, the effective 3� 3
Hamiltonian h�eff describing the oscillation of three active

neutrino flavors e, �, � takes the form [9]

h�eff ¼ A
1 1 1
1 1 1
1 1 1

0
@

1
Aþ B

1 1 1
1 0 0
1 0 0

0
@

1
Aþ C

1 0 0
0 0 0
0 0 0

0
@

1
A;
(1)

where AðEÞ, BðEÞ, and CðEÞ are real functions of the
neutrino energy E. In this work, the function A is chosen
to be A ¼ m2=2E, where m is the unique neutrino mass
parameter in the theory. The functions B and C have
unconventional energy dependence, which here is taken
to arise from Lorentz-violating terms in the SME, some of
which may lie in the nonrenormalizable sector. The treat-
ment of possible contributions to h�eff from Lorentz-

invariant operators lies outside our present scope and will
be given elsewhere. We assume all SME coefficients con-
tributing to h�eff are spacetime constants, so the model (1)

incorporates translation invariance and conserves energy
and momentum. In the context of spontaneous Lorentz
violation, where the SME coefficients can be interpreted
in terms of expectation values in an underlying theory, this
assumption implies soliton solutions, massive modes, and
Nambu-Goldstone modes [48] are disregarded. The latter
may play the role of the graviton [49], the photon in
Einstein-Maxwell theory [50], or various new forces
[51]. For simplicity in most specific models considered
here, B and C are taken to be monomials in E, although
more complicated polynomials or nonpolynomial func-
tions can also be of interest.
The function A decreases inversely with energy, while B

and C typically increase. At low energies, the effective
Hamiltonian h�eff is therefore well approximated by the A
term alone. This term has a ‘‘democratic’’ form, exhibiting
symmetry under the permutation group S3 acting on the
three neutrino flavors e, �, �. In contrast, the unconven-
tional energy dependences in the B and C terms dominate
at high energies. The flavor-space structure of these terms
breaks the S3 symmetry to its S2 subgroup in the �-�
sector.
For antineutrinos, oscillations are governed by the CPT

image h ��
eff of the effective Hamiltonian h�eff . The effect of

the CPT transformation on h�eff is to change the signs of

any coefficients for Lorentz violation that are associated
with CPT-odd operators in the SME. Since mass terms are
invariant under CPT [11], the A term in h�eff is unaffected
by the transformation. At low energies, the full permuta-
tion symmetry of the puma model is therefore S3 � �S3,
where �S3 is the symmetry acting on antineutrino flavors. At

JORGE S. DIAZ AND V. ALAN KOSTELECKÝ PHYSICAL REVIEW D 85, 016013 (2012)
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high energies, the S3 � �S3 invariance breaks to S2 � �S2. If
any coefficients for CPT-odd Lorentz violation are
present, differences between neutrinos and antineutrinos
can become manifest.

An elegant feature of the puma model is the existence of
a zero eigenvalue for the effective Hamiltonian, which is a
consequence of the permutation symmetry of the texture
(1). This implies considerable calculational simplification
compared to the 3�SM with three nonzero eigenvalues.
Many results can be obtained exactly by hand even when
all three neutrino flavors mix. A short calculation reveals
that the eigenvalues �a0 , a0 ¼ 1; 2; 3, of the effective
Hamiltonian h�eff take the exact form

�1 ¼ 1
2

�
3Aþ Bþ C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� B� CÞ2 þ 8ðAþ BÞ2

q �
;

�2 ¼ 1
2

�
3Aþ Bþ Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� B� CÞ2 þ 8ðAþ BÞ2

q �
;

�3 ¼ 0: (2)

The mixing matrix Ua0a that diagonalizes h�eff can also be

expressed exactly as

Ua0a ¼
�1�2A
N1

AþB
N1

AþB
N1

�2�2A
N2

AþB
N2

AþB
N2

0 � 1ffiffi
2

p 1ffiffi
2

p

0
BB@

1
CCA: (3)

In this equation, the index a ranges over a ¼ e, �, � and
the normalization factors are

N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � 2AÞ2 þ 2ðAþ BÞ2

q
;

N2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � 2AÞ2 þ 2ðAþ BÞ2

q
:

(4)

The eigenvalues ��a0 , the mixing matrix �Ua0a, and the
normalization factors �N1, �N2 for the antineutrino effective
Hamiltonian h ��

eff are obtained by CPT conjugation of B
and C.

In the low-energy limit, the mixing matrix (3) reduces to
the tribimaximal form originally postulated on phenome-
nological grounds by Harrison, Perkins, and Scott [52].
The democratic structure of the A term in h�eff therefore
ensures tribimaximal mixing of the three neutrino flavors at
low energies. Combined with the choice A ¼ m2=2E> 0,
this mixing guarantees agreement of the puma model with
low-energy solar neutrinos [53] and with the mixing ob-
served in KamLAND [54]. For a suitable choice of mass
parameter m, as discussed in the next section, the A term
can also correctly describe the L=E oscillation signature
observed by KamLAND [55].

Another defining feature of the puma model is a
Lorentz-violating seesaw [8] that mimics a mass term at
high energies, without invoking mass. This differs from the
usual seesaw mechanism [56,57], which is based on mass
terms in the action. Suppose B and C are monomials of the
form

BðEÞ ¼ k
� ðpÞ

Ep�3; CðEÞ ¼ c
� ðqÞEq�3; (5)

where p and q are the dimensions of the operators asso-

ciated with the coefficients k
� ðpÞ

and c
� ðqÞ

. In this work, we

take c
� ðqÞ > 0 for definiteness but consider both sign options

for k
� ðpÞ

. Reversing the sign of c
� ðqÞ

produces phenomenol-

ogy closely related to reversing instead the sign of k
� ðpÞ

, as
can be seen by inspecting Eqs. (2) and (3). If q > p then C
grows faster than B, so at high energies

�1 � � 2B2

C
¼ � 2ðk� ðpÞÞ2E2p�q�3

c
� ðqÞ : (6)

For the choice q ¼ 2ðp� 1Þ, the eigenvalue �1 is propor-
tional to 1=E and therefore plays the role of an effective
mass term, even though no mass parameter is present at
high energies. Note that imposing this choice requires the
dominant coefficient in C to be CPT even. The null entries
in the �-� block of h�eff and the fast-growing ee element

guarantee maximal �� $ �� mixing at high energies, con-

sistent with observations of atmospheric neutrinos [58–60].
For a suitable choice of the ratio B2=C, as discussed in the
next section, the seesaw mechanism also reproduces the
L=E oscillation signature in the SK experiment [61].
Since the elements of h�eff are real, the probability

P�b!�a of oscillation from �b to �a can be written in the

simple form

P�b!�a
¼ �ab � 4

X
a0>b0

Ua0aUa0bUb0aUb0bsin
2ð�a0b0L=2Þ;

