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The gravitational couplings of matter are studied in the presence of Lorentz and CPT violation. At

leading order in the coefficients for Lorentz violation, the relativistic quantum Hamiltonian is derived

from the gravitationally coupled minimal standard-model extension. For spin-independent effects, the

nonrelativistic quantum Hamiltonian and the classical dynamics for test and source bodies are obtained.

A systematic perturbative method is developed to treat small metric and coefficient fluctuations about a

Lorentz-violating and Minkowski background. The post-Newtonian metric and the trajectory of a test

body freely falling under gravity in the presence of Lorentz violation are established. An illustrative

example is presented for a bumblebee model. The general methodology is used to identify observable

signals of Lorentz and CPT violation in a variety of gravitational experiments and observations, including

gravimeter measurements, laboratory and satellite tests of the weak equivalence principle, antimatter

studies, solar-system observations, and investigations of the gravitational properties of light. Numerous

sensitivities to coefficients for Lorentz violation can be achieved in existing or near-future experiments at

the level of parts in 103 down to parts in 1015. Certain coefficients are uniquely detectable in gravitational

searches and remain unmeasured to date.
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I. INTRODUCTION

General relativity (GR) is known to provide an accurate
description of classical gravitational phenomena over a
wide range of distance scales. A foundational property of
the gravitational couplings of matter in GR is local Lorentz
invariance in freely falling frames. The realization that
a consistent theory of quantum gravity at the Planck
scale mP ’ 1019 GeV could induce tiny manifestations of
Lorentz violation at observable scales [1] has revived
interest in studies of Lorentz symmetry, with numerous
sensitive searches for Lorentz violation being undertaken
in recent years [2].

Gravitational signals of Lorentz violation are more chal-
lenging to study than ones in Minkowski spacetime for
several reasons, including the comparative weakness of
gravity at the microscopic level and the impossibility of
screening gravitational effects on macroscopic scales. Both
for purely gravitational interactions and for matter-gravity
couplings, Lorentz violations can be classified and enum-
erated in effective field theory [3]. Several searches for
purely gravitational Lorentz violations in this context
have recently been performed [4–6] using a treatment in
the post-Newtonian regime [7]. These results enlarge and
complement the impressive breadth of tests of GR per-
formed in the context of the parametrized post-Newtonian
formalism [8].

Although the coupling between matter and gravity has
historically been a primary source of insights into the
properties of the gravitational field, a general study of
matter-gravity couplings allowing for Lorentz violation
in the context of effective field theory has been lacking
to date. In this work, we address this gap in the literature

and investigate the prospects for searches for Lorentz
violation involving matter-gravity couplings. Our goal is
to elucidate both theoretical and experimental aspects of
the subject. We seek a post-Newtonian expansion for the
equation for the trajectory of a test body moving under
gravity in the presence of Lorentz violation, allowing also
for Lorentz-violating effects from the composition of the
test and source bodies and for effects from possible addi-
tional long-range modes associated with Lorentz violation.
We also seek to explore the implications of our analysis in
a wide variety of experimental and observational scenarios,
identifying prospective measurable signals and thereby
enabling more complete searches using matter-gravity
couplings.
Despite the current lack of a satisfactory quantum theory

of gravity, established gravitational and particle phe-
nomena at accessible energy scales can successfully be
analyzed using the field-theoretic combination of GR and
the standard model. This combination therefore serves as
a suitable starting point for a comprehensive effective
field theory describing observable signals of Planck-scale
Lorentz and CPT violation in gravity and particle physics
[9]. The present paper adopts this general framework,
known as the gravitational standard-model extension
(SME) [3], to analyze Lorentz violation in matter-gravity
couplings. Each term violating Lorentz symmetry in the
SME Lagrange density is a scalar density under observer
general coordinate transformations and consists of a
Lorentz-violating operator multiplied by a controlling co-
efficient for Lorentz violation. Under mild assumptions,
CPT violation in effective field theory comes with Lorentz
violation [10], so the SME also describes general breaking
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of CPT symmetry. This feature plays a crucial role for
certain signals of Lorentz violation in what follows.

In this work, our focus is on gravitational Lorentz
violation in matter-gravity couplings, both with and with-
out CPT violation. These couplings introduce operator
structures offering sensitivity to coefficients for Lorentz
violation that are intrinsically unobservable in Minkowski
spacetime. In fact, comparatively large gravitational
Lorentz violation in nature could have remained unde-
tected in searches to date because gravity can provide a
countershading effect [11], so this line of investigation has
a definite discovery potential. Several searches for gravi-
tational Lorentz violation have led to constraints on SME
coefficients for Lorentz violation with sensitivities down to
parts in 109 [4–6,12], and additional constraints can be
inferred by reanalysis of data from equivalence-principle
tests [11].

The nature of the Lorentz violation plays a crucial role in
determining the physics of matter-gravity couplings. In
Riemann geometry, externally prescribing the coefficients
for Lorentz violation as fixed background configurations
is generically incompatible with the Bianchi identities
and hence problematic [3]. This issue can be avoided via
spontaneous Lorentz breaking [1], in which a potential
term drives the dynamical development of one or more
nonzero vacuum values for a tensor field. This mechanism
implies the underlying Lagrange density is Lorentz
invariant, so the coefficients for Lorentz violation are
expressed in terms of vacuum values and can therefore
serve as dynamically consistent backgrounds satisfying the
Bianchi identities. The presence of a potential driving
spontaneous Lorentz violation implies the emergence of
massless Nambu-Goldstone (NG) modes [13] associated
with field fluctuations along the broken Lorentz generators
[14]. If the potential is smooth, massive modes can also
appear [15]. Some features of the NG and massive modes
are generic, while others are specific to details of the model
being considered. In any case, the nature of these modes
plays a key role in determining the physical implications of
spontaneous Lorentz violation.

For the purposes of the present work, the presence of
NG modes is particularly crucial because they can couple
to matter and can transmit a long-range force. A careful
treatment of these modes is therefore a prerequisite for
studies of Lorentz violation in matter-gravity couplings.
In what follows, we develop a methodology to extract the
dominant Lorentz-violating effects in matter-gravity cou-
plings irrespective of the details of the underlying model
for spontaneous Lorentz violation. In effect, the NG modes
are treated via a perturbation scheme that takes advantage
of symmetry properties of the underlying Lagrange density
to eliminate them in favor of gravitational fluctuations and
background coefficients for Lorentz violation. This treat-
ment allows leading Lorentz-violating effects from a large
class of plausible models to be handled in a single analysis.

The portion of this paper developing theoretical issues
spans Secs. II, III, IV, and V. It begins in Sec. II with a
review of the SME framework. We present the field-
theoretic action, describe its linearization, and discuss
observability issues for the coefficients for Lorentz viola-
tion. We also describe the two notions of perturbative
order used in the subsequent analysis, one involving
Lorentz and gravitational fluctuations and the other based
on a post-Newtonian expansion. Section III concerns the
relativistic and nonrelativistic quantum mechanics arising
from the quantum field theory. One technical issue is
extracting a meaningful quantum theory in the presence
of gravitational fluctuations. We resolve this issue via a
judicious field redefinition, which yields a Hamiltonian
that is Hermitian with respect to the usual scalar product
for wave functions and that reduces correctly to known
limiting cases. We construct the relativistic quantum
Hamiltonian at leading order in Lorentz violation and
gravity fluctuations. For the spin-independent terms, we
perform a Foldy-Wouthuysen transformation to obtain the
nonrelativistic Hamiltonian. Section IV treats the classical
dynamics corresponding to the quantum theory. The point-
particle action is presented and the structure of test and
source bodies is discussed. The equations of motion for a
test particle and the modified Einstein equations are de-
rived. We describe the methodology for handling coeffi-
cient and metric fluctuations. Combining the results
determines the Lorentz-violating trajectory of a test body.
The results are illustrated in Sec. V in the context of a
special class of models of spontaneous Lorentz violation
known as bumblebee models.
The remaining research sections of the paper, Secs. VI,

VII, VIII, IX, X, and XI, concern implications of our
theoretical analysis for experiments and observations.
Section VI contains basic facts concerning frame choices
and outlines the canonical Sun-centered frame used for
reporting measurements. We also consider the sensitivities
to coefficients for Lorentz violation that can be attained in
practical situations. Section VII treats laboratory tests
near the surface of the Earth using neutral bulk matter,
neutral atoms, or neutrons. The theoretical description of
these tests is presented to third post-Newtonian order,
and some generic features of the test-body motion are
discussed. A wide variety of gravimeter and equiv-
alence-principle tests are analyzed for sensitivities to
coefficients for Lorentz violation that are presently uncon-
strained. Satellite-based searches for Lorentz violation
using equivalence-principle experiments are studied in
Sec. VIII. A generic situation is analyzed, and the results
are applied to major proposed satellite tests. Section IX
treats gravitational searches using charged particles, anti-
hydrogen, and particles from the second and third gener-
ations of the standard model. Estimated sensitivities in
future tests are provided, and illustrative toy models for
antihydrogen studies are discussed. Searches for Lorentz
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violation using solar-system observations are described in
Sec. X. We consider measurements of coefficients for
Lorentz violation accessible via lunar and satellite ranging
and via studies of perihelion precession. Section XI ad-
dresses various tests involving the effects of gravitational
Lorentz violation on the properties of light. We analyze the
Shapiro time delay, the gravitational Doppler shift, and
the gravitational redshift, and we consider the implications
for a variety of existing and proposed searches of these
types. Finally, in Sec. XII we summarize the paper and
tabulate the various estimated actual and attainable sensi-
tivities to coefficients for Lorentz and CPT violation
obtained in the body of this work.

Throughout the paper, we follow the conventions of
Refs. [3,7]. In particular, the Minkowski metric is diagonal
with entries ð�1;þ1;þ1;þ1Þ. Greek indices are used for
spacetime coordinates, while Latin indices are used for
local Lorentz coordinates. Appendix A of Ref. [3] provides
a summary of most other conventions. Note that parenthe-
ses surrounding index pairs in the present work denote
symmetrization with a factor of one-half.

II. FRAMEWORK

The focus of this work is the study of relativity viola-
tions in realistic matter-gravity interactions. The basic field
theory of relevance concerns a single fermion field c
coupled to dynamical gravity and incorporating Lorentz
and CPT violation. In this section, we summarize the
action for the model, describe the linearization procedure,
discuss conditions for the observability of effects, and
present the perturbation scheme developed for the analysis
to follow.

A. Action

The theory of interest is a special case of the gravita-
tionally coupled SME [3]. The action can be written as

S ¼ SG þ Sc þ S0: (1)

The first term in this expression is the action SG containing
the dynamics of the gravitational field, including any
coefficients for Lorentz violation in that sector. The geo-
metric framework is a Riemann-Cartan spacetime, which
allows both the Riemann curvature tensor R�

��� and the

torsion tensor T�
��. To incorporate fermion-gravity inter-

actions, the vierbein formalism [16] is adopted, with the
vierbein e�a and the spin connection !�

ab taken as the

fundamental gravitational objects. In the limit of zero
torsion and Lorentz invariance, SG reduces to the
Einstein-Hilbert action of general relativity,

SG ! 1

2�

Z
d4xðeR� 2e�Þ; (2)

where � � 8�GN , e is the vierbein determinant, and � is
the cosmological constant.

The second term in Eq. (1) is the action Sc for the

fermion sector of the SME. In this work, we limit attention
to terms in this sector with no more than one derivative,
which is the gravitationally coupled analogue of the
minimal SME in Minkowski spacetime. In this limit,
the action Sc for a single Dirac fermion c of mass m

can be written as

Sc ¼
Z

d4x

�
1

2
iee�a

�c�aD
$

�c � e �cMc

�
: (3)

In the present context, the action of the covariant derivative
D� on c is

D�c � @�c þ 1

4
i!�

ab�abc : (4)

It is convenient to introduce the symbol

ð �c �D�Þ � @� �c � 1

4
i!�

ab �c�ab (5)

for the action of the covariant derivative on the Dirac-
conjugate field �c . The action (3) contains the covariant
derivative in a combination defined by

���aD
$

�c � ���aD�c � ð �� �D�Þ�ac : (6)

The symbols �a and M appearing in the action (3) are
defined by

�a � �a � c��e
�ae�b�

b � d��e
�ae�b�5�

b

� e�e
�a � if�e

�a�5 � 1

2
g���e

�ae�be
�
c�

bc (7)

and

M � mþ a�e
�
a�

a þ b�e
�
a�5�

a þ 1

2
H��e

�
ae

�
b�

ab:

(8)

The first term of Eq. (7) leads to the usual Lorentz-invariant
kinetic term for the Dirac field, while the first term of
Eq. (8) leads to a Lorentz-invariant mass. A term of the
form im5�5 could also appear inM, but here we suppose it
is absorbed into m via a chiral field redefinition. The
coefficient fields for Lorentz violation a�, b�, c��, d��,

e�, f�, g���, H�� typically vary with spacetime position.

The coefficient field H�� is antisymmetric, while g��� is

antisymmetric in ��. Note the use of an uppercase letter
for H��, which avoids confusion with the metric fluctua-

tion h��. The CPT-odd operators for Lorentz violation

are associated with the coefficient fields a�, b�, e�, f�,

and g���.

The form of the action (3) implies the torsion T�
��

enters the fermion action only via minimal coupling.
This coupling has the same form as that of the coefficient
field b�, so the effects of minimal torsion can be incorpo-

rated into a matter-sector analysis by replacing b� with the

effective coefficient field
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ðbeffÞ� � b� þ 1

8
T	
��	
��: (9)

Note that nonminimal torsion couplings can be incorpo-
rated into the more general coefficient fields appearing in
the full SME. Nonminimal torsion couplings and their
experimental constraints are discussed in Ref. [17].

The final term in Eq. (1) is the action S0 containing the
dynamics associated with the coefficient fields for Lorentz
violation. Addressing possible contributions from this sec-
tor is the subject of Sec. IVC.

B. Linearization

For the purposes of this work, it suffices to consider
weak gravitational fields in a Minkowski-spacetime back-
ground. Under these circumstances, the Latin local indices
can be replaced with Greek spacetime indices, so the weak-
field forms of the metric, vierbein, and spin connection can
be written as

g�� ¼ ��� þ h��;

e�� ¼ ���e�
� � ��� þ 1

2
h�� þ ���;

!��� ¼ �����!�
�

� @���� � 1

2
@�h�� þ 1

2
@�h��

þ 1

2
ðT��� þ T��� � T���Þ: (10)

The quantities ��� contain the six Lorentz degrees of

freedom in the vierbein.
The coefficient fields for Lorentz violation are expected

to acquire vacuum values through spontaneous Lorentz
breaking. An arbitrary coefficient field t���... can therefore

be expanded about its vacuum value �t���...,

t���... ¼ �t���... þ t
≁
���...; (11)

where the fluctuation t
≁
���... includes massless NG

modes and massive modes [14,15]. The vacuum value
�t���... � ht���...i is called the coefficient for Lorentz vio-

lation. One can instead choose to expand the contravariant
coefficient field t���...,

t���... ¼ �t���... þ ~t���...; (12)

where �t���... is related to �t���... by raising with ���. The

reader is cautioned that the relation between t
≁
���... and

the index-lowered version ~t���... of ~t
���... involves terms

containing contractions of �t���... with h��. This paper

uses the expansion (11) and gives expressions in terms

of t
≁
���....

To provide a smooth match between our analysis
and previous work on the matter sector of the SME in
Minkowski spacetime and on the gravitational sector in

asymptotically Minkowski spacetime, we make two as-
sumptions about the coefficients for Lorentz violation.
First, we assume they are constant in asymptotically iner-
tial Cartesian coordinates,

@	 �t���... ¼ 0: (13)

This preserves translation invariance and hence
energy-momentum conservation in the asymptotically
Minkowski regime. It also ensures that our barred coeffi-
cients correspond to the usual coefficients for Lorentz
and CPT violation investigated in the minimal SME in
Minkowski spacetime [18]. Second, we assume that the
vacuum values �t���... are sufficiently small to be treated

perturbatively. This is standard and plausible, since any
Lorentz violation in nature is expected to be small. These
two assumptions suffice for most of the analysis that
follows. To obtain the leading Lorentz-violating correc-
tions to h�� without specifying a dynamical model for the

coefficient fields for Lorentz violation, one further assump-
tion is required, which is presented in Sec. IVC.

C. Observability

A given coefficient for Lorentz violation can lead to
observable effects only if it cannot be eliminated from
the Lagrange density via field redefinitions or coordinate
choices [3,18–25]. In this subsection, we outline some
implications of this fact relevant to the present work.

1. Field redefinitions

One result of key interest here is that matter-gravity
couplings can obstruct the removal of some coefficients
that are unphysical in the Minkowski-spacetime limit. For
example, in the single-fermion theory in Minkowski space-
time, the coefficient a� � �a� for Lorentz and CPT viola-

tion in Eq. (8) is unobservable because it can be eliminated
by the spinor redefinition

c ðxÞ ! exp½ifðxÞ�c ðxÞ (14)

with fðxÞ ¼ �a�x
�. However, in Riemann or Riemann-

Cartan spacetimes we have a� � �a� þ a
≁
�, so this redefi-

nition typically leaves the four components of the fluctua-

tion a
≁
� in the theory. Instead, the redefinition (14) with an

appropriate fðxÞ can be used to move one component of
the coefficient field a� into the other three, unless a� is

constant or the total derivative of a scalar [3]. Note that in
the presence of gravity this freedom may be insufficient to
eliminate any components of the coefficient �a� because the

components of the fluctuation a
≁
� can depend on all four

components of �a� through the equations of motion. This

line of reasoning shows that gravitational couplings pro-
vide a unique sensitivity to the coefficient �a�, which can be

exploited in various experiments [11].
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Another type of field redefinition can be written in the
generic form [3]

c ðxÞ ! ½1þ vðxÞ � ��c ðxÞ; (15)

where � represents one of �a, �5�
a, �ab and vðxÞ is a

complex function carrying the appropriate local Lorentz
indices. This can be viewed as a position-dependent com-
ponent mixing in spinor space. Field redefinitions of this
type can be used to demonstrate the leading-order equiva-
lence of observable physical effects due to certain coeffi-
cients for Lorentz violation. An example relevant in the
present context is a redefinition involving a real vector
vaðxÞ. Together with assumption (13), this redefinition
can be used to show that at leading order in Lorentz
violation the coefficients a� and e� always appear in the

combination

ðaeffÞ� � a� �me�; (16)

up to derivatives of fluctuations. Combining this result with
the above discussion of the redefinition (14) shows that
observables involving gravitational couplings offer the
prospect of measuring ðaeffÞ�.

Related ideas can be used to simplify the weak-field
limit of the theory (3). In particular, the antisymmetric
part ��� of the vierbein can be removed everywhere except

for possible contributions to fluctuations of the coefficient
fields, by applying the field redefinition

c ðxÞ ! exp

�
�1

4
i���ðxÞ���

�
c ðxÞ

�
�
1� 1

4
i����

�� � 1

32
����	
�

���	


�
c ðxÞ: (17)

Note that this redefinition takes the form of a Lorentz
transformation on c but that the other fields in the
Lagrange density remain unaffected. Note also that in the
absence of Lorentz violation ��� can be removed entirely,

a fact compatible with the interpretation in Ref. [14] of the
role of ��� in Lorentz-violating theories. In the remainder

of this work, we assume the redefinition (17) has been
performed on the Lagrange density, so that quantities
such as �a, M, and e�a are understood to acquire no
contributions from ��� except possibly through the fluc-

tuations of the coefficient fields for Lorentz violation.