(7)

where the quantities �a0b0 ¼ �a0 � �b0 are the eigenvalue
differences and L is the baseline. For each flavor pair a, b,
the above sum contains three terms labeled by the values of
a0, b0 < a0. Each term is the product of an amplitude
�4UUUU with a sinusoidal phase. The antineutrino-
oscillation probabilities P ��b! ��a

are obtained by CPT con-

jugation. Since A, B, and C are real, all processes are T
invariant. As a result, CP violation occurs if and only if
CPT violation does. Notice that CP-violating effects can
appear even though no analogue of the phase � in the
3�SM exists in the puma model.
All the above properties are insensitive to the ee com-

ponent of the B term in h�eff . As a result, a modified texture

h0�eff can be constructed in which the ee entry in the B term

vanishes. We have verified that most of the properties
discussed in the remainder of this work remain unchanged
for this modified texture. One exception is the renormaliz-
able model presented in Sec. VA, for which we use a zero
ee entry in the B term because the nonzero value produces
a tension between the descriptions of long-baseline reactor
and of solar neutrinos.
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III. EXPERIMENTS

Next, we study the implications of the general model (1)
for different experiments. Many characteristics of the
model are generic. For definiteness, in this section we
illustrate the discussion with a specific c8a5m model [9],

for which the coefficients in Eq. (5) are k
� ðpÞ � a

� ðqÞ
and

c
� ðqÞ � c

� ð8Þ
. Some comments on variant models are pro-

vided in Sec. IV.
The numerical values of the three parameters in the

c8a5m model are

m2 ¼ 2:6� 10�23 GeV2;

a
� ð5Þ ¼ �2:5� 10�19 GeV�1;

a
� ð8Þ ¼ 1:0� 10�16 GeV�4;

(8)

The nonzero value of a
� ð5Þ

implies this model contains CPT
violation. The value for m2 is consistent with limits from
direct mass measurements and cosmological bounds [1].

By construction, a
� ð5Þ

and c
� ð8Þ

are the only nonzero SME
coefficients defined in an isotropic frame I. In some sce-
narios, it is reasonable to identify I with a universal inertial
frame U such as that defined by the cosmic microwave
background (CMB), but other possibilities exist. Whatever
the choice for I, the experiment frame E is boosted in it by
some combination of the Earth’s motion relative to the
CMB, the Earth’s revolution about the Sun, and the

Earth’s rotation. The coefficients a
� ð5Þ

and c
� ð8Þ

therefore
induce anisotropic effects via the net boost in I. These
could, for example, be detected by searches for sidereal or
annual variations in E [43]. Experimental constraints and
signals must be reported in a specified frame, but the frame
E itself is inappropriate because it is noninertial and ex-
periment specific. By convention, the canonical inertial
frame used to report results is a Sun-centered frame S
[15,62]. Inspection reveals that the size of the effects in S
induced by the values (8) all lie below the sensitivity levels
achieved in experiments to date [37,39–42]. Future
experiments might offer improved sensitivity and thereby
provide a distinct avenue for testing the model.

A. General features

The predictions of any model for neutrino and antineu-
trino oscillations can be visualized using a certain plot in
E-L space [8]. Experiments are represented on the plot as
regions determined by their baseline and energy coverage,
while a given theory is represented by its characteristic
oscillation wavelengths La0b0 ¼ 2�=j�a0b0 j associated with
the eigenvalue differences �a0b0 ðEÞ. The absolute value is
used because the oscillation phase is insensitive to the sign
of�a0b0 . For each curve, La0b0=2 ¼ La0b0 ðEÞ=2 indicates the
first maximum of a kinematic phase in the oscillation
probability, thereby establishing the minimal distance
from the neutrino source required for appearance or dis-

appearance signals in a specific oscillation channel.
Substantial signals appear in the region above each curve
but are suppressed below it.
Figure 1 shows this plot for the puma model with values

(8) and the 3�SM. The 3�SM has two independent oscil-
lation lengths, L� ¼ 4�E=�m2� and Latm ¼ 4�E=�m2

atm,
both of which grow linearly with the energy and are there-
fore represented by straight lines in the plot. In the puma
model, however, the unconventional energy dependences
from BðEÞ and CðEÞ produce more general curves instead.
These curves partially differ for neutrinos and antineutri-
nos, a consequence of the CPT violation implied by the
values (8).
The figure shows that the puma curves merge with the

3�SM lines L� and Latm at low and high energies, respec-
tively, suggesting consistency of the puma model with
results in KamLAND, solar, and atmospheric experiments.
This agreement is confirmed in the subsections below.
However, the two models are qualitatively different at
intermediate energies.
Novel effects arise from the unconventional energy de-

pendence of h�eff , which generates energy-dependent mix-

ing. The flavor content of the three eigenstates of h�eff
therefore changes with energy. Figure 2 shows this energy
dependence for the values (8). At low energies, the flavor

FIG. 1. Energy dependences of the oscillation lengths for
neutrinos (top) and antineutrinos (bottom). The disappearance
lengths for the puma model are L31 (top, solid line), L21 (top,
dashed line), �L31 (bottom, solid line), and �L21 (bottom, dashed
line), displayed for the values (8). The dotted lines are the
disappearance lengths L� (solar) and Latm (atmospheric) in the
3�SM.
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content approaches the tribimaximal limit. However, at
high energies the eigenstate �2 becomes completely popu-
lated by �e. This implies the mixing �� $ �� is maximal

and controlled by �31. The onset of this feature coincides
with the onset of the Lorentz-violating seesaw. Indeed, as
the mass term A becomes negligible in h�eff , the fraction of

�e in �2 grows with the separation between the lines L21

and L31 in Fig. 1.
Notice that the mixing angles in the 3�SM are energy-

independent parameters that can freely be chosen to match
data. In contrast, the mixing angles in the puma model at
low and high energies are determined by the texture of h�eff
and therefore are fixed features of the model that cannot be
adjusted according to experiment. This reduced freedom is
one reason why the puma model offers an economical
description of confirmed neutrino data.

The energy dependence of the mixing matrix U implies
the oscillation amplitudes �4UUUU in each flavor chan-
nel and the corresponding probability (7) are also energy
dependent. For given flavors a, b, the oscillation ampli-
tudes are shown in Fig. 3. Note that negative amplitudes
occur for disappearance channels, while positive ampli-
tudes occur for appearance channels. The S2 symmetry of
h�eff implies the four amplitudes for �e ! ��, ��e ! ���,

�� ! ��, and ��� ! ��� are identical to those shown in the
corresponding four central panels in the figure. The low-
energy S3 symmetry of h�eff forces the low-energy ampli-

tudes to values set by tribimaximal mixing and ensures the
low-energy equalities P�e!�e

¼ P��!��
¼ P��!��

and

P ��e! ��e
¼ P ���! ���

¼ P ���! ���
. At high energies, the ampli-

tudes become either zero or one due to the Lorentz-
violating seesaw mechanism. The lower four panels in
the figure reveal that the dominant amplitude at high en-
ergies has ða0; b0Þ ¼ ð3; 1Þ, leading to maximal �� $ ��

mixing and to an oscillation phase proportional to �31 and
hence to 1=E. Note also that the zero componentU3e of the
mixing matrix (3), which is a consequence of the null
eigenvalue of h�eff , implies that the oscillation in any chan-

nel involving �e or ��e is controlled by only one amplitude
because the other two vanish.
The three figures reveal many of the evolving properties

associated with h�eff and h ��
eff at intermediate energies. For

example, a peak appears between 10 MeVand 100 MeV in
the L31 curve for neutrinos in Fig. 1, accompanied by
corresponding features in Figs. 2 and 3. The peak repre-
sents a divergence in L31, which occurs when �a0b0 van-
ishes. Using the exact expressions (2) for the eigenvalues
of h�eff , we find that in general peaks occur for all positive

energies E solving the equation

AðB� CÞ þ B2 ¼ 0: (9)

The peaks can in general occur for both neutrinos and
antineutrinos. The absence of these features in the antineu-
trino plots suggests an origin in CPT violation. Since

FIG. 2. Flavor content of the three neutrino eigenstates of h�eff
(left) and the three antineutrino eigenstates of h ��

eff (right) as a

function of energy. For the puma model, the left-hand panel
shows the energy dependences of jUa0ej2 (white), jUa0�j2 (light

gray), and jUa0�j2 (dark gray) for each neutrino mass eigenstate
�a0 , a

0 ¼ 1; 2; 3, while the right-hand panel displays the analo-
gous energy dependences for antineutrinos. For the 3�SM, the
corresponding quantities jUa0ej2 (regions above dashed lines),
jUa0�j2 (regions between dashed and solid lines), and jUa0�j2
(regions below solid lines) for neutrinos and those for antineu-
trinos are energy independent. The models coincide at all en-
ergies for the eigenstates �3, ��3, but �1, ��1 match �2, ��2 only at
low energies.

FIG. 3. Energy dependence of the oscillation amplitudes in the
puma model. In each flavor channel, the amplitude factors
�4UUUU in Eq. (7) are plotted for each of the three ða0; b0Þ
values, (2, 1) (solid lines), (3, 1) (dashed lines), and (3, 2) (dotted
lines).
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coefficients for CPT-odd Lorentz violation reverse sign
under a CPT transformation, the nature of the solutions to
Eq. (9) for antineutrinos changes. For the values (8), a
single positive energy solves this equation for neutrinos,
but no solutions exist for antineutrinos and hence no anti-
neutrino peaks arise in Fig. 1.

B. Reactor antineutrinos

In the puma model, the general survival probability for
reactor antineutrinos is

P ��e! ��e
¼ 1� 16

ðAþ �BÞ4
�N2
1
�N2
2

sin2
�
1

2
�21L

�
: (10)

At low energies, the A term in h ��
eff dominates. Using the

low-energy limits �N2
1 ! 6A2, �N2

2 ! 3A2, we find for
P ��e! ��e the simple low-energy approximation

P ��e! ��e � 1� 8

9
sin2

�
3m2L

4E

�
ðlow energyÞ: (11)

The fixed value 8=9 for the oscillation amplitude matches
expectations because at low energies h ��

eff is diagonalized

using the tribimaximal mixing matrix. This result applies
to reactor antineutrinos in both long- and short-baseline
experiments. The large disappearance amplitude for reac-
tor antineutrinos is evident in the ��e ! ��e panel of Fig. 3.

1. Long-baseline reactor: KamLAND

In the 3�SM, the reactor-antineutrino survival probabil-
ity for long-baseline experiments is

P3�SM
��e! ��e

� 1� sin22�12sin
2

�
�m2�L
4E

�
: (12)

The data indicate values for the 3�SM parameters of
sin22�12 ’ 0:92 and �m2� ’ 7:58� 10�5 eV2 [54].
Comparing the oscillation phase in this result with that in
Eq. (11), we find that agreement with the KamLAND
results can be achieved by choosing the mass parameter
m2 to be m2 ¼ �m2�=3 [9]. This gives the numerical value
adopted in Eq. (8). The match between the two models is
shown in Fig. 4.

Notice that the disappearance of reactor antineutrinos is
described using only one parameter m. The conventional
solar mixing angle �12 is eliminated as a degree of freedom
by the form of the texture h�eff . Inspecting Eq. (11) reveals

that at low energies the effective value of sin22�12 is
numerically fixed to ðsin22�12Þeff ’ 0:89, which is
close to the measured magnitude. The reader is however
cautioned that this interpretation fails at higher energies
due to the energy dependence of the mixing in the puma
model.

2. Short-baseline reactors

In recent years, numerous reactor experiments with short
baselines L & 1 km such as Bugey (L ’ 15, 40 m) [63],

CHOOZ (L ’ 1 km) [64], Gösgen (L ’ 38, 46, 65 m) [65],
and Palo Verde (L ’ 750, 890 m) [66] have sought evi-
dence for the disappearance of electron antineutrinos with
null results. The explanations of these results differ quali-
tatively in the puma model and the 3�SM.
In the 3�SM, the ��e survival probability is

P3�SM
��e! ��e

� 1� sin22�13sin
2

�
�m2

atmL

4E

�
: (13)

For energies E ’ 3 MeV, this gives an antineutrino disap-
pearance length 2�E=�m2

atm ’ 8:1� 1018 GeV�1, which
is about 1.5 km. The null experimental results are therefore
interpreted in the 3�SM as a consequence of a small
mixing angle �13. Note that the 3�SM survival probabil-
ities (12) and (13) for long and short baselines, respec-
tively, have the same form but involve four different
parameters, �m2�, �12, �m2

atm, and �13.
In contrast, in the puma model the oscillation probability

(11) holds at low energies for any baseline. Only the single
parameter m is required to describe both the long- and
short-baseline data. For energies E ’ 3 MeV, the antineu-

trino disappearance length is �L21=2 � �= ��21 �
2�E=�m2� ’ 2:5� 1020 GeV�1, which is about 50 km.
The null reactor results are therefore understood in this
model as a consequence of the short baselines, which limit
the contribution of the oscillation phase to the survival
probability, rather than a consequence of a small oscillation
amplitude as in the 3�SM. Indeed, the amplitude of the
oscillating term in Eq. (11) is 8=9, which is large.
Since the puma model contains no term with a phase

involving �m2
atm, we see that at low energies the effective

value ðsin22�13Þeff of the 3�SM quantity sin22�13 is exactly
zero. This is a consequence of the zero value of U3e, as can
be confirmed by comparing the 3�SM mixing matrix with
the tribimaximal limit of the mixing matrix (3). Note,
however, that the energy dependence of the mixing matrix
makes this result invalid at higher energies, where the
effective value ðsin22�13Þeff extracted from high-energy

FIG. 4. Reactor-antineutrino survival probabilities as a func-
tion of L=E in the puma model (solid line) and in the 3�SM
(dashed line). The data are from the long-baseline KamLAND
experiment, for which L ’ 180 km [55].
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experiments can be nonzero even though U3e identically
vanishes.