2. Coordinate choices

The observability of certain combinations of coefficients
for Lorentz violation is also affected by the freedom to
make coordinate choices. Intuitively, the key point is that
any one sector of the SME can be used to define the scales
of the four coordinates, to establish the meaning of
isotropy, and to set the synchronization scheme. The free-
dom therefore exists to choose the sector in which the
effective background spacetime metric takes the form
of the Minkowski metric ���. This implies that in any

experimental configuration there are always 10 unobserv-
able combinations of coefficients for Lorentz violation.
As an illustration, consider the SME restricted to the

single-fermion and photon sectors [18,22]. In the fermion
sector, the 10 relevant coefficient components are the
vacuum values �c�� of the coefficient fields c�� in Eq. (7)

because these coefficients enter Sc in the same way as the

metric. In the photon sector, the SME Lagrange density
contains a term

L photon � � 1

4
eðkFÞ����F

��F��; (18)

and the 10 relevant coefficient components can be shown
to be the trace ð �kFÞ	�	�. At leading order, the coordinate

transformation

x� ! x�
0 ¼ x� � 1

2
ð �kFÞ	�	�x

� (19)

redefines the background metric to take the form��� in the

photon sector. The effective metric in the fermion sector is
then also changed, with the observable coefficient combi-
nation becoming �c�� þ ð �kFÞ	�	�=2. The orthogonal

combination 2�c�� � ð �kFÞ	�	� is thus unobservable in

any experiments involving only these two sectors.
Alternatively, one could perform the coordinate transfor-
mation

x� ! x�
0 ¼ x� þ �c��x

�; (20)

which instead redefines the fermion-sector background
metric to be ��� and at leading order produces the effec-

tive photon-sector coefficient 2�c�� þ ð �kFÞ	�	�. This

coordinate choice is equally valid for analysis, and as
before the orthogonal combination 2�c�� � ð �kFÞ	�	� is

unobservable.
Similar results apply for experimental searches for

Lorentz violation involving comparisons of different
fermion species. Labeling the species by w, each has a
coefficient �cw��. Then, for example, the effective metric for

any one species X can be reduced to ��� by a coordinate

transformation with �cX�� of the form (20). The resulting

effective coefficients for the remaining species involve
the differences �cw�� � �cX��, which in this coordinate

scheme become the relevant observable combinations of
coefficients.
In the gravity sector, the situation is more involved

because a geometrically consistent treatment of Lorentz
violation generically requires the incorporation of effects
from the NG modes to ensure the Bianchi identities are
satisfied [3]. It turns out that the 10 relevant coefficient
components in the gravity sector are the vacuum values �s��

of the coefficient fields s�� in the gravity-sector SME

Lagrange density
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L gravity � 1

16�GN

es��R��: (21)

We find that at leading order the transformation (19) gen-
erates an accompanying shift �s�� ! �s�� � ð �kFÞ	�	�,

while the transformation (20) produces the shift
�s�� ! �s�� þ 2�c��.

One way to obtain these results is to consider the
leading-order effect of a metric shift on the equations of
motion, and then to match to the known results [7] for
observable effects in a post-Newtonian expansion.
Consider, for example, the restriction of the SME to the
Einstein-Hilbert action and the single-fermion action Sc

with nonzero �c�� only. At leading order, the coordinate

transformation (20) removes �c�� from the fermion action

at the cost of introducing a metric shift g�� ! g�� � 2�c��

in the Einstein-Hilbert term. The resulting equations of
motion involve the Einstein tensor G��ðg� 2�cÞ with

shifted argument, which can be written in terms of the
Einstein tensor G��ðgÞ for the original metric and an

effective energy-momentum tensor � �c
��. We find

G��ðg�2�cÞ¼G��ðgÞ�� �c
��;

� �c
��� 2

�
��� �c

	
R	
�2�c	ð�R�Þ	þ
1

2
�c��Rþ �c	
R	��


�
:

(22)

The trace-reversed form ��c
�� of � �c

�� matches the post-

Newtonian term ��s
�� arising from Eq. (21) and given

explicitly as Eq. (24) of Ref. [7] with the combination
�s�� replaced by 2�c��. The transformation (20) there-

fore produces the shift �s�� ! �s�� þ 2�c��, as claimed.

A similar line of reasoning verifies the claimed shift
�s�� ! �s�� � ð �kFÞ	�	� for the coordinate transfor-

mation (19).
To keep expressions compact throughout this work, we

choose to work with coordinates satisfying

ð �kFÞ	�	� ¼ 0: (23)

To obtain results valid for arbitrary coordinate choices, the
following substitutions can be applied throughout:

�c w
�� ! �cw�� þ 1

2
ð �kFÞ	�	�; �s�� ! �s�� � ð �kFÞ	�	�:

(24)

We emphasize that all coordinate choices are equivalent for
theoretical work or for data analysis, with the choice (23)
adopted here being purely one of convenience.

D. Perturbation scheme

In this work, we are interested in experimental searches
for Lorentz violation involving gravitational effects on
matter. Many of these searches involve test particles mov-
ing in background solutions to the equations of motion for

gravity and for the coefficient fields. Since the gravitational
fields involved are weak and since no compelling evidence
for Lorentz violation exists to date, any effects are ex-
pected to be small. We can therefore focus attention on
perturbative modifications to the behavior of test particles.
This subsection describes the scheme we use to track
perturbative orders in the construction of the relativistic
quantumHamiltonian and in the subsequent developments.
Perturbative effects on physical observables can arise

through modifications to the background coefficient fields
t���... for Lorentz violation and to the background gravi-

tational field g��, or directly through modifications to the

equation of motion for the test particle. The analysis of
these effects is simplified by introducing an appropriate
notion of perturbative order. Several ordering schemes are
possible. In this work, we adopt a scheme that tracks the
orders in the coefficients for Lorentz violation �t���... and in

the metric fluctuation h��. The overall perturbative order

of a given term in an equation is denoted as Oðm; nÞ, where
m represents the order in �t���... and n the order in h��.

Within this scheme, the fluctuations t
≁
���... of the coeffi-

cient fields for Lorentz violation are viewed as secondary
quantities that are determined via their equations of motion
in terms of the coefficients for Lorentz violation and the
gravitational field. There is also a subsidiary notion of
order associated with the usual post-Newtonian expansion
of h�� itself. We denote a pth-order term in this latter

expansion as PNOðpÞ. However, performing an explicit
post-Newtonian expansion at the initial stage would com-
plicate the ensuing analysis, so in what follows we often
write results in terms of h�� while commenting as needed

on the post-Newtonian counting.
To preserve a reasonable scope, this work focuses on

dominant perturbative effects involving both Lorentz vio-
lation and gravity. We next discuss the relevant perturba-
tive orders required to achieve this goal.

Consider first contributions from the fluctuation t
≁
���...

of the coefficient fields. The detailed structure of t
≁
���...

depends on the nature of the action S0 in Eq. (1). In the

scheme adopted here, t
≁
���... can be viewed as a series in

�t���... and h�� of the form

t
≁
���... ¼ t

≁ð0;0Þ
��� þ t

≁ ð0;1Þ
���... þ t

≁ ð1;0Þ
���... þ t

≁ ð1;1Þ
���... þ . . . : (25)

For spontaneous Lorentz breaking, t
≁
���... includes massive

modes and massless NG modes [15,26]. In this work, we
suppose the massive modes either are frozen or have
negligible degree of excitation. Incorporating their pos-
sible effects into the analysis of matter-gravity phenomena
would be of potential interest but lies beyond our present
scope. In contrast, the massless NG modes play a key role
in what follows. Their fate can include identification with
the photon in Einstein-Maxwell theory [14], with the
graviton in GR [27,28], or with a new force [11,29,30],
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or they can be absorbed in the torsion via the Lorentz-
Higgs effect [14]. In some models the NG modes can be
interpreted as composite photons [31] or gravitons [32].
We consider below the perturbative orders required for the
various possibilities.

Suppose first the NG modes correspond to photons, or
more generally to a known force field other than gravity.

The term t
≁ð0;0Þ
���... then contains conventional Lorentz-

invariant terms describing this field in Minkowski space-

time, while t
≁ð0;1Þ
���... contains conventional leading-order

gravitational interactions with the field. Effects from both
these terms are therefore part of the conventional descrip-

tion of the force. The term t
≁ð1;0Þ
���... describes possible

Lorentz violations in Minkowski spacetime involving the
known field, many of which are tightly constrained by
experiments [2]. For the purposes of this work, which
focuses on Lorentz violation involving gravity, we can
take this term as experimentally negligible. The dominant

term of interest is therefore t
≁ð1;1Þ
���..., which lies at O(1,1).

If the NG modes correspond to gravitons as, for ex-
ample, in the cardinal model [27], then the expansion

(25) contains no terms at Oðm; 0Þ. The term t
≁ð0;1Þ
���... corre-

sponds to the gravitational fluctuations h��, and its effects

are part of the conventional description of gravity. The

dominant term of interest is therefore again t
≁ð1;1Þ
���....

If instead the NG modes correspond to a presently

unobserved force field, then t
≁ð0;0Þ
���... and t

≁ð0;1Þ
���... describe

unobserved Lorentz-invariant effects in Minkowski space-
time and in leading-order gravitational couplings. These
modes must therefore be eliminated from the analysis prior
to interpretation of observations, via solving the equations
of motion or otherwise. In what follows, we suppose this
elimination has been performed where needed. The term

t
≁ð1;0Þ
���... describes possible Lorentz violation in Minkowski

spacetime involving the unknown field. For present pur-
poses, we take this term to be experimentally negligible,
although in principle it might offer a novel way to access
certain types of presently unobserved interactions at excep-

tional sensitivities. The remaining term t
≁ð1;1Þ
���... displayed in

Eq. (25) describes the dominant Lorentz-violating gravita-
tional effects involving the unknown interaction. As
discussed in Sec. II C 1, certain Lorentz-violating effects
are observable only in the presence of gravity, and so
under suitable circumstances observable experimental

signals from t
≁ð1;1Þ
���... could arise [11] despite the tight

existing experimental constraints [33] on the direct obser-
vation of additional interactions due to the lower-order

terms t
≁ð0;0Þ
���... and t

≁ð0;1Þ
���.... In scenarios with an unobserved

force, we must therefore also allow for O(1,1) effects

involving t
≁ð1;1Þ
���....

The remaining possibility is that NGmodes are absorbed
into the torsion. To handle this case, note that the matter-
sector role of minimal torsion can be treated in parallel
with the coefficient field b� for Lorentz violation accord-

ing to Eq. (9). Existing experimental constraints on
minimal torsion components are tight, lying below
10�27–10�31 GeV [17,34,35], so effects involving mini-
mal torsion can be treated in the same way as those
corresponding to a presently unobserved force field.
We can therefore limit attention to O(1,1) effects as before.
In principle, any nonminimal torsion components can be
treated in a similar fashion because they play a role analo-
gous to coefficient fields in the nonminimal SME, but
effects of this type lie beyond our present scope.
Consider next the metric fluctuation h��. For applica-

tions to gravitational tests with matter, h�� can be treated

as a background field obtained by solving the appropriate
equation of motion, which is the modified Einstein
equation in the presence of Lorentz violation. It can there-

fore be viewed as the sum of a Lorentz-invariant piece hð0;1Þ��

with a series of corrections of increasing perturbative order
in �t���...,

h�� ¼ hð0;1Þ�� þ hð1;1Þ�� þ hð2;1Þ�� þ . . . : (26)

When we specify the perturbative order of an expression
containing h�� in what follows, it is understood that the

correct terms from the above series are included.
For a given expression, establishing the relevant per-

turbative order for our analysis typically involves a combi-
nation of experimental restrictions and theoretical consid-
erations. As an illustration, we outline here the reasoning
establishing the appropriate perturbative orders in the
construction of the relativistic quantum Hamiltonian.
First, note that terms quadratic in h�� involve PNO(4)

and higher. Since the sensitivity of current laboratory and
solar-system tests lies at the PNO(4) level, we must keep
these terms but can discard terms cubic in h�� and ones

involving the product of coefficients for Lorentz violation
with terms quadratic in h��. The Lorentz-invariant part of

the Hamiltonian can therefore be truncated at O(0,2), while
the Lorentz-violating part can be truncated at O(1,1). To
maintain consistent post-Newtonian counting, the O(0,2)
terms must be limited to PNO(5), while the O(1,1) terms
are limited to PNO(3). Next, note that for laboratory and
solar-system tests the variations in h�� over the experi-

mental scale L are small compared to h��, j@	h��j �
jh��=Lj. For example, the typical value of the gravitational

acceleration on the surface of the Earth is g ’ 10�32 GeV,
which is tiny compared to the ratio of the gravitational
potential jh��j ’ 10�9 and the size of a typical laboratory

experiment L ’ 1015 GeV�1. Terms in the relativistic
Hamiltonian proportional to derivatives of h�� can there-

fore be limited to O(0,1). Finally, note that products of
Lorentz-violating terms lead to higher-order effects with
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operator structures matching ones already appearing in
the fermion sector of the Minkowski-spacetime SME.
These are already accessible in nongravitational experi-
ments. It therefore suffices for our purpose to restrict
attention to terms at leading order in Lorentz violation.
To summarize, the construction of the perturbative relativ-
istic quantum-mechanical Hamiltonian can be limited to
terms at perturbative orders O(0,1), O(1,0), O(1,1), and
O(0,2), except for terms involving derivatives of the gravi-
tational fields, which can be limited to O(0,1).

III. QUANTUM THEORY

This section studies the quantum mechanics associated
with the fermion action Sc in Eq. (3). We begin in

Sec. III A by addressing the issue of the unconventional
time dependence arising from the Dirac equation
derived from Sc . The relativistic quantum-mechanical

Hamiltonian H is then obtained in Sec. III B, and the
relevant parts of the nonrelativistic limit HNR are extracted
in Sec. III C.

A. Time dependence

In the weak-field limit, the Lagrange density Lc for the

action (3) takes the schematic form

L ¼1

2
i½ �c ð��þC�Þ@�c �ð@� �c Þð��þC�Þc �� �cDc ;

(27)

where C� and D represent spacetime-dependent operators
without derivatives acting on c . These operators satisfy
the conditions

ð�0C�Þy ¼ �0C�; ð�0DÞy ¼ �0D; (28)

and C� is perturbative.
The Euler-Lagrange equations obtained from Eq. (27)

yield a Dirac equation with unconventional time depen-
dence,

ið�0 þ C0Þ@0c ¼
�
�ið�j þ CjÞ@j � 1

2
i@�C

� þD

�
c :

(29)

This equation differs from the standard Dirac form by
the presence of C0, which impedes the interpretation of
the operator acting on c on the right-hand side as the
Hamiltonian. In this subsection, two approaches address-
ing this issue at first order in C� are discussed.

1. Field-redefinition method

One method for constructing the Hamiltonian has been
developed in the context of the SME in Minkowski space-
time [36–38]. It uses an appropriate field redefinition at
the level of the action to ensure the Dirac equation
emerges with conventional time dependence. In typical

applications, the field redefinition is defined perturbatively
at the desired order in C�.
For present purposes, it suffices to work at first order in

C�. The appropriate field redefinition is

c ¼ A�; A � 1� 1

2
�0C0: (30)

The resulting Hamiltonian can be written as

H� ¼ Hð0Þ þHð1Þ
� ; (31)

where Hð0Þ is the Hamiltonian in the absence of C�, given
by

Hð0Þ ¼ �i�0�j@j þ �0D: (32)

The correction Hð1Þ
� is first order in C� and takes the form

Hð1Þ
� ¼�i�0

�
Cj � 1

2
C0�0�j þ 1

2
�0�jC0

�
@j

� 1

2
ið�j@jC

0 þ �0@jC
jÞ � 1

2
�0ðC0�0DþD�0C0Þ:

(33)

The subscript � serves as a reminder that the operator acts
on the spinor �. Note that the HamiltonianH� is Hermitian

with respect to the usual scalar product in flat space,

h�1; �2if ¼
Z

d3x�y
1�2: (34)

This implies, for example, that energies can be calculated
in the usual way.
Some physical insight into the field-redefinition method

is obtained by noting that the combination �� þ C� takes
the generic form

�� þ C� ¼ E�
a�

a; (35)

where E�
a can be interpreted as an effective inverse vier-

bein. It reduces to the conventional inverse vierbein e�a in
the purely gravitational case but includes coefficients for
Lorentz violation when Lorentz symmetry is broken. This
suggests that the field-redefinition method can be inter-
preted as transforming the problematic situation of a fer-
mion on an effective manifold with vierbein components
E0

a into the physically equivalent but tractable theory of a
different fermion field on a manifold with vierbein com-
ponents E0

a ¼ �0
a, in which the Hamiltonian is Hermitian

with respect to a conventional scalar product.

2. Parker method

Another method has been presented by Parker [39] in the
context of field theory in curved spacetime. It involves
multiplying the Dirac equation by a suitable factor that
removes the unconventional time dependence to the de-
sired order in C�. The resulting Hamiltonian is Hermitian
with respect to a modified scalar product.
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Applying this method at first order in C� requires left-
multiplying both sides of Eq. (29) with �0ð1� C0�0Þ. The
ensuing Hamiltonian can be written as

Ĥ c ¼ Hð0Þ þHð1Þ
c ; (36)

where Hð0Þ is given in Eq. (32) and the first-order correc-
tion in C� is

Hð1Þ
c ¼ �i�0Cj@j þ i�0C0�0�j@j

� 1

2
i�0@�C

� � �0C0�0D: (37)

The subscript c indicates an operator acting on the original
spinor c .

In this method, the modified Dirac equation implies a
modified continuity equation and hence requires a modi-
fied scalar product. At first order in C�, the continuity
equation is

@0½c yð1þ �0C0Þc � þ @j½c y�0ð�j þ CjÞc � ¼ 0; (38)

and the probability density can be identified as the
combination c yð1þ �0C0Þc . The corresponding scalar
product is

hc 1; c 2iP ¼
Z

d3xc y
1 ð1þ �0C0Þc 2: (39)

Provided Hð1Þ
c is time independent, the Hamiltonian Ĥc is

Hermitian with respect to this modified scalar product and
so quantum-mechanical calculations can proceed. When
C0 is time dependent, Hermiticity with respect to the
product (39) can be restored by adding an extra term
[40]. We thereby obtain the Hermitian Hamiltonian

Hc ¼ 1

2
i�0@0C

0 þ Ĥc (40)

at first order in C0.

3. Comparison

The Hamiltonians H� in Eq. (31) and Hc in Eq. (40)

typically have different forms. For our present purposes,
however, they are physically equivalent because they give
rise to the same eigenenergies at first order.

To demonstrate this, first note that the difference �H
between the two Hamiltonians can be written as

�H ¼ Hð1Þ
� �Hð1Þ

c ¼ Hð0ÞA� AHð0Þ; (41)

where A is given by Eq. (30). This can be shown by
manipulation of the field redefinition and the Dirac equa-
tion or verified by direct calculation. The physical quanti-
ties of interest are the eigenenergies. These are obtained as

perturbations Eð1Þ
�;c to the unperturbed values Eð0Þ, calcu-

lable at first order as

Eð1Þ
c ;� ¼ hc ð0Þ; Hð1Þ

c ;�c
ð0Þif; (42)

where c ð0Þ are solutions to the unperturbed Schrödinger

equation Hð0Þc ð0Þ ¼ Eð0Þc ð0Þ. However, the expectation
value of �H is zero in this scalar product, so the first-
order perturbations to the energies are identical for both
Hamiltonians.
The above first-order result suffices for the present work,

although we anticipate equivalence also holds at higher
orders in a complete analysis. For our purposes, the field-
redefinition method proves technically and conceptually
easier because the Hamiltonian is Hermitian with respect
to the usual scalar product. We therefore adopt the field-
redefinition method in the remainder of this work, and all
references to H implicitly refer to H�.

B. Relativistic Hamiltonian

The relativistic Hamiltonian for the action Sc in Eq. (3)

can be obtained via the field-redefinition method. At the
appropriate perturbative order, we find the operator A of
Eq. (30) takes the form

A ¼ 1� 1

2
�0

�
ee0a�

a � �0 � 3

4
eð0;1Þeð0;1Þ�0

� 3

4
eð0;1Þh0��� � 3

16
h0�h0��

��0��

� 3

2
eð0;1Þ�0 � 3

8
h0�ð�0�0�� þ ���0�0Þ

�
: (43)

Implementing the field redefinition and varying the trans-
formed Lagrange density results in a Dirac equation from
which the Hamiltonian H can be identified.
The Hamiltonian H can be split into pieces according to

perturbative order,

H ¼ Hð0;0Þ þHð0;1Þ þHð1;0Þ þHð1;1Þ þHð0;2Þ: (44)

The component Hð0;0Þ is the conventional Hamiltonian for
the Lorentz-invariant Minkowski-spacetime limit of the
theory. The first-order Lorentz-invariant piece is

Hð0;1Þ ¼ 1

2
iðhjk þ h00�jkÞ�0�k@j þ ihj0@

j � 1

2
mh00�

0

þ 1

4
@jh0k�jkl�5�

0�l þ 1

2
i@jhj0

þ 1

4
ið@jh00 þ @khjkÞ�0�j: (45)

It represents the first-order correction to the conventional

Hamiltonian Hð0;0Þ arising from gravitational and inertial
effects.
The first-order correction to the conventional

Hamiltonian Hð0;0Þ arising from Lorentz violation can be
written

MATTER-GRAVITY COUPLINGS AND LORENTZ VIOLATION PHYSICAL REVIEW D 83, 016013 (2011)

016013-9



Hð1;0Þ ¼ �a0 �m �e0 þ 2i �cðj0Þ@j � ðm �c00 � i �ej@
jÞ�0

� �fj@
j�0�5 þ ½ �aj þ ið �c00�jk þ �cjkÞ@k��0�j

þ ð� �b0 � 2i �dðj0Þ@jÞ�5 þ ði �H0j þ 2 �gjðk0Þ@kÞ�j

�
�
�bj þ ið �djk@k þ �d00@jÞ � 1

2
m �gkl0�jkl

�
�5�

0�j

�
�
1

2
�Hkl�jkl þm �dj0

�
�5�

j

� i�jlm

�
�gl00�km þ 1

2
�glmk

�
@k�5�

j: (46)

This result matches the one previously obtained for the
SME in Minkowski spacetime [37] when the change in
metric signature is incorporated. When minimal torsion
is included in the analysis, its background value enters
Eq. (46) through the replacement b� ! ðbeffÞ� specified

by Eq. (9). It can be constrained through a reinterpretation
of experiments searching for nonzero �b� [17,34,35].

An interesting issue is the extent to which the gravita-
tional and inertial effects in Eq. (45) mimic the Lorentz-
violating effects in Eq. (46). For example, in a rotating
frame of reference the term @jh0k�jkl�5�

0�l=4 in Eq. (45)

contains a coupling of the rotation to the spin of the particle
with the same operator structure as the term � �bj�5�

0�j

in Eq. (46). At this order, a frame rotation can therefore
mimic potential signals arising from a nonzero coefficient
�bj for Lorentz and CPT violation. This effect has been

observed in tests with a spin-polarized torsion pendulum
[41]. The same term in Eq. (45) also contains gravitomag-
netic effects that are in principle observable in tests search-
ing for �b� if sufficient sensitivity is reached. Certain

Lorentz-violating effects can be separated from gravita-
tional and inertial effects because the former generate
time-varying signals due to the motion of the Earth and
can have flavor dependence, but a complete separation
may be problematic.

The O(1,1) contribution to H can be separated as

Hð1;1Þ ¼ Hð1;1Þ
h þHð1;1Þ

a þHð1;1Þ
b þHð1;1Þ

c þHð1;1Þ
d

þHð1;1Þ
e þHð1;1Þ

f þHð1;1Þ
g þHð1;1Þ

H : (47)

Here, the term Hð1;1Þ
h arises from Lorentz-violating correc-

tions to the metric fluctuation h��. It is given by

Hð1;1Þ
h ¼ ihð1;1Þj0 @j � 1

2
mhð1;1Þ00 �0 þ 1

2
iðhð1;1Þjk

þ hð1;1Þ00 �jkÞ�0�k@j: (48)

The other terms in Hð1;1Þ are labeled according to the type
of coefficient for Lorentz violation involved. The contri-
butions involving the four-component coefficients a� and

b� of mass dimension one are

Hð1;1Þ
a ¼ a

≁
0 � �ajhj0 þ

�
a
≁
j� 1

2
�ajh00 � 1

2
�akhjk

�
�0�j

(49)

and

Hð1;1Þ
b ¼ ð�b

≁
0 þ �bjhj0Þ�5

þ
�
b
≁
j � 1

2
�bjh00 � 1

2
�bkhjk

�
�0�5�

j; (50)

respectively. In the latter equation, effects from minimal
torsion are included via the replacement b� ! ðbeffÞ�
given in Eq. (9).
The contributions involving the dimensionless coeffi-

cients c�� and d�� are

Hð1;1Þ
c ¼ i

�
c
≁
00�jk þ c

≁
kjþ 1

2
�c00ðh00�jk � hjkÞ

þ 2 �cðl0Þhl0�jk þ 1

4
�ck0hj0 � 1

4
�cj0hk0

� 1

2
�cljðh00�l

k þ hlkÞ � �cklh
l
j

�
�0�k@j

� 2iðc≁ðj0Þ þ �cðk0Þhjk þ �cjkhk0Þ@j
�m

�
c
≁
00 þ 1

2
�c00h00 þ 2 �cðj0Þhj0

�
�0 (51)

and

Hð1;1Þ
d ¼ 2iðd≁ðj0Þ þ �dðk0Þhjk þ �dðjkÞhk0Þ�5@j

þ i

�
d
≁
00 þ 1

2
�d00h00 þ 2 �dðk0Þhk0

�
�0�5�

j@j

þ i

�
d
≁
kj þ 1

4
�dk0hj0 � 1

4
�dj0hk0 � 1

2
�d00hjk

� 1

2
�dljðh00�l

k þ hlkÞ � �dklh
l
j

�
�0�5�

k@j

þm

�
d
≁j0

�jk � 1

2
�dj0hjk � �dkjh

j0

�
�5�

k

� 1

4
im �dj0hk0�jkl�

l; (52)

respectively. The dimensionless four-component coeffi-
cients e� and f� generate the expressions

Hð1;1Þ
e ¼ i

�
e
≁
j þ 1

4
�e0hj0 � 1

2
�ejh00 � �ekhjk

�
�0@j

�me
≁
0 þm �ejhj0 þ 1

4
m �e0hj0�

0�j (53)

and

Hð1;1Þ
f ¼ �

�
f
≁
j þ 1

4
�f0hj0 � 1

2
�fjh00 � �fkhjk

�
�0�5@

j;

(54)

while the dimensionless coefficient g��� leads to
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Hð1;1Þ
g ¼

�
2g
≁
kðj0Þ � 1

4
�gl00h

l0�jk � �glðj0Þhlk � 2 �gkðl0Þhlj þ 2 �gkðjlÞhl0
�
�k@j

þ i

�
g
≁l00

�jk � 1

2
g
≁klj � 1

2
�gk00ðh00�jl � hjlÞ � 1

2
�gn00h

ln�jk � 1

4
�gjk0hl0 þ 2 �glðn0Þhn0�jk � 1

8
�gkl0hj0

þ 1

4
�gkljh00 þ 1

2
�gklnhjn � 1

2
�gknjhln

�
�klm�5�

m@j � 1

2
mðg≁jk0 þ �gkm0hjm þ �gjkmhm0Þ�jkl�0�5�

l

þ 1

2
mi �gjk0h

k0�0�j þ 1

8
m �gjk0hl0�jkl�5: (55)

Finally, the antisymmetric coefficient H�� of mass dimen-
sion one contributes

Hð1;1Þ
H ¼ � 1

2

�
H
≁ jk � �Hjmhkm � 1

2
�Hjkh00

�
�jkl�5�

l

� i

�
H
≁
j0 þ 1

2
�Hk0hjk þ �Hjkh

k0

�
�j: (56)

In the above expressions, the fluctuations of the various
coefficient fields appear in H only at perturbative order
O(1,1). For most purposes, it is necessary to find expres-
sions for these fluctuations prior to using the Hamiltonian
H in a given analysis. This issue is addressed further in
Sec. IVC, where the spin-independent coefficient fluctua-

tions ða≁effÞ� and c
≁
�� are considered in more detail.

The remaining piece of the Hamiltonian H lies at per-
turbative order O(0,2) and represents the second-order
Lorentz-invariant contribution from gravitational and iner-
tial effects. It takes the form

Hð0;2Þ ¼ i

�
1

8
h00h00�jk þ 1

2
hl0h

l0�jk � 1

4
h00hjk

� 3

8
hjlh

l
k

�
�0�k@j � ihk0h

jk@j

�m

�
1

8
h00h00 þ 1

2
hj0h

j0

�
�0: (57)

C. Nonrelativistic Hamiltonian

Most experimental tests of interest in this work
are nonrelativistic. In this section, we use a Foldy-
Wouthuysen transformation [42] to extract from the rela-
tivistic Hamiltonian H the parts of the nonrelativistic
Hamiltonian HNR relevant for the subsequent analyses.

The Foldy-Wouthuysen transformation is a systematic
procedure for determining the nonrelativistic content
of certain relativistic quantum-mechanical Hamiltonians.
For a massive four-component Dirac fermion, the trans-
formation generates a series expansion in powers of the
fermion momentum. In the present case, the transformation
can be implemented as usual, but care must be taken to
keep track of both the order in momentum and the pertur-
bative order Oðm; nÞ in coefficients for Lorentz violation
and in gravitational fluctuations.

Performing the Foldy-Wouthuysen transformation for
the complete Hamiltonian H of Eq. (44) is cumbersome
and also unnecessary for our scope because most attained
sensitivities to spin couplings are unlikely to be improved
by studying the suppressed effects from gravitational cou-
plings. However, only limited sensitivity currently exists to
spin-independent effects controlled by the coefficients �a�
and �e� because these are unobservable for baryons and

charged leptons in Minkowski spacetime. In the remainder
of this work we focus on general spin-independent effects,
which are associated with the coefficients �a�, �c��, and �e�.

Since the minimal torsion coupling also involves spin, this
focus implies also disregarding nonrelativistic effects due
to torsion, effectively restricting attention to the limiting
Riemann geometry. Although beyond our current scope, a
Foldy-Wouthuysen analysis incorporating spin-dependent
effects could lead to additional torsion sensitivities beyond
those obtained via searches for �b� [3,17,34,43].

In the relativistic quantum theory, the upper two com-
ponents of the four-component wave function describe the
particle while the lower two describe the antiparticle. The
Hamiltonian H can be separated into an odd part O con-
taining terms that mix the upper and lower components
and an even part E that involves no mixing. The idea of
the Foldy-Wouthuysen method is to find a momentum-
dependent unitary transformation S in the Hilbert
space such that the 4� 4 Hamiltonian ~H ¼ eiSHe�iS is
2� 2 block diagonal. The leading 2� 2 block of ~H then
represents the desired nonrelativistic Hamiltonian HNR.
The full transformation S is obtained at the desired level
of accuracy via an iterated series of incremental trans-
formations reducing the off-diagonal content to the appro-
priate order.
We proceed by separating the HamiltonianH into an odd

part Oðm;nÞ
0 and an even part Eðm;nÞ

0 at each perturbative

order Oðm; nÞ. A subscript is used to specify the iteration
number of the transformation, with 0 corresponding to the
zeroth iteration. The relativistic Hamiltonian H can there-
fore be written as

H0 � H ¼ m�0 þOð0;0Þ
0 þOð0;1Þ

0 þOð1;0Þ
0 þOð1;1Þ

0

þ Eð0;0Þ
0 þ Eð0;1Þ

0 þ Eð1;0Þ
0 þ Eð1;1Þ

0 : (58)

The Foldy-Wouthuysen sequence is then defined itera-
tively as
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Hnþ1 ¼ eiSHne
�iS ¼ X1

k¼0

1

k!
½iSn; ½iSn; � � � ½iSn;|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k commutations with iSn

H0� � � ���;

(59)

where

Sn ¼ �i�0On

2m
: (60)

At each stage, the sum on k is truncated once the appro-
priate order in momentum and small quantities is reached.
The iteration continues until the Hamiltonian is even at
the desired order. Here, we proceed to O(1,1) in the small
quantities and to second order in the momentum, which
requires three iterations and yields a Hamiltonian H3.

The desired spin-independent contributions to the non-
relativistic HamiltonianHNR can be separated according to
perturbative order and origin as

HNR � H3

¼ Hð0;0Þ
NR þHð0;1Þ

NR þHð1;0Þ
NR þHð1;1Þ

NR;aeff

þHð1;1Þ
NR;c þHð1;1Þ

NR;h þHð0;2Þ
NR : (61)

Here, Hð0;0Þ
NR is the conventional Minkowski-spacetime

Hamiltonian. The conventional Lorentz-invariant contribu-

tions Hð0;1Þ
NR due to the metric fluctuation can be written as

Hð0;1Þ
NR ¼ � 1

2
mhð0;1Þ00 � hð0;1Þ0k pk � 1

4m
hð0;1Þ00 p2

� 1

2m
hð0;1Þjk pjpk: (62)

The leading-order perturbation Hð1;0Þ
NR due to Lorentz

violation and independent of h�� is identical to the

Minkowski-spacetime result given as Eq. (4) of Ref. [37].
The corrections of primary interest for our purposes lie

at perturbative order O(1,1). The contribution from a� and

e� can be written in terms of the effective coefficient

ðaeffÞ� introduced in Eq. (16), and it takes the form

Hð1;1Þ
NR;aeff

¼ ða≁effÞ0 þ ð �aeffÞkh0k � 1

m
ð �aeffÞjhjkpk

þ 1

m

�
ða≁effÞj � 1

2
ð �aeffÞjh00

�
pj: (63)

The O(1,1) contribution from c�� can be written

Hð1;1Þ
NR;c ¼ �m

�
c
≁
00 þ 1

2
�c00h00 þ 2�cðk0Þh0k

�
� 2ðc≁ðj0Þ þ �cðjkÞh0k � �cð0kÞhjkÞpj

� 1

m

�
1

2
c
≁
00�jk þ c

≁
jk þ 1

4
�c00h00�jk þ �cðl0Þh0l�jk

� 1

2
�cjkh00 � 1

2
�c00hjk � 2�cðjlÞhlk

�
pjpk; (64)

while the O(1,1) contribution from Lorentz-violating ef-
fects on the metric fluctuation is

Hð1;1Þ
NR;h ¼ � 1

2
mhð1;1Þ00 � hð1;1Þ0k pk � 1

4m
hð1;1Þ00 p2

� 1

2m
hð1;1Þjk pjpk: (65)

The remaining contribution to HNR is the O(0,2) con-
tribution involving quadratic products of h��. This can be

written as

Hð0;2Þ
NR ¼ � 1

2
m

�
h0jh

0j þ 1

4
h00h00

�
þ h0jh

jkpk

� 1

m

�
1

16
h00h00�jk þ 1

4
h0lh

0l�jk

� 1

4
h00hjk � 1

2
hjlh

l
k

�
pjpk: (66)

IV. CLASSICAL THEORY

For many analyses of Lorentz violation in matter-gravity
couplings, a classical description suffices. This section
considers the classical limit of the quantum theory dis-
cussed above, focusing on the limit involving the coeffi-
cient fields ðaeffÞ� and c��. A suitable classical relativistic

action for a point particle is presented, and its application
to modeling test and source bodies is described. The modi-
fied Einstein equation and the equation for the trajectory
of a test body are obtained. We also discuss the treatment

of the coefficient fluctuations ða≁effÞ�, c≁�� and the proce-

dure for determining the background gravitational field in
the presence of Lorentz violation.

A. Particle action

The classical action Sc corresponding to the action S
of Eq. (1) can be written as

Sc ¼ SG þ Su þ S0: (67)

As before, SG describes the gravitational dynamics, while
S0 contains the dynamics associated with the coefficient
fields for Lorentz violation. The partial action Su is the
classical relativistic point-particle limit of the action Sc for

the fermion sector. In this subsection, we discuss Su and
extend it to describe test and source bodies.

1. Point particle

At leading order in Lorentz violation, we find

Su ¼
Z

d�ð�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðg�� þ 2c��Þu�u�

q
� ðaeffÞ�u�Þ:

(68)
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In this expression, the particle path x� ¼ x�ð�Þ is parame-
trized by �, and u� ¼ dx�=d� is the four-velocity of the
particle. As usual, a gauge choice for � is required to fix the
path-reparametrization invariance and to define the proper
time of the particle on shell. We adopt here the conven-
tional proper-time interval

d� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��dx

�dx�
q

: (69)

The leading-order form (68) of the classical action can
be deduced in several ways. At the intuitive level, the term
involving ðaeffÞ� has the same structure as the usual cou-

pling of a classical relativistic particle to an electromag-
netic 4-potential, and this is consistent with the coupling of
a� in the field-theory action (3). Similarly, the coefficient

c�� enters Eq. (68) as a shift in the metric, which is

compatible with the way it appears in the field theory (3).
In a different vein, the contributions from c�� to the

relativistic particle action have previously been discussed
in the context of the photon sector [22], where the appear-
ance of c�� as a metric shift is related to the coordinate

choices discussed in Sec. II C 2. The validity of the action
(68) can also be verified by extracting the leading-order
terms from the all-orders expression obtained by construc-
tion of the exact relativistic dispersion relation [44]. In
the present context, we can demonstrate explicitly that
the action (68) reproduces the corresponding terms in the
nonrelativistic HamiltonianHNR generated from the Foldy-
Wouthuysen transformation as Eq. (61). This involves
expanding the action (68) to the appropriate orders in
velocities and Lorentz violation, extracting the con-
jugate 3-momentum, constructing the corresponding
Hamiltonian, and matching it to HNR in Eq. (61). These
methods all confirm that Eq. (68) is the correct leading-
order form of the relativistic classical action.

The energy-momentum tensor T��
u for the point particle

can be derived from the action (68) by variation with
respect to the metric, as usual. We obtain

T
��
u ¼ �

Z
d�

mu�u��4ðx� x0ð�ÞÞffiffiffi
g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c	
u

	u

q ; (70)

where the proper-time interval is given by Eq. (69). Note
that no contributions from ðaeffÞ� appear in this expression.

This follows from the adoption of ðaeffÞ� with lower index

as the coefficient field, which implies that the contraction
ðaeffÞ�u� in Eq. (68) contains no metric. Working with

ðaeffÞ� instead is possible but less convenient. It would
produce a contribution to T

��
u along with corresponding

changes in the contributions to the energy-momentum
tensor T0�� associated with S0, leading to the same physical
results.

2. Test and source bodies

The experiments and observations considered in this
work involve bodies B acting as test bodies T or as sources
S. Many of these bodies consist of atoms or macroscopic
matter rather than individual particles. It is therefore useful
to extend the point-particle action (68) to an action SBu for a
body B. This requires consideration of several issues.
One issue arises because the interactions involved in

binding electrons, protons, and neutrons into atoms
and macroscopic matter contribute additional Lorentz-
violating effects. This issue appears also in the study of
fermion-sector SME coefficients in the Minkowski-
spacetime limit [45]. However, for the gravitational tests
of interest here, it is reasonable to assume that these
interaction effects are small compared to the propagation
effects.
Another issue arises from the spacetime dependence

of the coefficient fields ðaeffÞ� and c��, which implies

Lorentz-violating effects may vary over the region filled
by the body. Most of the test bodies we consider are small,
so it is reasonable to approximate the coefficient fields as
constant across the extent of the body. This corresponds to
the usual approximation of constant metric fluctuation h��

across a test body. However, some of the source bodies we
consider are comparatively large, so some variation of the
coefficient fields over the source is plausible. This could
produce Lorentz-violating effects of various types, includ-
ing possible dependence on the mass moments of the body.
In what follows, we suppose that the variation of the
coefficient fields is sufficiently mild and smooth that these
effects can be neglected for the bodies we consider. A more
comprehensive treatment of this issue would be of poten-
tial interest but lies outside our present scope.
With the above assumptions and for most purposes in

this work, a given body B can be modeled as a composite
particle with constituents located at a single spacetime
point and having the same 4-velocity, held together by
binding energy. The body B can then be assigned an
effective mass mB, expressed in terms of its constituent
particles as

mB ¼ X
w

Nwmw þm0B: (71)

Here, w ranges over the particle species forming the body
B. For example, w can be taken to include the electron e,
the proton p, and the neutron n whenever B is an atom or
made of ordinary macroscopic matter. The symbol Nw

denotes the number of particles of type w in the body,
and m0B represents the contribution to the mass from the
binding energy. In practice, the exact values of Nw are
readily obtained for test bodies on the atomic or molecular
scale, while estimating Nw for macroscopic test and source
bodies in the laboratory is straightforward. When consid-
ering the Earth as the source body, we adopt the estimates
Ne	 ¼ Np

	 � Nn	 ¼ 1:8� 1051 based on recent studies of
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the bulk Earth composition [46]. The difference Nn	 �
Np

	 ’ 1049 is primarily due to the iron core. The radial
variation in neutron content is neglected in what follows,
although it might be of interest in more detailed studies.