C. Solar neutrinos

For neutrinos propagating in matter, the effective
Hamiltonian h�eff acquires an additional term [67]. The

modified effective Hamiltonian ðh�effÞM in the solar interior

can be written as

ðh�effÞMab ¼ ðh�effÞab þ V��ae�be; (14)

where the solar matter potential V� takes the value V� ¼ffiffiffi
2

p
GFne ’ 7:84� 10�21 GeV at the solar core [68].
The presence of the solar potential preserves the puma

texture (1) because it corresponds to a simple redefinition
of the function C of the form C ! Cþ V�. The exact
eigenvalues and the exact mixing matrix in the presence
of matter can therefore be found immediately by applying
this redefinition to Eqs. (2)–(4). A short calculation reveals
that the averaged survival probability of solar neutrinos in
the adiabatic approximation takes the exact form

hP�e!�e
i ¼

�ð�M
1 � 2AÞ
NM

1

ð�1 � 2AÞ
N1

�
2

þ
�ð�M

2 � 2AÞ
NM

2

ð�2 � 2AÞ
N2

�
2
: (15)

For the lower-energy region of the solar spectrum with
E� 0:1 MeV, the solar potential V� and the functions B
and C are negligible. In this limit, the averaged survival
probability becomes

hP�e!�ei �
X
a0
jUa0ej4 ¼ 5

9 ðlow energyÞ; (16)

in agreement with the data. This result is to be expected
because the vacuum mixing matrix is tribimaximal at low
energies.

For higher energies, the solar potential and the Lorentz-
violating terms can introduce novel effects, depending on
the form of the functions B and C. The detailed form of the
averaged survival probability therefore becomes model
dependent. However, the neutrino survival probability ini-
tially drops below the limiting value 5=9 as the energy
increases. This generic effect is a consequence of the
energy independence of V�, which ensures V� becomes
relevant at energies comparable or below those for the
Lorentz-violating terms and thereby enhances the disap-
pearance of �e.

The above features are visible in Fig. 5. The solid line
displays the averaged survival probability for the values
(8). The curve is similar to that obtained from the 3�SM
and is compatible with observations.

D. Atmospheric neutrinos

In the puma model, the exact survival probability of
atmospheric neutrinos is

P��!��
¼ 1� 4

ðAþ BÞ4
N2

1N
2
2

sin2
�
1

2
�21L

�

� 2
ðAþ BÞ2

N2
1

sin2
�
1

2
�31L

�

� 2
ðAþ BÞ2

N2
2

sin2
�
1

2
�32L

�
: (17)

However, as E grows the A term becomes negligible, so the
sole mass parameter m is irrelevant for high-energy oscil-
lations. Requiring C to increase with energy faster than B
yields the high-energy limits �1 ! �2B2=C, �2 ! C,
N2

1 ! 2B2, and N2
2 ! C2. The electron-neutrino content

then lies exclusively in the second eigenstate. This leaves
the other two uniformly populated by �� and ��, as can be

verified by examining Fig. 2. The survival probability (17)
then takes the simple form

P��!��
� 1� sin2

�
B2L

C

�
ðhigh energyÞ

� 1� sin2
�ðk� ðpÞÞ2L

c
� ðqÞE

�
; (18)

where in the second equation the leading contributions to B
and C are expressed as monomials of the form (5). Note
that the unit amplitude of the oscillation term implies
maximal mixing, as discussed following Eq. (6).
In contrast, the 3�SM survival probability for atmos-

pheric neutrinos takes the form

P3�SM
��!��

’ 1� sin22�23sin
2

�
�m2

atmL

4E

�
; (19)

depending on two parameters �23 and �m2
atm.

Experimental data provide the values sin22�23 > 0:90
and j�m2

atmj ’ 2:32� 10�3 eV2 [57]. Comparison of
Eqs. (18) and (19) suggests agreement with atmospheric

data can be obtained when the ratio of ðk� ðpÞÞ2 and c
� ðqÞ

satisfies

FIG. 5. Averaged survival probability for solar neutrinos in the
puma model (solid line) and in the 3�SM (dashed line). Both
cases include matter-induced effects in the adiabatic approxima-
tion. The data are from Ref. [53].
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ðk� ðpÞÞ2
c
� ðqÞ

¼ 1

4
�m2

atm: (20)

This condition has been used to constrain the coefficients

a
� ð5Þ

and c
� ð8Þ

in Eq. (8) [9]. The resulting match between the
two models is shown in Fig. 6 along with SK data.

Note that the ratio (20) represents only one degree of
freedom. Nonetheless, it suffices to reproduce the data for
atmospheric neutrinos via Eq. (18). The other degree of

freedom in the two coefficients k
� ðpÞ

, c
� ðqÞ

determines the

onset of the Lorentz-violating seesaw. Increasing c
� ðqÞ

while
holding fixed the ratio (20) causes the seesaw to trigger at
lower energies.

E. Short-baseline accelerator neutrinos

At high energies E * 1 GeV, a variety of short-baseline
experiments have reported null results. BNL-E776
(L ¼ 1 km) searched for �� ! �e and ��� ! ��e at

1 GeV [69]. CCFR (L ’ 1 km) searched for �� ! �e,

��� ! ��e, �e ! ��, and ��e ! ��� at 140 GeV [70].

CDHS (L ’ 130 m) searched for �� disappearance at

1 GeV [71]. CHORUS (L ’ 600 m) searched for �� !
�� at 27 GeV [72]. NOMAD (L ’ 600 m) searched for
�� ! �� and �e ! �� at 45 GeV [73]. NuTeV (L ’ 1 km)

searched for �� ! �e and ��� ! ��e at 150 GeV [74].

The puma model is consistent with all these null results.
For energies above the seesaw scale �1 GeV, �� $ ��

mixing becomes maximal by construction, as described
following Eq. (6). This feature implies vanishing high-
energy mixing and hence no oscillations in the channels
�� ! �e, ��� ! ��e, �e ! ��, and ��e ! ���. The behavior

can be seen directly from Fig. 3, which displays the energy
dependence of the oscillation amplitudes.

In the �� ! �� channel, the oscillation amplitude is

maximal at high energies. However, the oscillation phase
is controlled by�21, which generates an appearance length
L21 of several hundred kilometers at 1 GeV. The lack of a

signal in this channel in the CHORUS or NOMAD data is
therefore understood here as a consequence of their short
baselines.

F. MiniBooNE anomalies

Two results from the MiniBooNE experiment indicate
possible oscillation effects that cannot be accommodated
within the 3�SM. For neutrino oscillations �� ! �e,

MiniBooNE finds a 3� excess of events at low energies
around 200–500 MeV [5]. For antineutrino oscillations
��� ! ��e, a 1:3� low-energy excess has also been reported

[6], with recent preliminary data suggesting a larger excess
[75].
These results are interesting in the present context be-

cause they lie in the energy region where the seesaw
mechanism is triggered. Following onset of the seesaw,
the eigenvalue �1 decreases linearly with energy while �2

grows rapidly. The appearance length L21 / ð�2 � �1Þ�1

therefore drops steeply, becoming a few hundred meters at
MiniBooNE energies. This produces a large oscillation
phase and hence a signal in the experiment. However, the
oscillation amplitude for �� $ �e mixing rapidly goes to

zero as the �� $ �� mixing becomes maximal, as can be

seen in Fig. 3. As a result, the appearance signal in
MiniBooNE vanishes at higher energies.
The puma model therefore naturally describes a low-

energy excess in MiniBooNE. Moreover, the excess can
differ substantially for neutrinos and antineutrinos when a
coefficient for CPT-odd Lorentz violation is involved, as
occurs for the c8a5m example (8). In general, the energy at
which the excess appears depends on the seesaw scale and

becomes smaller as c
� ðqÞ

increases. For the values (8), the
match to data is shown in Fig. 7.
We emphasize that these interesting features of the

model arise without introducing additional particles or
forces. They are a consequence of the comparatively ele-
gant texture (1) that describes all compelling neutrino-
oscillation data.

FIG. 6. Survival probability for atmospheric neutrinos as a
function of L=E in the puma model (solid line) and in the
3�SM (dashed line) compared to SK data, for which LSK ’
600 km [61].

FIG. 7. Comparison of the puma model (solid lines; 	2
� ¼ 1:0,

	2
�� ¼ 0:9), the tandem model [20] (dotted lines; 	2

� ¼ 1:9, 	2
�� ¼

1:0), and the 3�SM (dashed lines; 	2
� ¼ 2:2, 	2

�� ¼ 1:1), with
MiniBooNE neutrino [5] and antineutrino [6] data.
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IV. PREDICTIONS

The discussion in the previous sections demonstrates
that two of the three parameters of the model (1) suffice
to reproduce all the compelling data for neutrino and
antineutrino oscillations, while the third accommodates
the two MiniBooNE anomalies. Comparison to the
3�SM, which uses five nonzero parameters to describe
established results but cannot reproduce the MiniBooNE
anomalies, suggests the puma model offers a frugal inter-
pretation of known data.

The model predicts a variety of signals, some of which
differ qualitatively from 3�SM expectations. In this sec-
tion, we address some features of relevance to future
experiments.

A. Long-baseline neutrinos

Avariety of long-baseline experiments, including LBNE
(L ’ 1300 km) [76], MINOS (L ’ 735 km) [77], NO�A
(L ’ 810 km) [78], and T2K (L ’ 298 km) [79], have
design capabilities to search for �e appearance in a ��

beam. These searches are motivated in part by the pros-
pects of measuring the 3�SM parameter �13. No such
parameter exists in the model (1), but signals in these
experiments may nonetheless appear.

To characterize potential signals in the puma model,
recall that the appearance length L21 for �� ! �e de-

creases steeply with energy due to the seesaw mechanism.
Baselines L � L21 therefore involve rapid oscillations, so
accelerator experiments with long baselines can observe
only the averaged oscillation probability, given exactly by

hP��!�e
i ¼ 4

ðAþ BÞ4
ðNM

1 NM
2 Þ2 : (21)

To allow for matter effects on neutrinos traversing the
Earth, NM

1 and NM
2 are given by Eq. (4) with the replace-

ment C ! Cþ V	, where the Earth’s matter potential V	
is V	 ’ 1:2� 10�22 GeV.

For energies above the seesaw scale, �� $ �� mixing

dominates while �� $ �e mixing is highly suppressed.

However, to describe the SK and MINOS data, the seesaw
must trigger below 1 GeV. This means only small signals
from �� ! �e transitions can appear in the high-energy

experiments LBNE, MINOS, and NO�A. In contrast, T2K
runs at lower energies, and so a larger appearance signal
that decreases rapidly with the energy is to be expected.
Quantitative predictions for the probabilities for �e and ��e

appearance in the various experiments are shown in Fig. 8
for the values (8). Note that matter effects are almost
negligible compared to the large eigenvalue �2 controlling
the mixing, whereas for the 3�SM curves they induce
substantial differences between the probabilities for �e

and ��e appearance.

We remark in passing that attempting to interpret these
signals as arising from a nonzero 3�SM angle �13 would
predict that �13 is larger in T2K than in the other higher-
energy experiments. This is compatible with recent results
for �e appearance [2]. Note also that within this perspective
the effective values of �13 obtained with long-baseline
accelerators are unrelated to the effective values of �13
extracted from studies of reactor antineutrinos discussed
in Sec. III B 2.
High-energy long-baseline experiments can also per-

form precision studies of �� disappearance. For this oscil-

lation channel, no differences between the pumamodel and
the 3�SM are expected in LBNE, MINOS, and NO�A
because they operate at energies above the seesaw scale.
However, significant differences between neutrinos and
antineutrinos are predicted for the lower-energy portion
of the T2K spectrum when the theory contains a coefficient
for CPT-odd Lorentz violation, as in the c8a5m model.
The predictions are displayed in Fig. 9, where as before the
values (8) are used for illustration.

B. Short-baseline neutrinos

Using baselines in the range 1–2 km, modern reactor
experiments such as Daya Bay (L ’ 1985 m) [81],
Double Chooz (L ’ 1050 m) [82], and RENO (L ’
1380 m) [83] propose to measure the disappearance of

FIG. 8. Prediction for the probabilities of �e appearance (left)
and of ��e appearance (right) in various long-baseline experi-
ments according to the puma model (solid lines) and the 3�SM
(upper dashed lines, sin22�13 ¼ 0:02; middle dashed lines,
sin22�13 ¼ 0:05; lower dashed lines, sin22�13 ¼ 0:08). Matter
effects are included.
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reactor antineutrinos. Like their long-baseline cousins,
these experiments are driven partly by prospects for mea-
suring the 3�SM mixing angle �13.