Similarly, the Lorentz-violating properties of B can
be represented via effective coefficient fields ðaBeffÞ� and

ðcBÞ�� for the body. These can be viewed as the sum of

vacuum values and coefficient fluctuations,

ðaBeffÞ� ¼ ð �aBeffÞ� þ ða≁BeffÞ�;
ðcBÞ�� ¼ ð �cBÞ�� þ ðc≁BÞ��;

(72)

in parallel with the point-particle case. The form of the
action (68) implies that the coefficient field ðaBeffÞ� takes

the form

ðaBeffÞ� ¼ X
w

NwðaweffÞ� þ ða0BeffÞ�; (73)

where ða0BeffÞ� is a possible coefficient field associated

with the binding energy that contributes to ðaBeffÞ�. Also,
expanding the action Su for small Lorentz violation shows
that at leading order the body coefficient field ðcBÞ�� can

be taken as

ðcBÞ�� ¼ 1

mB

�X
w

NwmwðcwÞ�� þm0Bðc0BÞ��

�
; (74)

where ðc0BÞ�� is associated with the binding energy.

The two contributions ða0BeffÞ� and ðc0BÞ�� describe

Lorentz violation arising from the particles associated
with the forces binding together the body B. These parti-
cles are primarily gravitons, gluons, or photons and are
associated with boson fields, for which the CPT-violating
terms are expected to be small or zero. In the minimal
SME, no such terms exist for gravitons, while for photons
and gluons they can reasonably be assumed to vanish [3].
Also, the relevant photon coefficient ðkAFÞ� is constrained
well below levels relevant for this work [2]. Possible
CPT-violating contributions from other sea particles
largely cancel due to particle-antiparticle pairings or
are suppressed in loops involving weak interactions. We
therefore approximate the contributions from ða0BeffÞ� as

negligible,

ða0BeffÞ� ’ 0; (75)

in this work. In contrast, all the force fields have CPT-even
terms that can be expected to contribute to ðc0BÞ��, so the

resulting size of ðc0BÞ�� may well be of the same order as

ðcwÞ�� and cannot be neglected.

Given the above discussion, we conclude that the
leading-order approximation to the classical action SBu for
a body B can be written in the simple form

SBu �
Z

d�ð�mB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðg�� þ 2ðcBÞ��Þu�u�

q
� ðaBeffÞ�u�Þ;

(76)

where mB, ðaBeffÞ�, and ðcBÞ�� are given by Eqs. (71), (73),

and (74), respectively. In this expression, u� is the
4-velocity of the body B, which follows a world line
parametrized by �. This form is convenient for calcula-
tional purposes. Note, however, that the derivation estab-
lishes validity of this form of the action only at leading
order in ðcBÞ��.

The model action (76) for a body B suffices for most
situations of interest in this work. In a few cases where the
body acts as a gravitational source S, it is also useful to
incorporate dominant effects arising from its rotation. For
this purpose, we treat S as rigid at leading order and assume
that the distribution of electrons, protons, and neutrons is
approximately uniform throughout it. For the bodies we
consider, this assumption is good to within an order of
magnitude. The density  of S can be taken as the mass per
unit volume and approximated as uniform. For large source
bodies such as the Earth, some results could in principle
also depend on spherical moments of inertia [7], but these
effects are neglected here. The angular velocity ~! of
rotation is defined in the frame at rest relative to S
with origin at the center of mass, which can be identified
with the location of S.

B. Equations of motion

The primary experimental observables arising from the
classical theory involve the relative motion of particles. To
investigate the motion of a test particle in the presence
of gravitational sources, the modified Einstein equation
must be solved for the background metric and the equation
for the particle trajectory must be found. In this subsection,
we derive the equations of motion from the action (67)
in terms of the metric fluctuation h�� and the coefficient

fluctuations ða≁BeffÞ�, ðc≁BÞ��. The issue of expressing these

fluctuations in terms of the vacuum values ð �aBeffÞ�, ð �cBÞ��

for a given distribution of matter is addressed in the follow-
ing subsection, Sec. IVC. We conclude the present sub-
section with comments about the implications of Lorentz
violation for the equivalence principle.

1. Modified Einstein equation

Varying the action (67) in Riemann spacetime with
respect to the metric yields the modified Einstein equation

G�� ¼ T
��
G þ �T

��
u þ �T0��; (77)

where G�� is the Einstein tensor and the terms on the
right-hand side form the energy-momentum tensor. The
contribution T

��
G arises from Lorentz violation in the pure-

gravity sector. The energy-momentum tensor T
��
u for the

matter is given in Eq. (70). The remaining energy-
momentum contribution T0�� arises from the dynamics
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of the coefficient fields for Lorentz violation and is deter-
mined by S0.

Taking the covariant divergence of Eq. (77) and using
the Bianchi identities shows that the geometry requires the
total energy-momentum tensor to be locally conserved.
The theory can be consistent only if this result is compat-
ible with the explicit form of the energy-momentum tensor.
This requires careful accounting of contributions from the
massless NG modes arising from the spontaneous Lorentz
breaking [3]. In the general case, these modes are con-

tained in the fluctuations t
≁
���....

For the pure-gravity sector, the relevant analysis is given
in Refs. [3,7] and can be subsumed as needed in the present
context. For the matter sector, the NG modes produce no
relevant contribution to the energy-momentum tensor T��

u

at the post-Newtonian order appropriate for the tests con-
sidered here. The key point is that the leading Lorentz-

violating effects of coefficient fluctuations t
≁
���... arise at

PNO(2) or beyond, as shown in Sec. II D. Since these
fluctuations are accompanied by an additional factor of
GN in the modified Einstein equation (77), they affect
the metric only at PNO(4) or beyond. However, for the
tests considered below it suffices to work at PNO(3)
for Lorentz-violating terms, so the coefficient fluc-

tuations ða≁BeffÞ� and ðc≁BÞ�� appearing in T
��
u can be ne-

glected in Eq. (77).
In contrast, the contributions to T0�� arising from the

dynamics of the coefficient fluctuations t
≁
���... are of po-

tential relevance in solving the modified Einstein equation
for the metric. The specific effects associated with the

coefficients ða≁BeffÞ� and ðc≁BÞ�� are derived in Sec. IVC.

2. Particle trajectory

The equation of motion for a classical test particle T is
obtained by varying the action (67) with respect to the
particle position 4-vector x�. In the absence of Lorentz
violation, this is the geodesic equation. However, in the
presence of Lorentz violation, the trajectories of test par-
ticles T no longer match the geodesics of the spacetime.

Expanding to O(1,1), the equation of motion can be
written as

€x� ¼ ��ð0;1Þ
�
	
u

	u
 � �ð1;1Þ
�
	
u

	u


þ 2���ð �cTÞð��Þ�ð0;1Þ	

�u	u


þ 2ð �cTÞð	
Þ�ð0;1Þ��
	u
u�u�u� þ @�ðc≁TÞ	
u	u


� 2���@	ðc≁TÞð�
Þu	u
 � @�ðc≁TÞð	
Þu	u
u�u�

� 1

mT
½@�ða≁TeffÞ	 � ��
@	ða≁TeffÞ
�u	; (78)

where each dot on x� represents a derivative using the
proper-time interval (69). The superscript T denotes quan-
tities associated with the test particle. The first term on the

right-hand side is the usual geodesic contribution, where
�ð0;1Þ

�
	
 is the linearized Christoffel symbol. AChristoffel

symbol with subscript (1,1) also appears in Eq. (78). It is
defined as the linearized Christoffel symbol with h��

replaced by hð1;1Þ�� . This introduces matter-sector coeffi-
cients associated with the gravitational source, along with
any gravity-sector coefficients that may be included in the
analysis.

Once the forms of h��, ða≁effÞ�, and c
≁
�� are established,

Eq. (78) can be used to determine to O(1,1) the motion
of a classical test particle in a curved but asymptotically
flat spacetime with nonzero coefficients for Lorentz
violation a�, e�, and c��. Obtaining expressions for

h��, ða≁effÞ�, and c
≁
�� is the subject of Sec. IVC.

Although unnecessary for the present work, we can
comment in passing about the effects of nongravitational
interactions on the particle trajectory. Any such interac-
tions can be viewed as introducing an additional contribu-
tion 	� to the right-hand side of Eq. (78). Using the
perturbation scheme of Sec. II D, this additional accelera-
tion 	� can be expanded as a sum over terms 	

�
ðm;nÞ, one at

each perturbative order Oðm; nÞ. Notice that, although the
interaction itself is nongravitational, contributions to 	

�
ðm;nÞ

with n � 0 can be induced from gravitational couplings in
the interaction sector. Similarly, Lorentz-violating contri-
butions to	

�
ðm;nÞ can originate from coefficients for Lorentz

violation in the interaction sector. If we also expand €x� as

€x � ¼ €x
�
ð0;0Þ þ €x

�
ð0;1Þ þ €x

�
ð1;0Þ þ €x

�
ð1;1Þ þ . . . ; (79)

then we obtain the following additional terms for the
particle 4-acceleration €x�:

€x
�
ð0;0Þ � 	

�
ð0;0Þ;

€x�ð0;1Þ � 	�
ð0;1Þ;

€x
�
ð1;0Þ � 	

�
ð1;0Þ � 2��	ð �cTÞð	
Þ	


ð0;0Þ
� 2ð �cTÞð	
Þ		

ð0;0Þu

u�;

€x
�
ð1;1Þ � 	

�
ð1;1Þ � 2��	ð �cTÞð	
Þ	


ð0;1Þ � 2ð �cTÞð	
Þ		
ð0;1Þu


u�

þ 2h�	ð �cTÞð	
Þ	

ð0;0Þ � 2��	ðc≁TÞð	
Þ	


ð0;0Þ: (80)

The trajectory at Oð1; nÞ is affected both directly by
	�
ð1;nÞ and indirectly by combinations of 	�

ð0;nÞ with the

coefficients for Lorentz violation. The origin of the
indirect terms can be traced to the additional factor of
2c�� in the action (68) relative to the conventional

proper-time interval (69).

3. Implications for the equivalence principle

The deviations from geodesic motion implied by
Eq. (78) can be species dependent because the couplings
to the coefficient fields ðaeffÞ� and c�� can vary with
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particle flavor. This leads to apparent violations of the
weak equivalence principle (WEP), which stipulates that
the motion of uncharged test particles is independent of
internal structure or composition [8].

One implication of this observation is that experiments
designed to test the WEP are also sensitive to ð �aeffÞ� and

�c��. Since all the WEP violations implied by Eq. (78) are

accompanied by effects associated with the breaking of
rotation and boost symmetries, the experimental signatures
associated with ð �aeffÞ� and �c�� typically differ from those

in other scenarios for violations of the WEP. The latter
portion of this work discusses in some detail the role that
experiments testing the WEP can play in searches for
Lorentz violation.

The flavor dependence of the coefficient couplings leads
to the philosophical question of whether spontaneous
Lorentz violation in the matter sector violates the WEP
or merely mimics violations of the WEP. The issue hinges
on the interpretation of the term ‘‘uncharged test particle.’’
In models with spontaneous Lorentz violation in the matter
sector, the NG modes couple to test particles and so
mediate an interaction. This interaction can be identified
with Einstein-Maxwell electrodynamics [14], GR gravity
[27], an effect on torsion [14], or a new force [11,29,30]. If
the term ‘‘uncharged’’ is taken in the restrictive sense to
mean that the test particle is unaffected by standard forces
such as electrodynamics, then the trajectory deviations of
‘‘uncharged’’ test particles caused by nonzero ð �aeffÞ� and

�c�� coefficients represent violations of the WEP. If instead

the term ‘‘uncharged’’ indicates the test particle cannot
have nongravitational couplings of any kind, then no vio-
lations of the WEP occur. However, in this latter case
‘‘uncharged’’ test particles may be nonexistent in the mat-
ter sector of the SME, where generically all particles
experience nonzero ð �aeffÞ� and �c�� coefficients. We em-

phasize that the above discussion is a matter of philosoph-
ical classification only, without impact on the practical
issue of using tests of the WEP to search for Lorentz
violation via the deviations from geodesic motion de-
scribed by Eq. (78).

The WEP is subsumed in certain other equivalence
principles, such as the Einstein equivalence principle or
the strong equivalence principle. These incorporate also
aspects of local Lorentz invariance and local position
invariance. Since nonzero coefficients ð �aeffÞ�, �c�� corre-

spond directly to local Lorentz violation, and since Lorentz
violation can be position dependent, the deviations from
geodesic motion described by Eq. (78) can represent vio-
lations of these broader equivalence principles arising in
more than one way. Several related philosophical issues
remain open, including classifying violations of various
equivalence principles according to properties of the co-
efficients for Lorentz violation and identifying implica-
tions for relations such as the Schiff conjecture [8,47].
We note also in passing that comments analogous to those

above bear on the philosophical issue of whether theories
with matter-sector couplings to spontaneous Lorentz vio-
lation constitute metric theories of gravity.

C. Coefficient and metric fluctuations

To solve the equation of motion (78) for the trajectory of
a test particle, explicit expressions for the metric fluctua-

tion h�� and the coefficient fluctuations ða≁effÞ�, c≁�� are

required. Within a specific model with known action S0 for
the coefficient fields, these expressions can be obtained by
direct calculation. An illustration of this is provided in
Sec. V. However, in the interest of generality, it is useful
to establish results valid for a large class of models. In this
subsection, we outline a procedure to obtain expressions

for h�� and for the generic coefficient fluctuations t
≁
���...

when S0 is largely unknown, and we obtain explicit results

for h��, ða≁effÞ�, and c
≁
�� applicable to the equation of

motion (78). These results are used in later sections of
this work in establishing experimental signatures for
Lorentz violation.

1. Methodology

Consider first the metric fluctuation h��. In the pertur-

bation scheme of Sec. II D, the expansion of h�� takes

the form (26). To determine the test-particle trajectory at
order O(1,1) via Eq. (78), it is necessary to obtain explicit

expressions for hð0;1Þ�� and hð1;1Þ�� .

The Lorentz-invariant contribution hð0;1Þ�� can be obtained
in the usual way as the leading-order solution of the
Einstein equation, taking the Lorentz-invariant part of
the energy-momentum tensor as the source. To PNO(3),
the standard solution can be written in harmonic coordi-
nates as

hð0;1Þ00 ¼ 2U; hð0;1Þ0j ¼ �4Vj; hð0;1Þjk ¼ 2U�jk;

(81)

where U and Vj are the usual post-Newtonian potentials
defined as

U ¼ GN

Z
d3x0

ð ~x0; tÞ
j ~x� ~x0j ;

Vj ¼ GN

Z
d3x0

ð ~x0; tÞvjð ~x0; tÞ
j ~x� ~x0j :

(82)

In these expressions, the density ð ~x0; tÞ and the 3-velocity
vjð ~x0; tÞ are properties of the source in the chosen asymp-
totic inertial frame. As described in Sec. IVA2, it suffices
in this work to use the approximation (76) for the source-
body action SBu , so the energy-momentum tensor takes the
generic form (70).

The Lorentz-violating component hð1;1Þ�� can conven-
iently be viewed as a sum over individual contributions
arising from each coefficient field for Lorentz violation,
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hð1;1Þ�� ¼ ðhð1;1Þa Þ�� þ ðhð1;1Þb Þ�� þ . . .þ ðhð1;1ÞH Þ��: (83)

This means each coefficient can be treated in turn.
However, the procedure for determining a particular con-
tribution can take different paths depending on the type of
gravitational coupling of the coefficient field.

A simple case arises for any coefficient field t���... that

is minimally coupled to gravity. Then, only the vacuum
values �t���... in the expansion (11) contribute to the energy-

momentum tensor T��
u of the source at the relevant order.

The key point is that the solution for hð1;1Þ�� at PNO(3) arises
from the combination �T��

u , which itself already lies at
PNO(2). However, as discussed in Sec. II D, the coefficient

fluctuations of interest here are t
≁ð1;1Þ
���... and also lie at

PNO(2). These fluctuations therefore cannot contribute to

hð1;1Þ�� below PNO(4). As a result, hð1;1Þ�� can be found directly
by solving the modified Einstein equation with attention
limited to the vacuum values �t���....

We note in passing that this procedure is consistent with
the no-go result for explicit Lorentz violation in gravity [3]
even though �t���... can be interpreted as a coefficient for

explicit breaking. This is because we are working to O(1,1)
and PNO(3), for which D	 �t���... 
 Oðh�tÞ 
 Oð1; 1Þ. As a
result, the covariant derivative of �T��

u is compatible with
the Bianchi identities D�G

�� ¼ 0 at this perturbative

order. In effect, the comparatively low perturbative order
implies that a constant vacuum value remains consistent
with the geometry of spontaneous Lorentz breaking. It is
also noteworthy that an independent contribution from
T0�� may exist that satisfies local conservation and hence
is compatible with the Bianchi identities to the relevant
perturbative order. This would also represent a consistent
theory, albeit a different one. The two theories involving
the coefficient field ðaeffÞ� with minimal and with non-

minimal gravitational couplings provide an illustration of
this, as is discussed in the next subsection.

In the simple case with minimal coupling, once hð1;1Þ�� has
been found, it remains only to determine the direct con-
tributions to the equation of motion (78) arising from the

fluctuations t
≁ð1;1Þ
���.... For this purpose, we can apply the

requirement that the system of the source S and the test
body T conserves the total 4-momentum P�. For a two-

body system, this implies the force law must be antisym-
metric upon exchange of S and T. Otherwise, the forces on
each body due to the other would violate Newton’s third
law, and the system would self-accelerate.

At PNO(2) and in the absence of Lorentz violation, the
relevant force between S and T can be directly identified
as m €xj. At higher order and in the presence of Lorentz
violation, it is simpler to impose conservation of the total
4-momentum, dP�=dt ¼ 0. In principle, P� can be found

by adding the conjugate momenta of S and Tobtained from
the two-body action. In practice, for the perturbative order

to which we work, it suffices to obtain the conjugate

momentum for T alone and require antisymmetry of its

time derivative under the exchange of S and T. The con-

straints fixing the fluctuations t
≁ð1;1Þ
���... arise from the � ¼ j

components of dP�=dt ¼ 0, all at PNO(3) except for

terms at PNO(4) involving the velocities of both S and T.

We remark in passing that extending this treatment to

higher perturbative orders requires also incorporating

back-reaction effects on the metric, including gravitational

radiation.
The above procedure holds for coefficient fields that

are minimally coupled to gravity. If nonminimal curva-

ture couplings also occur in S0, then additional terms

involving the coefficient fields t���... can appear in the

energy-momentum tensor and hence can affect the modi-

fied Einstein equation. The curvature couplings intertwine

the kinetic contributions from h�� and t
≁
���..., so t

≁
���... can

contribute to the solution for hð1;1Þ�� at PNO(3). To proceed

without specifying S0, we therefore need additional infor-

mation about t
≁
���....