In the puma model, the ��e survival probability for
energies 2–9 MeV has a large amplitude, as can be seen
from Eq. (11). The oscillation signal in a given reactor
experiment therefore depends only on the size of the
baseline L compared to the antineutrino disappearance
length �L21=2 ’ 50 km discussed in Sec. III B 2. The base-
lines for the Daya Bay, Double Chooz, and RENO experi-
ments are all short compared to this, with Daya Bay
having the greater sensitivity to oscillation signals due
to its longer baseline. Since �L21 grows linearly with the
energy, any oscillation signal in these experiments is
expected to appear predominantly at low energies. Using
the model values (8), the predictions for the disappearance
probabilities in the three experiments are shown in Fig. 10.
Preliminary indications for a nonzero low-energy value of
sin22�13 ’ 0:085 at about 1:7� have very recently been
presented by the Double Chooz Collaboration [84].
Confirmation of this result and of comparable values in
high-energy measurements would falsify the three-
parameter puma model, while confirmation of an energy
dependence of the measured values of �13 would falsify
the 3�SM.

We note in passing that the recent suggestion of an
overestimation of antineutrino fluxes in short-baseline re-
actor experiments [85] is difficult to reconcile with the
three-parameter puma model. Since effects at low energies
are governed by only one parameter m, which is fixed by
KamLAND data, no other oscillation length appears at
reactor energies. The existence of only one parameter is
a consequence of the S3 flavor symmetry, so a slight break-
ing of this symmetry at low energies could accommodate
an additional parameter and hence a corresponding signal.
This construction would introduce another degree of
freedom but requires no additional neutrinos. However,
investigations along these lines lie beyond the scope of
the present work.

FIG. 9. Prediction for the probabilities of �� disappearance
(left) and of ��� disappearance (right) in various long-baseline

experiments according to the puma model (solid lines) and the
3�SM (dashed lines). Matter effects are included. The data are
taken from Refs. [7,58,80].

FIG. 10. Predictions for the probability of ��e disappearance in
the Daya Bay, Double Chooz, and RENO experiments according
to the puma model (solid lines) and the 3�SM (dashed lines,
labeled with the value of sin22�13).

FIG. 11. Predictions for the probability of ��e appearance at the
three baselines proposed for the DAE�ALUS experiment ac-
cording to the puma model (solid lines) and the 3�SM (dashed
lines, labeled with the value of sin22�13).

JORGE S. DIAZ AND V. ALAN KOSTELECKÝ PHYSICAL REVIEW D 85, 016013 (2012)

016013-10



Another experiment of interest in the context of short-
baseline neutrinos is the recent DAE�ALUS proposal [86]
to study CP violation, which would generate neutrinos at
several different baseline distances from a detector using
high-power accelerator modules to beam protons onto
graphite sources. A popular configuration would offer the
capability to search for ��� ! ��e transitions using three

baselines of about 1.5 km, 8 km, and 20 km. The large
oscillation amplitude in this region suggests appearance
signals in the detector can be expected from the more
distant sources. The predicted appearance probabilities
for the three proposed baselines are shown in Fig. 11.

V. VARIANT PUMA MODELS

In the preceding sections, the implications of the general
texture (1) have been illustrated with the c8a5m model,
using the specific values (8). However, other models can be
constructed using h�eff that successfully describe most or all

compelling neutrino data. Some of these offer distinctive
features or intriguing possibilities for simultaneously de-
scribing experimental anomalies beyond the MiniBooNE
ones. This section outlines some results for a few of these
variant models.

A. The c4a3m model

The texture h�eff with the smallest monomial orders p and

q in Eq. (5) requires only renormalizable operators of
dimensions 3 and 4 in the minimal SME, hence producing
a c4a3m model. For definiteness, we adopt in this subsec-
tion the specific numerical values

m2 ¼ 2:6� 10�23 GeV2; a
� ð3Þ ¼ �2:5� 10�21GeV;

c
� ð4Þ ¼ 1:0� 10�20: (22)

As mentioned at the end of Sec. II, we use a zero ee entry in

the B term for this model. The coefficient a
� ð3Þ

comes with
CPT violation, so differences between neutrino and anti-
neutrino properties can be expected. These values are
consistent with limits from direct mass measurements,
cosmological mass bounds, and constraints on anisotropic
oscillations.

The c4a3m model is compatible with all accepted ex-
perimental oscillation results discussed in Sec. III, includ-
ing those obtained with reactor, solar, and atmospheric
neutrinos. However, the eigenvalue �2 grows too slowly
to produce a signal in MiniBooNE because the function C
is linear in energy.

An interesting qualitative difference introduced by the
model appears in the predicted averaged survival probabil-
ity for solar neutrinos, shown in Fig. 12. The probability
curve incorporates a striking neutrino-disappearance
maximum in the central-energy region, despite passing
though all data points. This reflects the importance at lower

energies of the coefficient a
� ð3Þ

, an effect absent for the a
� ð5Þ

coefficient in the c8a5m model. The curve shape suggests
future analyses of solar data in the 1–10 MeV part of the
neutrino spectrum could provide an interesting experimen-
tal test of the model.
Another distinctive feature of the model is a large signal

for �� ! �e oscillations in long-baseline experiments. The

signal decreases with energy, as shown in Fig. 13. Analysis
of the recent data supporting electron-neutrino appearance
in the T2K and MINOS experiments [2] could provide a

FIG. 12. Averaged survival probability for solar neutrinos in
the c4a3m model (solid line) and in the 3�SM (dashed line).
Both cases include matter-induced effects in the adiabatic ap-
proximation. The data are taken from Ref. [53].

FIG. 13. Prediction for the probabilities of �e appearance (left)
and of ��e appearance (right) in various long-baseline experi-
ments according to variant puma models (solid lines, labeled by
the model) and the 3�SM (upper dashed lines, sin22�13 ¼ 0:15;
lower dashed lines, sin22�13 ¼ 0:05). Matter effects are
included.
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sharp constraint on this signal, potentially excluding the
values (22).

B. The c6c4m model

Other interesting variant models can be constructed
using only CPT-even operators. Using monomials of
smallest order produces a c6c4m model. We choose here
the specific numerical values

m2 ¼ 2:6� 10�23 GeV2; c
� ð4Þ ¼ 7:7� 10�20;

c
� ð6Þ ¼ 1:0� 10�17 GeV�2: (23)

As for other examples considered in this work, these values
are consistent with limits from direct mass measurements,
cosmological mass bounds, and constraints on anisotropic
oscillations.

Like the c8a5m and c4a3m models, the c6c4m model
provides a good match to the data from reactor, solar, and
atmospheric neutrinos discussed in Sec. III. The presence

of the c
� ð4Þ

term substantially affects the physics in the
region 10 MeV to 1 GeV. It generates a signal in the
MiniBooNE region that includes low-energy excesses in
both neutrinos and antineutrinos, as shown in Fig. 14. Note
the asymmetry in the signal, which here reflects experi-
mental acceptance rather than CPT violation.