In the present work, the necessary information can be

extracted from the general structure of the equation of

motion for t���... and the symmetries of the theory. When

linearized, this equation of motion can be written as the

sum of a differential operator acting on t
≁
���... and a source

term at most linear in h��. The differential operator can

involve arbitrary powers of �t���... but is independent of

h��. The contributions t
≁ð1;1Þ
���... of interest are at O(1,1) and

hence are linear in both �t���... and h��. At this order, the

solution for t
≁ð1;1Þ
���... can therefore be written as a sum of

terms, each containing up to one power of h�� along with

some number n of powers of �t���... in the numerator and

n� 1 powers of �t���... in the denominator. This expansion

of t
≁ð1;1Þ
���... in terms of �t���... and h�� is constrained by two

requirements. One arises from the restriction of t
≁
���... to

NG modes, which must maintain the extremum of the

action. The solution for t
≁ð1;1Þ
���... must therefore obey the

NG conditions at O(1,1). The second is the requirement

that t
≁
���... must transform as expected under diffeomor-

phisms, as a consequence of the spontaneous nature of

the symmetry breaking and the requirement of observer

general coordinate invariance [48]. It turns out that these

two restrictions suffice to express t
≁ð1;1Þ
���... in terms of �t���...

and h�� in the cases of interest here.

Once the expression for t
≁ð1;1Þ
���... has been found, h�� can

be obtained by combining information from the modified
Einstein equation and the trajectory equation. The modi-
fied Einstein equation yields directly the piece of h��

arising from �t���... in the energy-momentum tensor.
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Inserting this result and the expression for t
≁ð1;1Þ
���... in the

trajectory equation and imposing conservation of the total
4-momentum of the source and test body as before deter-

mines the missing piece of h�� arising from t
≁ð1;1Þ
���....

In both minimal and nonminimal cases, the net result
of the above procedure is a form of the trajectory equation

in which h�� and t
≁
���... can be replaced with specified

gravitational potentials and the vacuum values �t���....

The solution of the trajectory equation can then proceed.
In the next two subsections, we apply these methods to
obtain the relevant contributions to the fluctuations from
the coefficient fields ðaeffÞ� and c��.

2. Fluctuations and c��

The treatment of the coefficient field c�� provides an

example involving the comparatively simple case of mini-
mal coupling to gravity. Although nonminimal curvature
couplings to c�� could be considered, these are of lesser

interest in the context of searches for Lorentz violation
because direct signals from �c�� already appear for minimal

coupling. We therefore neglect nonminimal couplings to
c�� here. In this subsection, the relevant contributions to

the metric fluctuation ðhð1;1Þc Þ�� are obtained to third post-

Newtonian order, and effects from c
≁
�� at O(1,1) are

considered.
Following the procedure outlined in the previous sub-

section, we begin with the modified Einstein equation (77).
The relevant energy-momentum tensor for the source S is
given by the expression (70) expanded to leading order in
Lorentz violation and with c�� replaced by ðcSÞ��. Solving

for the metric fluctuation to PNO(3), we obtain in har-
monic gauge

ðhð1;1Þc Þ00 ¼ 2ðcSÞ00Uþ 4ðcSÞðj0ÞVj;

ðhð1;1Þc Þ0j ¼ �4ðcSÞ00Vj;

ðhð1;1Þc Þjk ¼ 2ðcSÞ00U�jk:

(84)

A consistent expansion to PNO(3) requires only PNO(1)

terms in ðhð1;1Þc Þ0j and none in ðhð1;1Þc Þjk, but we display

PNO(3) terms in ðhð1;1Þc Þ0j and PNO(2) terms in ðhð1;1Þc Þjk
because they are useful in part of the analysis to follow.

The next step is to examine the contributions to the

equation of motion (78) from c
≁
�� at O(1,1). The conjugate

momentum can be extracted from the action (68) with
ðaeffÞ� set to zero. Conservation of the total 4-momentum

P� of the system is ensured by the requirement that its

time derivative be antisymmetric under the exchange of
the source S and the test body T. We find that P� is

conserved to PNO(3) without contributions from c
≁
��.

This establishes the PNO(3) result

@�c
≁ð1;1Þ
�� ¼ 0; (85)

showing that the NG modes associated with c
≁
�� play no

role at this perturbative order.
The results (84) and (85) complete the determination of

the trajectory equation for the coefficient field c��. For a

given source S, the potentials U and Vj can be calculated
explicitly. The effects of ðcSÞ�� and ðcTÞ�� on the trajec-

tory of the test body T can therefore be investigated in
various regimes of experimental interest. This line of rea-
soning is pursued beginning in Sec. VI.

3. Fluctuations and ðaeffÞ�
For the coefficient field ðaeffÞ�, the case of minimal

coupling to gravity is of lesser interest. The modified
Einstein equation is unaffected because ðaeffÞ� is absent

from the energy-momentum tensor (70). Also, only ða≁effÞ�
enters the trajectory equation. Since it is indistinguishable
from an electromagnetic field, it provides no relevant con-
tributions at O(1,1). We therefore expand the treatment to
the case of nonminimal curvature couplings, for which
ð �aeffÞ� becomes measurable [11]. In effect, the fluctuations

ða≁effÞ� become observable by virtue of their nonminimal

gravitational couplings.
Following the procedure of Sec. IVC1, the first step is

to obtain an expression for the fluctuations ða≁effÞð1;1Þ� orig-
inating from the source S using the NG condition
and the requirement of diffeomorphism covariance. At
O(1,1), the NG condition can be written as

ða≁effÞð1;1Þ� ð �aBeffÞ� ¼ 1

2
ð �aBeffÞ�h��ð �aBeffÞ�: (86)

We find that the contributions to ða≁effÞð1;1Þ� consistent
with this equation and with diffeomorphism covariance
take the form

ða≁effÞð1;1Þ� ¼ 1

2
	h��ð �aBeffÞ� �

1

4
	ð �aBeffÞ�h�� þ @�� (87)

in harmonic coordinates. Here, the constant 	 is calculable
but varies with the specifics of the theory, typically being
determined in terms of the coupling constants that control
the nonminimal couplings. The function� contains effects
proportional to h�� and ð �aSeffÞ� that are unphysical by

virtue of the discussion in Sec. II C 1, so it is disregarded
in what follows.
At this stage, the result (87) can be combined with the

modified Einstein equation and the trajectory equation to

determine the contributions to hð1;1Þ�� proportional to ð �aSeffÞ�.
Working at PNO(3), we find these contributions can be
written in harmonic gauge as
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ðhð1;1Þa Þ00 ¼ 2

m
½2	ð �aSeffÞ0Uþ 	ð �aSeffÞjVj � 	ð �aSeffÞjWj�;

ðhð1;1Þa Þ0j ¼ 1

m
½	ð �aSeffÞjUþ 	ð �aSeffÞkUjk � 	ð �aSeffÞ0Vj

� 	ð �aSeffÞ0Wj�;
ðhð1;1Þa Þjk ¼ 2

m
½�	ð �aSeffÞ0U�jk þ 	ð �aSeffÞ0Ujk�: (88)

Paralleling the case of the coefficient field c��, we have

kept here PNO(3) terms in ðhð1;1Þa Þ0j and PNO(2) terms in

ðhð1;1Þa Þjk as a convenience for the analysis to follow. In

Eq. (88), U and Vj are the post-Newtonian potentials
defined in Eq. (82). Additional potentials Ujk and Wj

also appear, defined by

Ujk ¼ GN

Z
d3x0

ð ~x0; tÞð ~x� ~x0Þjð ~x� ~x0Þk
j ~x� ~x0j3 ;

Wj ¼ GN

Z
d3x0

ð ~x0; tÞvkð ~x0; tÞð ~x� ~x0Þjð ~x� ~x0Þk
j ~x� ~x0j3 :

(89)

The results (87) and (88) fix the form of the contribu-
tions involving the coefficient field ðaeffÞ� to the equation

of motion (78). Modifications of the trajectory of a test
body T arising from nonzero values of the coefficients
ð �aSeffÞ� and ð �aTeffÞ� can therefore be studied at third post-

Newtonian order. The resulting experimental signals are
discussed starting in Sec. VI.

V. EXAMPLE: BUMBLEBEE MODEL

In this section, we examine a specific model and dem-
onstrate how it fits into the general theory developed above.
This discussion is included solely for illustrative purposes
and is inessential to the development of the paper. In
particular, the analyses of experimental signals in subse-
quent sections are independent of this specific model, so
the reader can proceed directly to Sec. VI if desired.

A. Bumblebee model

Bumblebee models are theories in which spontaneous
Lorentz violation is induced by a potential VðB�Þ for a
vector field B� [49]. As an illustration of the general
theoretical treatment of Sec. IV, we consider here a specific
and comparatively simple bumblebee model and study its
matter-gravity couplings. A discussion of generic models
of vacuum-valued vectors coupled to gravity including
references to the substantial early literature can be found
in Sec. III A of Ref. [15], while some more recent papers
are listed in Ref. [50]. Discussions of various stability
issues with these models are given in Ref. [51].

The action SB for the specific bumblebee model of
interest here can be written as

SB ¼ SG þ SBu þ S0B

¼
Z

d4xeLG þ
Z

d�LBu þ
Z

d4xeL0
B: (90)

The form of this action corresponds to that of the general
action (67). The term SG is the usual Einstein-Hilbert
action (2), with cosmological constant chosen as � ¼ 0
for this illustrative case. The term SBu represents the
matter-bumblebee coupling, while S0B contains the bum-
blebee dynamics, including the potential V triggering
spontaneous Lorentz violation.
For the classical Lagrangian LBu describing the matter-

bumblebee coupling, we choose the expression

L Bu ¼ �m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðg�� þ 2�2B�B�Þu�u�

q
þ �1B�u

�: (91)

Here, �1 and �2 are coupling constants that can vary with
the particle species. Where needed in what follows, we
distinguish the coupling constants for a source body S and
a test particle T by superscripts: �S1 , �

T
1 , �

S
2 , �

T
2 . Note that

the Lagrangian (91) could be viewed as the point-particle
limit of a quantum field theory, in parallel with the deri-
vation for the general theory (68).
For the Lagrange density eL0

B determining the dynamics
of the bumblebee field, we take

eL0
B ¼ � 1

4
eB��B�� � eV þ �1eB

�B�R��; (92)

where the field strength is B�� ¼ @�B� � @�B�. The cou-

pling constant �1 is sometimes written �1 ¼ �=2� in the
literature [3,15]. The potential V has the form

V ¼ VðB�B� � b2Þ; (93)

where b2 is a real number. Where a definite form is needed
in the calculations to follow, we adopt for simplicity the
smooth quadratic potential

V ¼ �ðB�B� � b2Þ2=2: (94)

In any event, the potential is assumed to induce a nonzero
vacuum expectation value for the bumblebee field, which
we denote by b� � hB�i following standard usage, where

b�b� ¼ �b2. Denoting the bumblebee fluctuation about

the vacuum value by B
≁
�, we can expand

B� ¼ b� þ B
≁
� (95)

in parallel with Eq. (11).
A match can be made between the bumblebee action

(90) and the general action (67) by identifying the various
coefficient fields for Lorentz violation with specific com-
binations of the bumblebee field. The term LBu corre-
sponds to nonzero coefficient fields ðaeffÞ� and c��,

given by
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ðaeffÞ� ¼ �1B�; c�� ¼ �2

�
B�B� � 1

4
g��B	B

	

�
:

(96)

It is also necessary to introduce an additional scalar field k,
defined as

k ¼ 1

2
�2B	B

	; (97)

which normally can be disregarded in the SME con-
text because it is Lorentz invariant. In the presence of k,
the general action (68) is slightly modified, with the
Lagrangian now given by the expression

L u ¼ �m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðg�� þ kg�� þ 2c��Þu�u�

q
þ ðaeffÞ�u�:

(98)

The term L0
B yields nonzero coefficient fields s�� and u in

the pure-gravity sector, given by [7]

s�� ¼ �B�B� � 1

4
�B	B

	g��; u ¼ 1

4
�B	B

	: (99)

Note that in this model only a single field B� underlies

all the coefficient fields ðaeffÞ�, c��, k, s��, and u. It

follows that searches for Lorentz violation that are sensi-
tive to any one of these coefficient fields could provide
information constraining the others, at least in part. This
special feature of the bumblebee model may not extend
to models with more complicated field structure. Note
also that the coefficient field k in the matter sector is a
species-dependent analogue of the coefficient field u in the
gravity sector. A nonzero value of k can introduce apparent
WEP violations. Since these are Lorentz invariant, the
resulting phenomenology lacks the various time depen-
dences that characterize WEP violations resulting from
Lorentz breaking.

B. Solving the model

Given the action (90), we can illustrate by direct calcu-
lation the correspondence between results from the bum-
blebee model and ones from the general SME-based
approach developed in Sec. IV. For this purpose, it suffices
to work at lowest nontrivial order in the couplings �1, �2,
and �1. We focus here on observable effects arising from
the identifications of ðaeffÞ�, c��, and k in Eqs. (96) and

(97). Observable effects involving s�� and u as defined in
Eq. (99) are studied in Ref. [7].

The basic goal is to predict effects such as trajectory
deviations for given values of ð �aeffÞ� and �c��. As discussed

in Sec. IVC 3, observability of ð �aeffÞ� involves nonmini-

mal couplings, so in the present context we can expect
dominant effects from ð �aeffÞ� to be proportional to the

product �1�1. In contrast, dominant observable effects
from �c�� are generated directly from �2.

We remark in passing that the special bumblebee model
considered here is experimentally viable provided the
sizes of �1 and �2 are compatible with existing constraints
on long-range spin-independent forces [33]. The pro-
portionality of ð �aeffÞ� to �1�1 implies the model can

yield Lorentz-violating effects involving large b� that are

detectable only in gravitational experiments [11].
In this subsection, working at the appropriate perturba-

tive order and taking the Newtonian limit where useful, we
obtain and solve the bumblebee equation of motion and the
modified Einstein equation. These results suffice to deter-
mine the trajectory equation for a test particle in terms of
the vacuum value b� of the bumblebee model. Comparison

to the general SME-based approach developed in Sec. IV
yields an explicit match for ð �aeffÞ�, �c��, �k in terms of the

couplings �1, �2, �1 and the vacuum value b�.

1. Bumblebee equation

Consider first the equation of motion for the bumblebee
field, which follows from varying the action SB. At the
perturbative order of interest, this equation takes the form

@�B�� ¼ 2V 0b� � 2�1b
�R�� þ �S1 j� þ . . . ; (100)

where

j� ¼
Z

d�u��
4ðx� x0Þ (101)

is the source 4-current at the relevant order. In Eq. (100),
the prime on V denotes a derivative with respect to the
argument, while the ellipsis indicates that source terms
proportional to �S2 exist but provide no observable contri-

butions to the order at which we work. Adopting the
smooth quadratic potential (94) and the expansion (95),
the bumblebee equation can be written

ð���h� @�@� � 4�b�b�ÞB
≁�

¼ �2�b�b
	b
h	
 � 2�1b

	R	� þ �S1 j�: (102)

The idea is to solve this expression for the fluctuations B
≁�

so they can be eliminated from the analysis as needed.
The solution can be obtained in momentum space with

the propagator chosen as a suitable Green function [7]. The
appropriate bumblebee propagator is

K��ðpÞ¼����

p2
þðb�p�þb�p�Þ

p2b	p
	

�ð4�b	b	þp2Þp�p�

4�p2ðb	p	Þ2
(103)

in momentum space. Note that the additional poles in this
and following expressions can be understood as a conse-
quence of residual gauge freedom to the order at which we
work [52]. Using this propagator, we find the solution
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B
≁

�ðpÞ ¼
p�b

	b
h	


2b	p	

þ ðB≁�1
Þ�ðpÞ þ ðB≁�1Þ�ðpÞ

þ ðB≁�2Þ�ðpÞ; (104)

where ðB≁�1
Þ�ðpÞ, ðB

≁
�1Þ�ðpÞ, and ðB≁�2Þ�ðpÞ are contribu-

tions to B
≁
�ðpÞ proportional to �1, �

S
1 , and �S2 respectively.

In the limit of vanishing �S1 and �S2 , the solution (104)

reduces to the known result [7] once the conversion from

B
≁
� to ~B� described in Sec. II B is implemented.

Explicitly, the quantity ðB≁�1
Þ� is given in momentum

space by [7]

ðB≁�1
Þ�ðpÞ ¼ ��1b�R

p2
þ �1p�R

4�b	p	

þ �1p�b
	b	R

p2b	p	

þ 2�1b
	R	�

p2
� 2�1p�b

	b
R	


p2b	p	

: (105)

For the piece proportional to �1, we obtain

ðB≁�1Þ�ðpÞ ¼ � �S1 j�

p2
þ �S1b�p

�j�

p2p	b
	

þ �S1p�b
�j�

p2p	b
	

� �S1b	b
	p�p

�j�

p2ðp
b

Þ2 � �S1p�p

�j�

4�ðp	b
	Þ2 : (106)

The remaining term in Eq. (104), which contains contribu-
tions proportional to �S2 , is irrelevant to the order at which
we work.

We emphasize that the explicit solution (104) for the

bumblebee fluctuation B
≁
� is obtained by direct calculation

from the action SB. This calculation depends on knowledge
of the bumblebee dynamics as described by the Lagrange
density (92). In contrast, the general SME-based method
presented in Sec. IV to obtain an arbitrary coefficient

fluctuation t
≁
���... replaces the need for complete knowl-

edge of SB with the judicious use of perturbation theory,
the NG constraint, diffeomorphism invariance, and
Newton’s third law.

2. Modified Einstein equation

Varying the action with respect to the metric yields the

modified Einstein equation. At leading order in B
≁
� and

lowest order in h��, this equation takes the form

G�� ¼ 2�1�½b	@	@ð�B�Þ þbð�@	@�ÞB
	�bð�hB�Þ

����b
	@	@
B


�þ2�V 0b�b�þ�ðTBuÞ��; (107)

where contributions from B� are understood to be limited

to the appropriate perturbative order. Note that V 0 contrib-
utes at most through massive modes at this order, so it plays
no role in the present context.

The matter-sector contribution ðTBuÞ�� to the energy-

momentum tensor can be written

ðTBuÞ�� ¼ �
Z

d�
mu�u��

4ðx� x0ð�ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�S2 b	b
u

	u

q : (108)

This explicit expression is the bumblebee analogue of the
general form (70). As expected, terms proportional to �S1
are absent from Eq. (108), confirming that minimal cou-
plings cannot generate Lorentz violation of the ð �aeffÞ� type

in the modified Einstein equation. In this model, the only
nonzero observables proportional to �S1 arise through the

bumblebee fluctuations (106).
Inserting the solution for B� at the appropriate order, the

modified Einstein equation (107) can be solved. To match
the analysis in the general SME-based method of Sec. IV
the harmonic gauge must be used. At zeroth order in
Lorentz violation, the conventional metric is reproduced.
For simplicity in this illustrative model, we limit consid-

eration at the next order to the Newtonian limit for B
≁
�.

This avoids possible complications from the residual gauge
invariance, while permitting a complete match to the re-
sults of the SME method.
The solution for the metric can be constructed directly

from the trace-reversed form of the modified Einstein
equation (107). Using the NG condition

b�B
≁� ¼ 1

2
b�b�h�� (109)

and the bumblebee equation (102), we can write

R�� ¼ 2�1�½b	@	@ð�B�Þ � �S1 bð�j�Þ� þ �ðSBuÞ��;

(110)

where ðSBuÞ�� is the trace-reversed version of the energy-

momentum tensor (108). In the Newtonian limit, the first
term on the right-hand side is higher-order in time deriva-
tives and so is negligible.
Expanding ðSBuÞ�� to the appropriate order, we find that

the O(1,1) modifications of the metric fluctuation h00 are
given in terms of the bumblebee vacuum value b� by

hð1;1Þ00 ¼ ð4�1�
S
1 þ �S2mb0Þ 2GNb0

r
: (111)

The first term arises from the bumblebee fluctuations via
the nonminimal couplings and is the bumblebee analogue
of Eq. (88). The second term arises directly from the
energy-momentum tensor ðTBuÞ�� of the source S and

corresponds to Eq. (84). To complete the match to the
general SME analysis of Sec. IV, it remains to apply this
result to determine the deviations from geodesic motion of
a test particle T.

3. Particle trajectory

The equation of motion for a test point particle T in the
presence of the bumblebee field B� and the metric h�� can

be obtained by varying the action SBu with respect to x�.
At leading order in the fluctuations, this yields
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€x � ¼ ��ð0;1Þ
�
	
u

	u
 þ €x
�
�1
þ €x

�
�2
; (112)

where �ð0;1Þ
�
	
 is the linearized Christoffel symbol. The

terms €x
�
�1
and €x

�
�2
represent contributions to €x� proportional

to �T1 and �T2 , respectively. The above equation is the
bumblebee analogue of the equation of motion (78) ob-
tained for the general SME analysis in Sec. IV.

The explicit form of the quantity €x��1 takes the form

€x
�
�1
¼ �ð��1Þ�	
u

	u
 � �T1
mT

g��ð@�B
≁
	 � @	B

≁
�Þu	;
(113)

where ð��1Þ�	
 contains terms proportional to �S1 that enter

via Lorentz-violating corrections to the metric. The piece

of B
≁
� contributing to this equation at the relevant order can

be written as

ðB≁�1
Þ� ¼ �1h��b

� � 1

2
�1b�h	

	 þ . . . (114)

in harmonic coordinates, where the ellipsis represents
terms that play no role within our approximations. The
latter equation is the bumblebee analogue of the SME

result (87) for the coefficient fluctuation ða≁effÞ�, and as

expected it yields contributions to the trajectory equation
proportional to the product �1�

T
1 .

The quantity €x
�
�2
can be written

€x��2 ¼ �ð��2Þ�	
u
	u
 þ 2�T2 �

��b�b��ð0;nÞ	

�u	u


þ 2�T2 b	b
�ð0;1Þ��
	u
u�u�u� þ 2�T2 b	@

�B
≁

u

	u


� 2�T2 �
��ðb�@	B

≁

 þ b
@	B

≁
�Þu	u


� 2�T2 b	@�B
≁

u

	u
u�u�; (115)

where ð��2Þ�	
 contains terms proportional to �S2 that enter

via Lorentz-violating corrections to the metric. In this
equation, only the first term in Eq. (104) produces a

relevant contribution to the fluctuation B
≁
� in the present

context, which matches the SME result (85) for the coef-

ficient fluctuation c
≁
��.

At this stage, we can verify the conservation of total
4-momentum of the system of the source S and test body T,

as described in Sec. IVC1. Substituting for B
≁
� and hð1;1Þ00 in

the trajectory equation reveals the antisymmetry under
interchange of S and T required to satisfy Newton’s third
law. We can also complete the correspondence between the
bumblebee model and the general SME-based analysis of
Sec. IV by making the identifications

	 ¼ 2�1; ð �aeffÞ� ¼ �1b�;

�c�� ¼ �2b�b� þ 1

4
�2���b

2; �k ¼ 1

2
�2b

2;
(116)

which can be obtained by matching Eqs. (111) and (114) to
the SME results (84), (88), and (87).

VI. EXPERIMENTAL BASICS

In the remainder of this paper, we apply the theo-
retical framework developed above to explore some ex-
perimental prospects for detecting Lorentz violation
through matter-gravity couplings. As before, we adopt
coordinates satisfying the condition (23), which produces
simplified expressions without the photon-sector coeffi-
cients ð �kFÞ	�	�. The primary focus is on signals involving

the coefficients ð �aweffÞ� and ð �cwÞ��. Certain effects associ-

ated with the coefficient �s�� in the pure-gravity sector are

also considered.
In the present section, we provide some basic informa-

tion broadly applicable to searches for Lorentz violation,
including an outline of frame conventions and a discussion
of sensitivities to coefficient combinations. Each subse-
quent section addresses a particular class of experimental
searches. Section VII examines tests with ordinary neutral
matter in Earth-based laboratories, while Sec. VIII studies
satellite-based searches with ordinary matter. Section IX
considers more exotic laboratory and satellite-based tests,
including ones using charged particles, antimatter, and
particles beyond the first generation. Section X addresses
solar-system observations, including lunar and satellite
ranging and measurements of perihelion precession.
Finally, Sec. XI considers signals from photon-gravity
couplings.

A. Frames

A substantial advantage of the SME framework is the
ability to compare signals for Lorentz violation across a
wide variety of experiments and observations. To facilitate
these comparisons, it is useful to report search results in a
canonical inertial frame.
In Minkowski spacetime, the canonical frame is a

Sun-centered celestial-equatorial frame [21], which is ap-
proximately inertial over the time scales of most searches.
In this frame, the Z axis is aligned with the rotation axis of
the Earth, while the X axis points from the Earth to the Sun
at the vernal equinox. The origin of the time coordinate T is
the time when the Earth crosses the Sun-centered X axis at
the vernal equinox.
For post-Newtonian investigations involving gravita-

tional effects in the solar system, the canonical frame is
identified with an asymptotically Minkowski frame that
is comoving with the rest frame of the solar system and
that coincides with the canonical Sun-centered frame [7].
In this Sun-centered frame, Cartesian coordinates are de-
noted by

x� ¼ ðT; XJÞ ¼ ðT; X; Y; ZÞ (117)

and are labeled with capital Greek indices. Also, we write
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e� ¼ ðeT; eJÞ (118)

for the corresponding coordinate basis vectors.
Various types of observers appear in the analyses below,

including ones at rest in an Earth-centered frame, in a
laboratory frame, in a satellite frame, and others. The
corresponding frames are specified as needed in the sec-
tions that follow. Among the sets of basis vectors having
generic applicability are one for an observer at rest in the
Sun-centered frame and a related one for an observer in
uniform motion relative to the Sun-centered frame. We
summarize these two sets briefly here.

For an observer at rest at the point ðT; ~XÞ in the
Sun-centered frame, dXJ=dT ¼ 0. Suitable basis vectors
are denoted as e� with � ¼ ðt; jÞ, and they can be written

as [7]

e t ¼ �T
t

�
1þ 1

2
hTTðT; ~XÞþ PNOð4Þ

�
eT;

ej ¼ �J
j

�
eJ � 1

2
hJ

KðT; ~XÞeK
�
þ�J

jhTJðT; ~XÞeT:
(119)

This basis is orthonormal.

If the observer is in motion with four-velocity u� in the
Sun-centered frame, then an appropriate set of basis

vectors can be taken as e�̂ with �̂ ¼ ðt̂; ĵÞ, where the

components ðet̂Þ� are identified with the four-velocity,

ðet̂Þ� ¼ u�. This basis is given by [7]

e t̂ ¼ �t
t̂

�
1þ 1

2
v2

�
et þ vjej;

eĵ ¼ �j
ĵ
vkRkjet þ �j

ĵ

�
�kl þ 1

2
vkvl

�
Rljek;

(120)

where vj is the coordinate velocity of the observer in the
frame (119), and Rjk implements the appropriate rotation.

This basis is also orthonormal.
In applying the above equations, the relevant contribu-

tions to the metric fluctuation and the observer velocity can
be obtained from the modified Einstein equations and from
the equation of motion of the observer. Note that the results
typically depend on coefficients for Lorentz violation.
Also, some simplifying assumptions can usually be
adopted without loss of generality. For example, in certain
laboratory experiments the contributions to the metric
fluctuation h�� sourced by the energy-momentum tensor
of the Sun can safely be neglected.

We remark in passing that the above definition of the
Sun-centered frame could be sharpened in various ways,
such as allowing for the precession and nutation of the
Earth, establishing the vernal equinox via the centroids of
bodies, and incorporating the motion of the Sun with
respect to the center of the solar system. Some of these
effects may allow additional sensitivities to Lorentz viola-
tion via the resulting time dependence of the standard
frame. Note also that the notion of parallelism used in

the Minkowski-spacetime definition of the Sun-centered
frame is inapplicable in the context of curved spacetime.
Oneway to address this latter issue is to define the Z axis so
that eẑ aligns with the spin axis of the Earth after Eqs. (119)
and (120) with Rjk ¼ 0 and the appropriate velocity are

applied. For the various searches considered in this work,
the standard definition of the Sun-centered frame suffices.
A more complete investigation of these issues is of poten-
tial interest but lies beyond our present scope.

B. Sensitivities

In the following sections, we consider the observational
effects of the coefficients ð �aweffÞ�, ð �cwÞ�� in the matter

sector and �s�� in the pure-gravity sector. This subsection

offers some comments about attainable sensitivities to
these coefficients.
Measurement of the coefficients ð �aweffÞ� is of particular

interest because they are virtually unexplored to date. The
existence of the field redefinitions described in Sec. II C 1
means that observation of effects from ð �aweffÞ� requires

either flavor-changing physics or gravitational couplings.
At the level of quarks, the flavor-changing weak interac-
tions have been used to provide access to observables
involving differences of two coefficients ð �awÞ� with w

including second- and third-generation quarks [53,54].
Flavor oscillations can also be used to constrain the
coefficients �a� in the neutrino sector, where they form

3� 3 matrices in flavor space [55]. However, to date
gravitational couplings have been used to obtain sensitivity
only to limited combinations of the 12 independent com-
ponents of the SME coefficients ð �aeÞ�, ð �apÞ�, ð �anÞ� for

electrons, protons, and neutrons [11,12]. These coefficients
are otherwise unconstrained and could be comparatively
large, so they offer interesting prospects for further inves-
tigation in gravitational tests.
In the present context, we can extend the single bound

on ð �awÞ� given in Ref. [11] by taking advantage of the

result of Sec. II C 1 that ð �awÞ� always appears at leading

order with ð �ewÞ� in the combination ð �aweffÞ� given by

Eq. (16). Using this result immediately yields a constraint
on three of the independent components of ð �aweffÞ� for

electrons, protons, and neutrons, given as

j	ð �aeeffÞT þ 	ð �apeffÞT � 0:8	ð �aneffÞTj< 1� 10�11 GeV

(121)

at the 90% confidence level.
In contrast, many of the coefficients ð �cwÞ�� are readily

observable in nongravitational experiments. Nonetheless,
gravitational tests offer additional opportunities to achieve
sensitivities to ð �cwÞ��, including some components that are

unmeasured to date. For electrons, protons, and neutrons,
there are 27 independent observable symmetric coeffi-
cients ð �cwÞ��. A compilation of existing limits on ð �cwÞ��

for different flavors w is given in Ref. [2].
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The coefficients �s�� lie in the pure-gravity sector of the

minimal SME and therefore can be measured only in the

gravitational context. The corresponding post-Newtonian

corrections to the gravitational field are known [7,56].

Constraints on most of the nine independent components

of �s�� have been obtained using a variety of techniques,

including among others perihelion-precession studies,

lunar laser ranging, atom-interferometer gravimetry,

and laboratory and space-based experiments [4–7]. All

these analyses disregard matter effects. In this work, we

show that Lorentz violation in the matter sector can

contribute in different ways to signals involving the coef-

ficients �s��.

For all the coefficients ð �aweffÞ�, ð �cwÞ��, �s��, the effects of

interest here involve gravitational couplings to matter. It is

therefore reasonable to expect that the best sensitivities to

Lorentz violation are associated with couplings to domi-

nant gravitational effects. This suggests that tests with high

sensitivity to Newton gravity are of particular interest. As

described in Sec. IVB3, the flavor dependence of the

coefficients for Lorentz violation implies that WEP tests

also lie in this category.
Many of the signals sought in gravity tests require

ancillary measurements of time and distance. These typi-

cally involve matter in some form, and they may introduce

additional Lorentz-violating effects beyond those compris-

ing the direct signal of interest. However, most of these

additional effects are negligible in the present context

because the corresponding coefficients are tightly con-

strained via tests in Minkowski spacetime [2], whereas

sensitivities in gravitational tests are typically substantially

reduced by the weak gravitational field. Among the coef-

ficients of interest in the present work, this issue is relevant

only to ð �cwÞ�� because ð �aweffÞ� and �s�� are unobservable in

Minkowski-spacetime tests and because we adopt the co-

ordinate choice (23) making unobservable the photon-

sector coefficients ð �kFÞ	�	�. Among the coefficients

ð �cwÞ�� for ordinary matter, the neutron-sector coefficients

ð �cnÞ�� are the least well constrained at present. Their

effects may therefore be important for certain tests, in

which case a detailed analysis of the measurement method

may be necessary.
Another consideration relevant for identifying sensitiv-

ities in tests with atoms or bulk matter is the role of the

contributions from binding energy. In some cases, account-

ing for these contributions can disentangle effects from

different coefficients, thereby producing additional inde-

pendent sensitivities. This can occur when coefficients

from two or more sectors are involved, either directly

within a WEP test or indirectly via comparison of results

obtained for different bodies. In the remainder of this

subsection, we discuss this possibility for the coefficients

ð �aweffÞ� and ð �cwÞ�� in turn.

Consider first combinations of the coefficients ð �aweffÞ�.
Following the discussion in Sec. IVA2, a body B has an
effective coefficient ðaBeffÞ� given by Eqs. (73) and (75).

The dimensionless quantity relevant for a test is
ð �aBeffÞ�=mB, and comparisons involving two bodies there-

fore appear as the difference of two quantities of this
form. For two neutral bodies involving bound electrons,
protons, and neutrons, this difference can be expanded as
follows:

X
w

�
Nw

1

m1

� Nw
2

m2

�
ð �aweffÞ� ¼ Np

1N
n
2 � Nn

1N
p
2

m1m2

mnð �aeþp�n
eff Þ�

þ Np
1m

0
2 � Np

2m
0
1

m1m2

ð �aeþp
eff Þ�

þ Nn
1m

0
2 � Nn

2m
0
1

m1m2

ð �aneffÞ�: (122)

Here, the numbers of particles of species w for the two
bodies are Nw

1 , N
w
2 , and m0

1, m
0
2 are the binding-energy

contributions to the masses m1, m2 of the two bodies, as
defined in Eq. (71). Also, we define

ð �aeþp
eff Þ� ¼ ð �aeeffÞ� þ ð �apeffÞ�;

ð �aeþp�n
eff Þ� ¼ ð �aeþp

eff Þ� �me þmp

mn ð �aneffÞ�:
(123)

When the contributions from binding energy are neglected

in Eq. (122), the linear combination ð �aeþp�n
eff Þ� of coeffi-

cients becomes the sole observable involving ð �aweffÞ� in a

comparison of two bodies, with the effect scaled by their
difference in species content. However, incorporating the
binding energy in the analysis introduces the last two terms
in Eq. (122), revealing that the effects of ð �aeeffÞ� þ ð �apeffÞ�
and ð �aneffÞ� vary differently with the content of the bodies.

This allows the possibility of independent measurements of
ð �aeeffÞ� þ ð �apeffÞ� and ð �aneffÞ�. Note that the sensitivity of

such measurements is typically an order of magnitude less

than that of measurements of ð �aeþp�n
eff Þ� due to the appear-

ance of ratios of the form m0=m.
Next, consider combinations of the coefficients ð �cwÞ��.

For a body B, the effective coefficient ðcBÞ�� is a dimen-

sionless quantity given by Eq. (74). As discussed in
Sec. IVA2, nonzero Lorentz-violating contributions from
the binding energy given by the coefficients ðc0BÞ�� are

expected to exist, along with the usual binding-energy
contributions m0 to the body mass. It turns out that these
Lorentz-violating contributions impede the use of binding
energy to extract additional independent sensitivities to
combinations of the coefficients ð �cwÞ��. To see this, con-

sider two neutral bodies as before, and expand the analogue
of Eq. (122) to get

V. ALAN KOSTELECKÝ AND JAY D. TASSON PHYSICAL REVIEW D 83, 016013 (2011)

016013-24



X
w

�
Nw

1

m1

� Nw
2

m2

�
mwð �cwÞ�� ¼ Np

1N
n
2 � Nn

1N
p
2

m1m2

mnmpð �ceþp�nÞ�� þ Np
1m

0
2 � Np

2m
0
1

m1m2

mpð �ceþpÞ��

þ Nn
1m

0
2 � Nn

2m
0
1

m1m2

mnð �cnÞ�� þ ðme þmpÞN
p
2m

0
1ð �c01Þ�� � Np

1m
0
2ð �c02Þ��

m1m2

þmn
Nn

2m
0
1ð �c01Þ�� � Nn

1m
0
2ð �c02Þ��

m1m2

; (124)

where we introduce

ð �ceþpÞ�� ¼ me

mp ð �ceÞ�� þ ð �cpÞ��;

ð �ceþp�nÞ�� ¼ ð �ceþpÞ�� �me þmp

mp ð �cnÞ��:

(125)

When binding-energy effects are neglected, ð �ceþp�nÞ��

becomes the only observable combination of the coeffi-
cients ð �cwÞ�� in gravitational tests comparing two bodies.
Including the binding-energy terms as in Eq. (124) shows
that bodies with different species content can exhibit dis-
tinct effects. Although it seems unlikely that nonzero
effects at order m0=m in a variety of bodies would
cancel sufficiently well to evade detection altogether, the
appearance of the unknown coefficients ðc0BÞ�� makes it
infeasible at present to extract unambiguous independent
measurements on combinations of the coefficients ð �cwÞ��

using binding-energy effects.

VII. LABORATORY TESTS

This section considers some sensitive laboratory tests
with ordinary neutral bulk matter, neutral atoms, and neu-
trons performed on or near the surface of the Earth. The
basic theory for these tests is developed in Sec. VII A,
while Secs. VII B, VII C, VII D, and VII E consider signals
and sensitivities attainable in a variety of terrestrial
searches. More exotic laboratory tests with charged parti-
cles, antimatter, and particles beyond the first generation
are considered in Sec. IX.

Terrestrial experiments seeking gravitational Lorentz
violation using ordinary matter can be classified either as
gravimeter tests or as WEP tests. In gravimeter tests, the
basic idea is to seek variations either in the gravitational
force on a test body or in its gravitational acceleration. The
corresponding signals originate in the time dependence of
laboratory coefficients for Lorentz violation induced by the
rotation of the apparatus and the rotation and revolution of
the Earth. These signals can be interpreted as an effective
time variation of the Newton gravitational constant GN. In
WEP tests, the idea is to compare either the gravitational
force between two different bodies or their relative gravi-
tational acceleration. The corresponding signals, which
can be instantaneous or time-varying, are sensitive to
differences between the coefficients associated with differ-
ent species of matter.

Lorentz violation can introduce deviations from
Newton’s second law, so the distinction between force
and acceleration can be important. This distinction implies
the two classes of gravimeter and WEP tests can each be
further subdivided into two categories, force-comparison
tests and free-fall tests. The basic idea of a free-fall test is
to search for a time or composition dependence in the
gravitational acceleration of a freely falling test body by
monitoring its motion. The idea of a force-comparison test
is to balance the gravitational force experienced by a test
body with a second force, investigating changes in the
equilibrium arising from the time or species dependence
of the laboratory coefficients for Lorentz violation. The
force comparison can be achieved either by using a seesaw
arrangement to balance the gravitational forces on test
bodies of different composition, which constitutes a
force-comparison WEP test, or by using a nongravitational
force to counter the gravitational force on the test body,
which represents a force-comparison gravimeter test.
We thus have four categories of possible laboratory tests

with ordinary matter. In what follows, each is considered in
a separate subsection. Free-fall gravimeter tests, including
searches with freely falling corner cubes and with
atom interferometers, are considered in Sec. VII B.
Force-comparison gravimeter tests using mechanical and
superconducting gravimeters are studied in VII C. Free-fall
WEP tests, which come in a wide variety of forms, are
considered in Sec. VII D. Finally, force-comparison WEP
tests are discussed in Sec. VII E, with focus on a torsion-
balance configuration.
Table I provides a list of some conventions adopted in

this section for the analyses of laboratory tests. Many of the
quantities are self-explanatory. The laboratory speed VL is
due to the rotation of the Earth and depends on the labo-
ratory colatitude �. The relative time T	 involves a con-
venient choice of origin, measured from any instant when
the ŷ axis in the laboratory frame and the Y axis of the Sun-
centered frame coincide. Using T	 instead of the canonical
time T in the Sun-centered frame introduces a phase c in
the analysis. The angle � is defined in terms of the compo-
nent accelerations ax̂, aẑ of a test body along x̂, ẑ in the
laboratory frame,

� ¼ tan�1ðax̂=aẑÞ: (126)

At leading order, � is approximated by the ratio of the
usual Newton centripetal and gravitational accelerations,
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� ’ 10�3. It represents the angular deviation from the
vertical at the location of the laboratory of a plumb line
or of a test body in free fall.