For �e appearance in long-baseline experiments, the
probabilities are generically closer in magnitude to those
of the 3�SM with a moderate value of �13, as shown in
Fig. 13. One interesting feature is the substantially larger
signal produced in T2K relative to MINOS, which is
compatible with the central values of recently reported
measurements [2].

C. Four-coefficient models

Some indication of a potential difference between ��

and ��� disappearance probabilities has recently been re-

ported by the MINOS Collaboration [7]. Although the
effect may disappear with improved statistics, a difference

of this kind is of interest in the present context because it
cannot be accommodated in the 3�SM, which requires
identical neutrino and antineutrino masses.
In three-parameter puma models, the survival probabil-

ities of muon neutrinos and antineutrinos at MINOS en-
ergies are generically the same. The result holds because at
high energies the relevant eigenvalue difference is �31 �
2B2=C. This is even under CPT provided the B term is
either odd or even, which is true whenever the B term is
only a monomial in E. For the c8a5m model, for example,
this symmetry is reflected in Fig. 9. These puma models
therefore cannot accommodate anomalies of the MINOS
type either.
In this subsection, we show that an ad hoc modification

using an additional parameter can describe anomalies of
this type. The key idea is as follows. Instead of choosing a
monomial in energy for the B term, we can take a binomial
involving two different monomial orders p and r < p, one
even and one odd. This produces a four-coefficient model
with both CPT-odd and CPT-even terms contributing at
high energies. If the value of r is close to p and the
corresponding coefficients are similar in size, then the
oscillation probabilities for neutrinos and antineutrinos
differ at high energies. In particular, the energies of the
first oscillation maxima of neutrinos and antineutrinos
differ, which is a feature of the MINOS effect. However,
to preserve compatibility with other experiments, the ee
entry of the effective Hamiltonian h�eff must remain un-

changed. The extra coefficient should therefore appear
only in the e� and e� entries of h�eff . One way to achieve

this is to choose a binomial for the C term as well, com-
pensating for the modification of the ee entry arising from
the change to B.
As an example, we can add a fourth coefficient to the

c8a5m model while leaving unchanged its main features.
Choosing r ¼ 4, which satisfies the requirement r < p ¼
5 with r near p, the fourth coefficient can be denoted c

� ð4Þ
.

To generate a neutrino-antineutrino difference at high en-

ergies, it suffices to redefine the B and C terms as B !
Bþ c

� ð4ÞE, C ! C� c
� ð4ÞE. For definiteness, we can take

the numerical values

m2 ¼ 2:6� 10�23 GeV2;

c
� ð4Þ ¼ 2:0� 10�20;

a
� ð5Þ ¼ �2:6� 10�19 GeV�1;

c
� ð8Þ ¼ 1:0� 10�16 GeV�4;

(24)

which as before are consistent with limits from direct mass
measurements, cosmological mass bounds, and constraints
on anisotropic oscillations. These choices preserve the
attractive features of the simpler c8a5m model.
The introduction of the fourth coefficient primarily

affects the probabilities of �� and ��� disappearance in

FIG. 14. Comparison of the c6c4m model (solid lines; 	2
� ¼

1:0, 	2
�� ¼ 0:8), the tandem model [20] (dotted lines; 	2

� ¼ 1:9,
	2

�� ¼ 1:0), and the 3�SM (dashed lines; 	2
� ¼ 2:2, 	2

�� ¼ 1:1),
with MiniBooNE neutrino [5] and antineutrino [6] data.
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long-baseline experiments, as shown in Fig. 15 for the
values (24). In particular, the MINOS data in Ref. [7] are
reasonably described by the model. The location of the
primary minimum for antineutrino oscillations is at a
higher energy than that for neutrinos, in agreement with
the reported effect. We emphasize that this result is
achieved with a single additional parameter, without any
masses, in a global model of neutrino oscillations. Note
also that this c8a5c4m model predicts a large difference
between the probabilities of �� and ��� disappearance in

the T2K experiment. However, the �e appearance proba-
bilities in long-baseline experiments are essentially un-
changed from those for the c8a5m model shown in Fig. 8.

D. Enhanced models

In a search for appearance of electron antineutrinos in a
beam of muon antineutrinos, the LSND experiment found
evidence for a small probability P ���! ��e

’ 0:26
 0:08%

of ��� ! ��e oscillations at baseline L ¼ 30 m and energies

in the range 20–60 MeV [4]. This signal cannot be accom-
modated within the 3�SM because the required
mass-squared difference �m2

LSND ’ 1 eV2 is orders of

magnitude larger than �m2� and �m2
atm.

In the general puma model, the oscillation ��� ! ��e is

given exactly by

P ���! ��e
¼ 8

ðAþ �BÞ4
�N2
1
�N2
2

sin2
� ��21L

2

�
; (25)

which is governed by the same eigenvalues that control
reactor antineutrinos. The energies in the LSND experi-
ment are greater than those of reactor antineutrinos, but the
appearance length is smaller by about 2 orders of magni-
tude. Achieving this with a monomial energy dependence
in h�eff while preserving consistency with other experiments

is challenging, as it requires a large power of the energy
and a seesaw triggered around 10 MeV.
An interesting option generating the required steep fall

and rise in �L21ðEÞ is to introduce a smooth nonpolynomial
function with a peak. A function of this type could act as an
enhancement of h ��

eff arising from a series of coefficients in

the SME. It can be approximated generically using at least
three parameters, one to position it, one to fix its height,
and one to specify its width. A simple example is a
Gaussian enhancement of the form

� �h ¼ 
 exp½��ðE� "Þ2�: (26)

To preserve the S2 symmetry of h ��
eff , the enhancement can

be limited to the �e �� and �e �� entries of h ��
eff via the redefi-

nitions �B ! �Bþ � �h and �C ! �C� � �h. Under the CPT
transformation mapping h ��

eff to h�eff , the signs of 
 and "
change. As a result, either the function or its CPT con-
jugate is localized at an unphysical value of the energy, and
so the enhancement affects either neutrinos or antineutri-
nos but not both.
As an example, consider an enhanced c8a5mmodel with

specific enhancement values


 ¼ 3:0� 10�19 GeV;

� ¼ 3:0� 103 GeV�2;

" ¼ 60 MeV:

(27)

The positive value of " ensures that only antineutrinos are
affected. This enhancement produces a sharp dip in the
disappearance length �L21ðEÞ centered around 60 MeV, as
displayed in Fig. 16. The resulting oscillation probability
P ���! ��e

contains a nonzero signal in the same region as the

LSND data, as shown in Fig. 17. Since the �L21 curve passes
through the region of sensitivity for the DAE�ALUS ex-
periment [86], large signals are predicted in all three
detectors as shown in Fig. 18. A large oscillation signal
is also predicted at high energies in the OscSNS experi-
ment [87].
Differences between �� and ��� disappearance proba-

bilities can also be generated by another enhancement of
this general type. Two simultaneous enhancements can be
included without interference provided they are localized