A. Theory

The relevant observables for laboratory tests of Lorentz
symmetry in gravity are the motions of test bodies relative

to the Earth and relative to each other. These observables
can be obtained from the action for a test body, evaluated at
the appropriate post-Newtonian order and expressed in
laboratory coordinates.
Consider the action SBu for a test body given in Eq. (76),

with the gravitational field of the Earth acting as the source

S. The corresponding Lagrangian Lð3Þ
a;c describing the

motion of the test body T at PNO(3) can be constructed
by expanding SBu with B � T. The solution for the metric
fluctuation h�� at this order is obtained from the general

expressions (81), (84), and (88), with the Earth treated
as a rigid rotating source S as described in Sec. IVA2.
In what follows, we neglect the gravitational fields of
other bodies such as the Sun, although in a more detailed
treatment these could be incorporated using similar
methods.
For laboratory searches, it is convenient to begin calcu-

lations in an Earth-centered frame with coordinates de-
noted by x ~� ¼ ð~t; ~x; ~y; ~zÞ. At leading order, the spatial
components of the Earth-centered basis are taken to coin-
cide with those of the Sun-centered frame, and ~t ¼ T. In
the Earth-centered frame, we find

Lð3Þ
a;c ¼ 1

2
mTð1þ ð �cTÞ~t~t þ 2ð �cTÞ~t ~jv~jÞv~kv~k þmTð �cTÞ~j ~kv~jv~k

þGNm
SmT

r

�
1þ 2	

mT
ð �aTeffÞ~t þ

2	

mS
ð �aSeffÞ~t þ

	

mS
ð �aSeffÞ~jv~j þ ð �cTÞ~t~t þ ð �cSÞ~t~t þ 2ð �cTÞð~t ~jÞv~j

�

þGNm
T

r3
	ð �aSeffÞ~jx~jx~kv~k þ

GNm
SmT

5r3
R2	�~j ~k ~l!~kx~l

�
2	

mT
ð �aTeffÞ~j þ

	

mS
ð �aSeffÞ~j þ 2ð �cSÞð~t ~jÞ

�
; (127)

where r ¼ ffiffiffiffiffiffiffiffiffi
x~jx~j

p
. This expression contains the conven-

tional Newton kinetic and potential terms for a test body
T moving in the gravitational field of S, along with a series
of corrections that depend on the coefficients ð �aBeffÞ ~� and
ð �cBÞ ~� ~�. Some of these additional terms are motional,
analogous to centrifugal effects, and some are gravita-
tional, including ones analogous to gravitomagnetic
effects. Effects from the Earth’s motion about the Sun are
implicitly included via the dependence of ð �aBeffÞ ~� and
ð �cBÞ ~� ~� on the orbital speed V	. This dependence can be
made explicit by expressing the coefficients in Sun-
centered coordinates instead of Earth-centered ones.

To obtain results applicable to laboratory tests, the result
(127) must be transformed from the Earth-centered frame
to the laboratory frame. We denote the laboratory coordi-

nates by x�̂, where the spatial coordinates xĵ are taken to
coincide with the standard SME conventions for a labora-
tory on the surface of the Earth [21]. In the laboratory, the x̂
axis points South, the ŷ axis points East, and the ẑ axis
points towards the local zenith. To the required post-
Newtonian order, ~t ¼ t̂ and the coordinate location of the
laboratory in the Earth-centered frame can be written [7]

~� ¼ R	ðsin� cosð!	T þ�Þ; sin� sinð!	T þ�Þ; cos�Þ:
(128)

The transformation between the two sets of spatial coor-
dinates can therefore be written

x~j ¼ �~j þ R~j ĵxĵ; (129)

where R~j ĵ is the relevant rotation between the bases of

the laboratory and the Earth-centered frames. Note that
Eq. (129) implies the coefficients ð �aBeffÞ�̂ and ð �cBÞ�̂ �̂ in the

laboratory frame acquire implicit dependences on the labo-
ratory speed VL and on the sidereal frequency !, which
arise from the rotation of the Earth.
The inclusion of the Earth’s rotation in the analysis

implies the laboratory frame is noninertial. The structure
of the first few terms in Eq. (127) reveals that inertial forces
in the laboratory couple to ð �cTÞ�̂ �̂, which can result in

nongravitational Lorentz-violating effects comparable in
size to the gravitational ones of interest. We therefore
incorporate these nongravitational effects in our subse-
quent analyses. In practice, this means effects proportional

TABLE I. Notation for laboratory tests.

Quantity Definition

R Mean Earth-Sun distance

R	 Mean Earth radius

� Mean Earth orbital frequency

! Mean sidereal frequency

!e Apparatus rotation frequency

V	 ¼ �R Mean Earth orbital speed

VL Laboratory rotational speed

T	 Relative time

� Inclination of Earth orbit

� Laboratory colatitude

c ¼ !ðT	 � TÞ Phase induced by T	
� � !2R	= sinð2�Þg Deviation angle
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to the centrifugal acceleration !2R	 � 10�3g must be
considered.

In what follows, we consider effects up to and including
PNO(3). The leading PNO(3) effects are proportional to
the speed V	 of the Earth as it revolves about the Sun and
are of order gV	 � 10�4g, where g ¼ GNm

S=R2	 for a
laboratory on the surface of the Earth. This yields sensi-
tivity to various components of the coefficients ð �aweffÞ� and

ð �cwÞ��. For some laboratory tests, it is advantageous to

consider also PNO(3) effects proportional to the smaller
speed VL of the laboratory due to the rotation of the Earth,
which are of order gVL � 10�6g. The benefit arises in two
ways. First, inclusion of the boost VL introduces effects
proportional to ð �aweffÞ� that vary sidereally instead of annu-

ally. This offers access to ð �aweffÞ� for measurements con-

ducted on comparatively short time scales, albeit at a
sensitivity reduced by about 2 orders of magnitude.
Second, certain laboratory tests have greater sensitivity to
forces in the x̂ and ŷ directions than to ones in the ẑ
direction. The inclusion of effects from ð �aweffÞ� and

ð �cwÞ�� that are proportional to VL can then introduce

new sensitivities or improve existing ones.
So far, modifications to the trajectory of the test body

arising from the coefficients �s�� have been disregarded.

However, it is straightforward to incorporate these in the
Lagrangian at PNO(2) because the coordinate choices
made here are consistent with those of Ref. [7] at this
perturbative order. In the laboratory frame, we find the
PNO(2) contribution from �s�� to the Lagrangian of the

test body can be written

Lð2Þ
s ¼ mTg

�
�sẑ x̂x̂þ �sẑ ŷŷ� 1

2
�sẑ ẑẑ� 3

2
�st̂ t̂ẑ

�
: (130)

It turns out that Lð2Þ
s suffices to achieve sensitivity to �s�� at

PNO(3). The point is that the leading PNO(3) effects are
proportional to V	, while inclusion of effects proportional
to VL offers no additional benefit in this case for the tests
we consider. The coefficients �s�� are species independent,

so they are unobservable in WEP tests. Moreover, inspec-

tion of Lð2Þ
s reveals that the coefficients �s�̂ �̂ already vary at

the sidereal frequency through the transformation to the
Sun frame.

In the laboratory frame, the PNO(3) Lagrangian Lð3Þ
a;c;s

obtained from Eq. (127) and incorporating effects from
�s�̂ �̂ via Eq. (130) is somewhat lengthy in form. As an

illustration of its structure and implications, we can restrict

attention to its PNO(2) limit Lð2Þ
a;c;s. We find

Lð2Þ
a;c;s¼ 1

2
mTð1þð �cTÞt̂ t̂Þ _xĵ _xĵþmTð �cTÞĵ k̂ _xĵ _xk̂

�mTg

�
1þ 2	

mT
ð �aTeffÞt̂þ

2	

mS
ð �aSeffÞt̂þð �cTÞt̂ t̂

þð �cSÞt̂ t̂þ3

2
�st̂ t̂þ1

2
�sẑẑ

�
zþmTgð �sẑx̂xþ �sẑŷyÞ: (131)

Varying this result yields the Euler-Lagrange equations of
motion, which we can express in the form of the modified
force law

Fĵ ¼ mĵ k̂ €xk̂: (132)

At this perturbative order, the inertial and gravitational
forces acting on the test particle are given by

Fx̂ ¼ mTg�sẑ x̂;

Fŷ ¼ mTg�sẑ ŷ;

Fẑ ¼ �mTg

�
1þ 2	

mT
ð �aTeffÞt̂ þ

2	

mS
ð �aSeffÞt̂ þ ð �cTÞt̂ t̂

þ ð �cSÞt̂ t̂ þ 3

2
�st̂ t̂ þ 1

2
�sẑ ẑ

�
; (133)

while

mĵ k̂ ¼ mTð1þ ð �cTÞt̂ t̂Þ�ĵ k̂ þ 2mTð �cTÞðĵ k̂Þ (134)

is the effective inertial mass.
These results reveal the generic feature that the gravita-

tional force Fĵ acquires tiny corrections both along the ẑ

direction and perpendicular to it. Also, the response of the
test body deviates slightly from the direction of the applied
force because the effective inertial mass mĵ k̂ depends on

the coefficients ð �cTÞ�̂ �̂. In principle, some of these effects

are detectable in sensitive laboratory tests, and the corre-
sponding signals are discussed using PNO(3) results in the
following subsections.
Some coefficients appear in combinations that are

challenging to separate in laboratory tests. This is true,
for example, of the coefficients 	ð �aTeffÞT and ð �cTÞTT .
Consider for simplicity the scenario with only isotropic
Lorentz violation in the Sun-centered frame, where the
nonzero coefficients are 	ð �aTeffÞT and ð �cTÞTT ¼ 3ð �cTÞXX ¼
3ð �cTÞYY ¼ 3ð �cTÞZZ. In the laboratory frame, ð �aTeffÞt̂ �
	ð �aTeffÞT and ð �cTÞt̂ t̂ � ð �cTÞTT up to boost factors. These

coefficients therefore cannot be readily separated in
gravimeter tests, which depend on time variations from
anisotropic effects. Moreover, inspection of the PNO(2)
Lagrangian (131) reveals that if 3	ð �aTeffÞt̂ ¼ mTð �cTÞt̂ t̂ then
the contributions of 	ð �aTeffÞt̂ and ð �cTÞt̂ t̂ to the effective

inertial and gravitational masses are identical. The combi-
nation 	ð �aTeffÞT �mTð �cTÞTT=3 therefore cannot be readily

separated in conventional WEP tests either. Note that
WEP tests comparing a particle and its antiparticle can
in principle evade this difficulty because the sign of
	ð �aTeffÞT differs between the two. Another possibility

would be to compare matter with light, an option consid-
ered further in Sec. XI.

B. Free-fall gravimeter tests

In this subsection, we consider laboratory tests that
monitor the motion of a test body in free fall near the
surface of the Earth. The equation of motion for the test
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body can be obtained from the PNO(3) Lagrangian Lð3Þ
a;c;s

described in Sec. VII A. Its explicit form is lengthy.
However, all information relevant for present purposes is
contained in its solution expressed to the desired perturba-
tive order. This solution can be written in the form

xĵ ¼ ðxoÞĵ þ ðvoÞĵtþ
1

2
aĵt

2; (135)

where the test body has initial position ~xo and initial
velocity ~vo. The quantities of interest in searches for
gravitational Lorentz violation are the components aĵ of

the acceleration of the test body in laboratory coordinates.
For purposes of data analysis and reporting sensitivities

to coefficients for Lorentz violation, it is useful to express
the acceleration components aĵ in a form that displays

explicitly the time variation and the dependence on particle
species. In free-fall gravimeter tests, the time variation
appears at frequencies 0, !, 2!, !��, 2!��, and
�, which are collectively labeled as n in what follows. The
dependence on particle species arises from the composition
of the test and source bodies. It is characterized by the label
w, which ranges over e, p, n for ordinary matter.

For the x̂ component of the acceleration, some calcula-
tion yields an expression of the form

ax̂ ¼!2R	 sin�cos�

þg
X
n;w

��
Nw

mT
Aw
n þNw	

mS
A0w
n þ 1

3
An

�
cosð!nTþ c nÞ

þ
�
Nw

mT
Bw
n þNw	

mS
B0w
n þ 1

3
Bn

�
sinð!nTþ c nÞ

�
: (136)

In this equation, the amplitudes Aw
n , A

0w
n , Bw

n , B
0w
n contain

the coefficients for Lorentz violation ð �aweffÞ�, ð �cwÞ�� and

hence depend on particle species. These amplitudes and
their associated phases are listed in Table II. The remaining
amplitudes An, Bn contain the coefficients �s�� from the

gravitational sector, which are independent of the compo-
sition of the test body. These amplitudes can be obtained
from the amplitudes Aw

n , B
w
n by the substitutions mw ! 1,

ð �cwÞ	� ! 1
2
�s	�, and ð �aweffÞ� ! 0, disregarding contribu-

tions proportional to VL.
The ŷ component of the acceleration can be decomposed

similarly. We find

aŷ ¼
X
n;w

g

��
Nw

mT
Cw
n þNw	

mS
C0w
n þ 1

3
Cn

�
cosð!nTþ c nÞ

þ
�
Nw

mT
Dw

n þNw	
mS

D0w
n þ 1

3
Dn

�
sinð!nTþ c nÞ

�
: (137)

The amplitudes Cw
n , C0w

n , Dw
n , D0w

n depend on particle
species through the coefficients ð �aweffÞ�, ð �cwÞ�� and are

listed in Table III, along with the corresponding phases.
The remaining amplitudes Cn, Dn are obtained from Cw

n ,
Dw

n using the substitutions mw ! 1, ð �cwÞ	� ! 1
2
�s	�, and

ð �aweffÞ� ! 0, disregarding contributions proportional to VL

as before.
For the ẑ component of the acceleration, we obtain

aẑ ¼�gþ!2R	sin2�

þX
n;w

g

��
Nw

mT
Ew
n þNw	

mS
E0w
n þ 1

3
En

�
cosð!nTþ c nÞ

þ
�
Nw

mT
Fw
n þNw	

mS
F0w
n þ 1

3
Fn

�
sinð!nTþ c nÞ

�
: (138)

The amplitudes Ew
n , E

0w
n , Fw

n , F
0w
n depend on particle spe-

cies via the coefficients ð �aweffÞ�, ð �cwÞ��. The amplitudes En,

Fn are independent of species and given in terms of the

TABLE II. Amplitudes for the acceleration ax̂.

Amplitude Phase

Aw
0 ¼ mw sin� cos�½ð �cwÞXX þ ð �cwÞYY � 2ð �cwÞZZ� 0

Aw
! ¼ 2mwð �cwÞðXZÞ cos2�þ 2

5VL	ð �cweffÞY cos� c
A0w
! ¼ 1

5VL½	ð �aweffÞY þ 2mwð �cwÞðTYÞ� cos� c
Bw
! ¼ 2mwð �cwÞðYZÞ cos2�� 2

5VL	ð �aweffÞX cos� c
B0w
! ¼ � 1

5VL½	ð �aweffÞX þ 2mwð �cwÞðTXÞ� cos� c
Aw
2! ¼ 1

2m
wðð �cwÞXX � ð �cwÞYYÞ sin2� 2c

Bw
2! ¼ mwð �cwÞðXYÞ sin2� 2c

Aw
!þ� ¼ �mwV	ð �cwÞðTXÞ sin� cos2� c

Bw
!þ� ¼ �mwV	½ð �cwÞðTYÞ sin�� ð �cwÞðTZÞð1� cos�Þ� cos2� c

Aw
!�� ¼ �mwV	ð �cwÞðTXÞ sin� cos2� c

Bw
!�� ¼ �mwV	½ð �cwÞðTYÞ sin�þ ð �cwÞðTZÞð1þ cos�Þ� cos2� c

Aw
2!þ� ¼ � 1

2m
wV	ð �cwÞðTYÞð1� cos�Þ sin2� 2c

Bw
2!þ� ¼ 1

2m
wV	ð �cwÞðTXÞð1� cos�Þ sin2� 2c

Aw
2!�� ¼ 1

2m
wV	ð �cwÞðTYÞð1þ cos�Þ sin2� 2c

Bw
2!�� ¼ � 1

2m
wV	ð �cwÞðTXÞð1þ cos�Þ sin2� 2c

Aw
� ¼ �mwV	½ð �cwÞðTYÞ cos�� 2ð �cwÞðTZÞ sin�� sin2� 0

Bw
� ¼ mwV	ð �cwÞðTXÞ sin2� 0

TABLE III. Amplitudes for the acceleration aŷ.

Amplitude Phase

Cw
0 ¼ mwVLð �cwÞðTZÞ sin2� 0

Cw
! ¼ 2mwð �cwÞðYZÞ cos�� 2

5VL	ð �aweffÞX
þ 2mwVLð �cwÞðTXÞsin2�

c

C0w
! ¼ � 1

5VL½	ð �aweffÞX þ 2ð �cwÞðTXÞ� c
Dw

! ¼ �2mwð �cwÞðXZÞ cos�þ 2mwVLð �cwÞðTYÞsin2�
� 2

5VL	ð �aweffÞY
c

D0w
! ¼ � 1

5VL½2mwð �cwÞðTYÞ þ 	ð �aweffÞY� c
Cw
2! ¼ 2mwð �cwÞðXYÞ sin� 2c

Dw
2! ¼ �mwðð �cwÞXX � ð �cwÞYYÞ sin� 2c

Cw
!þ� ¼ mwV	½ð �cwÞðTZÞð1� cos�Þ � ð �cwÞðTYÞ sin�� cos� c

Dw
!þ� ¼ mwV	ð �cwÞðTXÞ sin� cos� c

Cw
!�� ¼ �mwV	½ð �cwÞðTZÞð1þ cos�Þ þ ð �cwÞðTYÞ sin�� cos� c

Dw
!�� ¼ mwV	ð �cwÞðTXÞ sin� cos� c

Cw
2!þ� ¼ mwV	ð �cwÞðTXÞð1� cos�Þ sin� 2c

Dw
2!þ� ¼ mwV	ð �cwÞðTYÞð1� cos�Þ sin� 2c

Cw
2!�� ¼ �mwV	ð �cwÞðTXÞð1þ cos�Þ sin� 2c

Dw
2!�� ¼ �mwV	ð �cwÞðTYÞð1þ cos�Þ sin� 2c
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coefficients �s��. All these amplitudes and their phases are

provided in Table IV.
In principle, the results of a free-fall laboratory test

using any gravimeter can be analyzed with the above
equations. The dominant effects appear at different fre-
quencies for different coefficients, so the time scale of
data taking in a given experiment affects the breadth of
its reach in coefficient space. Also, each signal frequency
can be expected to have distinct systematics. For example,
dominant effects from the coefficients ð �aeffÞJ occur at the
annual frequency �, for which seasonal systematics are
relevant. Note that all the Lorentz-violating effects can be

accessed at or near the sidereal frequency !, although in
some cases at reduced sensitivity.
At least two kinds of devices can be classified as free-fall

gravimeters: falling corner cubes, and matter interferome-
ters. Falling corner cubes, which typically are sensitive
only to the direction of the free-fall motion, are used to
monitor time variations of the gravitational field for geod-
esy and other geophysical purposes [57]. In principle, they
are of interest for free-fall gravimeter tests of Lorentz
violation. However, matter interferometers presently carry
several advantages over falling corner cubes in this con-
text. They are slightly more sensitive, some types can sense
accelerations in more than one direction, and the compo-
sition of the test body can be determined more readily. We
therefore focus on matter interferometers in this subsec-
tion, revisiting the use of both falling corner cubes and
interferometers in the context of free-fall WEP tests in
Sec. VII D.
Matter interferometers, which permit quantum-

mechanical laboratory measurements of the motion of
falling matter, have attained impressive sensitivities to
gravitational acceleration [58] and to rotational accelera-
tions via the Sagnac effect [59]. In the context of gravita-
tional Lorentz violation, matter interferometry has been
used to measure combinations of the coefficients �s�� and

ð �kFÞ	�	� [5] based on the gravimeter analysis of effects

from the pure-gravity sector of the SME [7]. Here, we
extend the latter analysis to include effects from the co-
efficients ð �aweffÞ�, ð �cwÞ�� and generalize it to other inter-

ferometer configurations.
The basic idea of a matter interferometer is to place the

matter in a superposition of spatially separated quantum
states, which may acquire a measurable relative phase.
In the gravitational tests considered here, the behavior of
the interferometer is close to the classical limit, and a
convenient way to perform the analysis is to proceed
semiclassically via path integration along the classical
motion [58,60]. The phase difference between the final
states can then be viewed as a sum of three contributions:
the phase difference acquired from the momentum trans-
fers used to control the beams, the phase difference accu-
mulated from the classical action along the different
paths, and in some configurations a phase difference com-
ing from a final separation of the states. It turns out that
the dominant effect for acceleration sensing is the phase
difference acquired through momentum transfers. Since
leading-order Lorentz-violating motional effects appear
as modified accelerations, the phase difference from the
momentum transfers is the relevant contribution in the
present context.
For definiteness, suppose the interferometer paths trace a

parallelogram. This includes the limiting case of temporal
path separation, where the parallelogram has zero area.
Other shapes could also be analyzed using the equation of
motion (135). In the Lorentz-invariant case, the standard

TABLE IV. Amplitudes for the acceleration aẑ.