FIG. 15. Prediction for the probabilities of �� disappearance
(left) and of ��� disappearance (right) in various long-baseline

experiments according to the c8a5c4m model (solid lines; 	2
� ¼

1:4, 	2
�� ¼ 0:9 for MINOS) and the 3�SM (dashed lines; 	2

� ¼
1:0, 	2

�� ¼ 1:6 for MINOS). Matter effects are included. The data
are taken from Refs. [7,58,80].
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in different regions of the spectrum. Figure 16 shows the
effect on the disappearance length �L31 of adding a second
enhancement with the values


2¼�2:0�10�19 GeV;

�2¼13GeV�2;

"2¼1:7GeV:

(28)

The resulting disappearance probabilities for muon
neutrinos and antineutrinos in long-baseline experiments
are shown in Fig. 19. While the single extra coefficient
in the four-parameter c8a5c4m model is more economical
in generating an anomaly like that reported by
MINOS [7], the introduction of the second enhancement
centered near 2 GeV produces interesting and distinctive
oscillation signals in the LBNE and NO�A experiments
for �� disappearance, as shown in Fig. 19. In contrast, the

�e appearance probabilities displayed for the c8a5m
model in Fig. 8 are largely unaffected by the
enhancement.

FIG. 16. Energy dependences of the oscillation lengths for
antineutrinos in the doubly enhanced puma model. The corre-
sponding plot for neutrinos in the top panel of Fig. 1 remains
unaffected. The disappearance lengths for the model are �L31

(solid line) and �L21 (dashed line), displayed for the values given
by Eqs. (24), (27), and (28). The dotted lines are the disappear-
ance lengths L� (solar) and Latm (atmospheric) in the 3�SM.

FIG. 17. Comparison of enhanced puma model (solid line,
	2 ¼ 1:6) and the 3�SM (dashed line, 	2 ¼ 2:6) with LSND
antineutrino data [5].

FIG. 18. Predictions for the probability of ��e appearance at the
three baselines proposed for the DAE�ALUS experiment ac-
cording to the enhanced puma model (solid lines) and the 3�SM
(upper dashed lines, sin22�13 ¼ 0:15; lower dashed lines,
sin22�13 ¼ 0:05).

FIG. 19. Prediction for the probabilities of �� disappearance
(left) and of ��� disappearance (right) in various long-baseline

experiments according to the doubly enhanced puma model
(solid lines; 	2

� ¼ 1:3, 	2
�� ¼ 0:9 for MINOS) and the 3�SM

(dashed lines; 	2
� ¼ 1:4, 	2

�� ¼ 1:8 for MINOS). Matter effects
are included. The data are taken from Refs. [7,58,80].
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VI. DISCUSSION

In this work, we have investigated the behavior of neu-
trinos governed by an effective Hamiltonian h�eff of the

puma form (1). This texture is interesting in part because
it leads to descriptions of neutrino oscillations that are
globally compatible with experimental data. The associ-
ated Lorentz-violating models are intriguing because they
are frugal, they have a certain elegance, and their novel
features are compatible with data in unexpected ways. We
remark in passing that the existence of these models was
unclear a priori, becoming apparent only through a sys-
tematic search for viable candidates.

The frugality can be traced to the use of only 2 degrees
of freedom to describe established data, while a third
degree of freedom efficiently encompasses the
MiniBooNE anomalies. Adding a fourth degree of freedom
readily generates an anomaly of the MINOS type, while a
three-parameter enhancement produces a signal in the
LSND experiment. These four latter degrees of freedom
are ad hoc, and their necessity depends on the ultimate
confirmation of the MINOS and LSND anomalies.
However, to our knowledge the resulting texture represents
the sole extant global model for neutrino oscillations, and
moreover uses degrees of freedom comparable in number
to those of the 3�SM.

The symmetry of h�eff also implies a certain elegance.

The puma texture (1) could naturally stem from
more fundamental physics at the unification scale that
generates a democratic contribution to the dominant
mass operator in the low-energy effective theory. The
resulting S3 symmetry then holds at low energies and
ensures tribimaximal mixing but is broken to S2 at
higher energies by subdominant terms in the SME. This
symmetry structure leads to the attractive quadratic
calculability of the models. The coefficients required for
compatibility with data are of plausible Planck-suppressed
size.

The novel features of the puma models originate in the
unconventional energy dependence in the eigenvalues of
h�eff and the mixing matrix U. Indeed, it is a pleasant

surprise that the models pass the test of compatibility
with existing data, despite their qualitative differences
compared to the 3�SM. One striking feature is the
Lorentz-violating seesaw, which makes viable the absence

of a mass parameter at high energies. Another satisfying
feature is the steep drop with energy of the oscillation
length L21, which is naturally enforced by the third degree
of freedom required to generate the Lorentz-violating see-
saw. As discussed above, this drop enables L21 to attain the
vicinity of the MiniBooNE experiment in E-L space,
thereby generating a low-energy signal compatible with
theMiniBooNE anomaly. Moreover, this feature appears in
conjunction with a rapid decrease in the relevant oscillation
amplitudes accompanying the large oscillation phase. This
accounts for null signals in high-energy short-baseline
accelerator experiments without invoking the tiny oscilla-
tion phase of the 3�SM.
The puma texture h�eff predicts certain signals that differ-

entiate sharply between it and the 3�SM. One key feature
is the energy dependence of the effective mixing angle
�13. This implies the probability of �e appearance is larger
in the T2K experiment than in the MINOS experiment.
It also predicts no accompanying signal in reactor
experiments, a result at odds with the 3�SM. With an
enhancement present, strong signals are predicted in ex-
periments at intermediate energies and moderate baselines
such as the proposed DAE�ALUS experiment. Another
unique signal predicted by some models is CPT violation,
which implies differences in oscillation probabilities
between neutrinos and antineutrinos. Perhaps the most
direct evidence for Lorentz violation would be the discov-
ery of oscillation anisotropies arising from the boost rela-
tive to the isotropic frame. One signal would be sidereal
variations of oscillations in the laboratory frame
[43], which in the puma models are predicted to be some
10–100 times below current sensitivities [9]. In any event,
the results in this work show that Lorentz- and
CPT-violating models can serve as an experimentally
viable foil to the 3�SM, while offering a simple and
credible alternative for realistic modeling of neutrino
oscillations.
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[47] V. A. Kostelecký and M. Mewes, Phys. Rev. D 80, 015020
(2009); arXiv:1112.6395.

[48] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960); J. Goldstone,
Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam,
and S. Weinberg, Phys. Rev. 127, 965 (1962).
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