Amplitude Phase

Ew
0 ¼ �2	ð �aweffÞT þ 2mwð �cwÞZZcos2�þmwðð �cwÞXX

þ ð �cwÞYYÞsin2�
0

E0w
0 ¼ �2	ð �aweffÞT �mwð �cwÞTT 0

Ew
! ¼ 2mwð �cwÞðXZÞ sin2�� 4

5VL	ð �aweffÞY sin� c
E0w
! ¼ � 4

5VLð3	ð �aweffÞY þmwð �cwÞðTYÞÞ sin� c
Fw
! ¼ 2mwð �cwÞðYZÞ sin2�þ 4

5VL	ð �aweffÞX sin� c
F0w
! ¼ 4

5VLð3	ð �aweffÞX þmwð �cwÞðTXÞÞ sin� c
Ew
2! ¼ mwðð �cwÞXX � ð �cwÞYYÞsin2� 2c

Fw
2! ¼ 2mwð �cwÞðXYÞsin2� 2c

Ew
!þ� ¼ �mwV	ð �cwÞðTXÞ sin� sin2� c

Fw
!þ� ¼ �mwV	½ð �cwÞðTYÞ sin�� ð �cwÞðTZÞð1� cos�Þ� sin2� c

Ew
!�� ¼ �mwV	ð �cwÞðTXÞ sin� sin2� c

Fw
!�� ¼ �mwV	½ð �cwÞðTYÞ sin�þ ð �cwÞðTZÞð1þ cos�Þ� sin2� c

Ew
2!þ� ¼ �mwV	ð �cwÞðTYÞð1� cos�Þsin2� 2c

Fw
2!þ� ¼ mwV	ð �cwÞðTXÞð1� cos�Þsin2� 2c

Ew
2!�� ¼ mwV	ð �cwÞðTYÞð1þ cos�Þsin2� 2c

Fw
2!�� ¼ �mwV	ð �cwÞðTXÞð1þ cos�Þsin2� 2c

Ew
� ¼ 2V		ðð �aweffÞY cos�þ ð �aweffÞZ sin�Þ

� 2mwV	½ð �cwÞðTYÞ cos�sin2�þ 2ð �cwÞðTZÞ sin�cos2��
0

E0w
� ¼ 2V		ðð �aweffÞY cos�þ ð �aweffÞZ sin�Þ

þ 2mwV	ðð �cwÞðTYÞ cos�þ ð �cwÞðTZÞ sin�Þ
0

Fw
� ¼ �2V		ð �aweffÞX þ 2mwV	ð �cwÞðTXÞsin2� 0

F0w
� ¼ �2V		ð �aweffÞX � 2mwV	ð �cwÞðTXÞ 0

E0 ¼ � 1
2
�sZZcos

2�� 1
4 ð�sXX þ �sYYÞsin2�� 3

2
�sTT 0

E! ¼ � 1
2
�sðXZÞ sin2� c

F! ¼ � 1
2
�sðYZÞ sin2� c

E2! ¼ � 1
4 ð�sXX � �sYYÞsin2� 2c

F2! ¼ � 1
4
�sðXYÞsin2� 2c

E!þ� ¼ 1
4V	 �sðTXÞ sin� sin2� c

F!þ� ¼ 1
4V	½�sðTYÞ sin�� �sðTZÞð1� cos�Þ� sin2� c

E!�� ¼ 1
4V	 �sðTXÞ sin� sin2� c

F!�� ¼ 1
4V	½�sðTYÞ sin�þ �sðTZÞð1þ cos�Þ� sin2� c

E2!þ� ¼ 1
4V	 �sðTYÞð1� cos�Þsin2� 2c

F2!þ� ¼ � 1
4V	 �sðTXÞð1� cos�Þsin2� 2c

E2!�� ¼ � 1
4V	 �sðTYÞð1þ cos�Þsin2� 2c

F2!�� ¼ 1
4V	 �sðTXÞð1þ cos�Þsin2� 2c

E� ¼ V	½�sðTYÞ cos�ð12 sin2�þ 3Þ þ �sðTZÞ sin�ðcos2�þ 3Þ� 0

F� ¼ �V	 �sðTXÞð12 sin2�þ 3Þ 0
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result for the phase shift due to the Earth’s gravitational

field is �� ¼ kẑg�
2, where ~k is the magnitude of the

momentum transfer in the beam splitter and � is the time
of flight between impulses. With Lorentz violation present,
we find the phase shift�� takes a similar form but with the
Newton gravitational acceleration replaced by the accel-
erations in Eq. (135), giving

�� ¼ kĵaĵ�
2: (139)

The signal frequencies associated with Lorentz violation
can be identified by substitution of the expressions
(136)–(138) for the acceleration components aĵ. Note

that Lorentz-violating effects on the atomic energy levels
could generate additional contributions to the phase differ-
ence but are already tightly constrained in other experi-
ments and so can typically be neglected. Note also
that possible Lorentz-violating effects varying with the
particle spins, which are described explicitly by the rela-
tivistic Hamiltonian of Sec. III B, are disregarded here as
outside our present scope. A comprehensive investigation
of their implications for matter interferometry may be of
interest [61].

Several atom interferometers currently or recently
operating are relevant to free-fall gravimeter searches
for Lorentz violation. An impressive sensitivity of about
1� 10�10g to the vertical acceleration was achieved by
Peters, Chung, and Chu [58]. In another apparatus, a

differential-acceleration sensitivity of 3� 10�9g=
ffiffiffiffiffiffi
Hz

p
has been demonstrated [62]. An interferometer designed
for experiments in space is expected to achieve sensitivity
of about 3� 10�9g in ground operations [63]. Initial
sensitivities to accelerations in each direction of about
6� 10�7g after 10 minutes of averaging have been at-
tained in a device using highly parabolic trajectories [64].
Recent estimates suggest that future measurements of ver-
tical acceleration could achieve sensitivities at the level of
about 10�15g [65].

Given this information and the phase shift (139), we can
use Tables II, III, and IV to obtain crude estimates for
attainable sensitivities to coefficients for Lorentz violation
in existing or near-future atom interferometers. With
present capabilities, sensitivities at the level of parts in
105 could in principle be obtained to combinations of the
coefficients 	ð �aweffÞJ, J ¼ X, Y, Z and of several currently

unconstrained components of the coefficients ð �cwÞ	�, in-
cluding ð �cnÞðTJÞ for the neutron. The relevant signals are

associated with the Earth’s boost as it revolves about the
Sun, so they exhibit an annual periodicity. The next gen-
eration of atom interferometers could in principle improve
this sensitivity to parts in 1010. The boost of the laboratory
due to the Earth’s rotation provides sensitivities that have
sidereal periodicities instead but that are weaker by a factor
of about 100. Note that the boost suppressions could in
principle be avoided for certain coefficients, including
presently unbounded combinations involving ð �cnÞZZ, by

the use of an interferometer sensitive to the accelerations
ax̂, aŷ that is placed on a rotating turntable. Note also that

individual sensitivities to neutron coefficients can in prin-
ciple be extracted by performing atom interferometry with
different neutral atoms having distinct proton-to-neutron
ratios. Another possibility with weaker existing sensitivity
includes neutron interferometry [66], which could provide
independent and clean bounds on neutron coefficients.

C. Force-comparison gravimeter tests

Another class of gravimeter tests is based on the idea of
countering the gravitational force with an appropriate elec-
tromagnetic force. Force-comparison gravimeter tests can
be performed with gravimeters based on systems of springs
and masses [57] and with superconducting gravimeters
[57,67,68]. At present, the latter devices have sensitivities
competitive with those of existing atom interferometers.
Certain experiments studying short-range gravity may also
offer relevant sensitivities [69].
The signals for gravitational Lorentz violation in a given

force-comparison gravimeter can be extracted from the

PNO(3) Lagrangian Lð3Þ
a;c;s discussed in Sec. VII A. Since

macroscopic bodies are involved, the analysis must include
an assessment of their composition. Note also that conven-
tional intuition from Newton’s second law can be mislead-
ing because the effective inertial masses depend on the
coefficients ð �cwÞ��, as discussed following Eq. (134).

Superconducting gravimeters have already been pro-
posed as suitable devices for measuring the gravity-sector
coefficients �s�� for Lorentz violation [7]. Here, we extend

this discussion to include effects from the coefficients
ð �aweffÞ� and ð �cwÞ��. The analysis proceeds directly from

the PNO(3) Lagrangian Lð3Þ
a;c;s by noting that the device is

designed to maintain €xĵ ¼ 0. The applied force required to

hold this constraint can be taken as the relevant observable
and can be written

Fẑ0 ¼ Fẑ cos� þ Fx̂ sin�; (140)

where � is the deviation angle defined in Eq. (126). To
maintain consistent counting of small effects, we restrict
terms independent of velocity to first order in � and terms
containing a power of velocity to zeroth order in � .
We find that the relevant contributions to the force Fẑ0

can be decomposed by frequency as

Fẑ0 ¼ mTg

�
1� � tan�� 3

2
�2
�

�mTg
X

n�0;w

��
Nw

mT
Gw

n þ Nw	
mS

E0w
n þ 1

3
Gn

�

� cosð!nT þ c nÞ þ
�
Nw

mT
Hw

n þ Nw	
mS

F0w
n þ 1

3
Hn

�

� sinð!nT þ c nÞ
�
; (141)
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where constant effects that are unobservable in supercon-
ducting gravimeters are neglected. In this expression, the
amplitudes Gw

n , H
w
n and their phases are given in Table V,

while E0w
n and F0w

n are listed in Table IV. The remaining
amplitudes Gn and Hn can be expressed in terms of am-
plitudes given in Tables II and IV as

Gn ¼ An� þ En; Hn ¼ Bn� þ Fn: (142)

The frequency decomposition (141) can be examined to
extract crude estimates of attainable sensitivities to Lorentz
violation. In this way, we estimate that the presently
unbounded coefficients 	ð �aweffÞJ and ð �cwÞðTJÞ could be

measured at the level of parts in 107 using existing data
from superconducting gravimeters [68]. Improved sensi-
tivities are likely to be attainable in a dedicated experiment
of this type.

For tests of short-range gravity and certain other appli-
cations, it is useful to consider the standard case of two
point masses m1 and m2 at coordinate locations ~x1 and ~x2.
With this setup, the modified Newton potential V at
PNO(2) in the laboratory frame can be obtained from

Lð3Þ
a;c;s. We find

V ¼ �GNm1m2

j ~x1 � ~x2j
�
1þ 2	

m1

ð �a1effÞt̂ þ
2	

m2

ð �a2effÞt̂ þ ð �c1Þt̂ t̂

þ ð �c2Þt̂ t̂ þ 1

2
x̂ĵx̂k̂ �sĵ k̂

�
; (143)

where x̂ ¼ ð ~x1 � ~x2Þ=j ~x1 � ~x2j. This modified potential
exhibits the usual inverse-distance dependence, and it
generalizes Eq. (137) of Ref. [7]. The corresponding modi-
fied Newton force typically has a component perpendicular
to the unit vector x̂, while obtaining the accelerations
requires determining also the effective inertial masses.
As usual, any motion of the masses relative to the
Sun-centered frame implies time dependence of the
laboratory-frame coefficients. In principle, the above
modified Newton potential could be used in conjunction
with integration or finite-element methods to determine
the effects of the coefficients ð �aweffÞ�, ð �cwÞ��, �s�� on the

behavior of two interacting bodies.

D. Free-fall WEP tests

In this subsection, we consider WEP tests in which
signals for Lorentz violation can be sought by monitoring
the relative motion of two freely falling bodies of different
composition. Typical free-fall WEP tests are sensitive to

TABLE VI. Sensitivities for free-fall WEP tests.

Falling corner cube Atom interferometry Tossed masses Balloon drop Drop tower

Coefficient combination [70,71] [72] [65] [73] [74] [75]

�a
a 10�10 10�7 {10�17g {10�14g {10�15g {10�12g
	ð �aeþp�n

eff ÞT � 1
3m

pð �ceþp�nÞTT
þ ð12 cos2�� 1

6Þmnð �cnÞQ
10�8 GeV 10�5 GeV {10�15 GeVg {10�12 GeVg {10�13 GeVg {10�10 GeVg

	ð �aeþp�n
eff ÞT � 1

3m
pð �ceþp�nÞTT . . . . . . {10�15 GeVg {10�12 GeVg {10�13 GeVg {10�10 GeVg

	ð �aeþp�n
eff ÞX [10�4 GeV] . . . {10�11 GeVg {10�8 GeVg {10�9 GeVg {10�6 GeVg

	ð �aeþp�n
eff ÞYþZ [10�4 GeV] . . . {10�11 GeVg {10�8 GeVg {10�9 GeVg {10�6 GeVg

	ð �aeþp�n
eff ÞY [10�2 GeV] . . . {10�9 GeVg {10�6 GeVg {10�7 GeVg {10�4 GeVg

	ð �aeþp�n
eff ÞZ [10�2 GeV] . . . {10�9 GeVg {10�6 GeVg {10�7 GeVg {10�4 GeVg

ð �cnÞQ . . . . . . {10�15g {10�12g {10�13g {10�10g
ð �cnÞðTJÞ ½10�4� . . . {10�11g {10�8g {10�9g {10�6g

TABLE V. Amplitudes for the force Fẑ0 .

Amplitude Phase

Gw
! ¼ 2mw�ð �cwÞðXZÞ � 4

5VL	ð �aweffÞY sin�� 2mwVLð �cwÞðTYÞ sin� c
Hw

! ¼ 2mw�ð �cwÞðYZÞ þ 4
5VL	ð �aweffÞX sin�þ 2mwVLð �cwÞðTXÞ sin� c

Gw
2! ¼ mw�ðð �cwÞXX � ð �cwÞYYÞ 2c

Hw
2! ¼ 2mw�ð �cwÞðXYÞ 2c

Gw
� ¼ 2V		ðð �aweffÞY cos�þ ð �aweffÞZ sin�Þ þ 2mwV	½ð �cwÞðTYÞ cos�sin2�

þ 2ð �cwÞðTZÞ sin�cos2��
0

Hw
� ¼ 2V		ð �aweffÞX þ 2mwV	ð �cwÞðTXÞsin2� 0
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motion along the direction of the net acceleration aẑ0 . This
acceleration is the combination

a ẑ0 ¼ aẑ cos� þ ax̂ sin� (144)

of the component accelerations (136) and (138), weighted
by the deviation angle � given in Eq. (126). In what
follows, terms containing both a boost factor and a factor
of � are treated as higher order and negligible, as in the
previous subsection.

The relevant observable for free-fall WEP tests is the
relative position �ẑ0 of two test bodies 1 and 2 in a given
drop. It can be written as

�ẑ0 ¼ ½ðvoÞ1ẑ0 � ðvoÞ2ẑ0 �t̂þ
1

2
ða1ẑ0 � a2ẑ0 Þt̂2: (145)

This relative position varies with the canonical time T.
Decomposing by frequency yields the expression

�ẑ0 ¼ X
n;w

�
Nw

1

m1

� Nw
2

m2

�
T2½Iwn cosð!nT þ c nÞ

þ Jwn sinð!nT þ c nÞ�: (146)

The amplitudes Iwn and Jwn can be expressed as

Iwn ¼ Aw
n � þ Ew

n ; Jwn ¼ Bw
n � þ Fw

n ; (147)

where Aw
n , B

w
n are listed in Table II and Ew

n , F
w
n are given

in Table IV, along with the associated phases c n. In
Eq. (146), the quantities Nw

1 and Nw
2 are the numbers of

particles of type w appearing in the test bodies 1 and 2,
respectively, while m1 and m2 are the corresponding con-
ventional masses.

The frequency decomposition (146) of the signal (145)
can be used to provide rough estimates of attainable
sensitivities to Lorentz violation in existing or near-future
free-fall WEP tests. We combine values for the fractional
acceleration sensitivity�a=a discussed in Refs. [65,70–75]
with the result (146) to compile some estimates in
Table VI. In this table, the first row lists the fractional
acceleration sensitivity, while each of the other rows con-
cerns a particular combination of coefficients. For brevity,
in the first column we adopt the notations

ð �aeffÞYþZ ¼ ð �aeffÞY cos�þ ð �aeffÞZ sin�;
ð �cwÞQ ¼ ð �cwÞXX þ ð �cwÞYY � 2ð �cwÞZZ;

(148)

along with those introduced in Eqs. (123) and (125).
We follow common procedure in the literature [2] by
taking ð �cwÞTT , ð �cwÞXX � ð �cwÞYY , and ð �cwÞQ as the relevant

independent combinations of the traceless coefficients
ð �cwÞ	�.

Each column in Table VI lists estimated attainable sen-
sitivities on the moduli of various quantities in specified
types of free-fall WEP test, expressed to the nearest order
of magnitude. Values listed with neither brackets nor bra-
ces are limits based on published data that are implied by

our present analysis. Values shown in brackets are our
estimate of sensitivities that could in principle be obtained
from a suitable reanalysis of existing data. Values shown in
braces represent our estimate of sensitivities attainable
using data from future tests.
The second column of the table concerns free-fall WEP

tests using falling corner cubes [70,71]. In the second entry
of this column, we present a single bound on the time-
independent portion of the signal implied by existing data.
The remainder of this column lists crude estimates of
sensitivities that could be attained through sidereal and
annual analysis of the same data.
The third and fourth columns of the table list sensitiv-

ities from free-fall WEP tests using atom interferometry. In
the second entry of the third column, we present a single
bound extracted from existing data [72]. The fourth col-
umn concerns proposals for future tests with atom inter-
ferometers [65], based on the idea that the relative vertical
acceleration of two different atoms may be measured using
a simultaneous dual-species fountain [76].
The remaining columns of the table concern other pro-

posed free-fall WEP tests. Crude estimates are provided of
the sensitivities that might be achieved in the Principle of
Equivalence Measurement (POEM) [73], via balloon drops
in the General Relativity Accuracy Test (GReAT) [74], and
using the Bremen drop tower [75].
In the table, the estimates for the coefficients listed in the

second and third rows and for ð �cnÞQ in the penultimate row

all arise from the time-independent component of the data.
A nonzero signal for any of these measurements would
therefore be challenging to distinguish from other potential
sources of WEP violation. Note that obtaining the inde-
pendent sensitivities in the third and penultimate rows
requires combining data taken in free-fall WEP tests per-
formed at different colatitudes �.
Independent sensitivities can also be achieved via other

techniques. One possibility is positronium interferometry
[77], which via comparison with ordinary matter could
yield a bound on different linear combinations of ð �aweffÞT
and ð �cwÞTT . Also, some independent measurements can be
extracted by combining results from free-fall WEP tests
with those from the force-comparison WEP tests discussed
below.
The next generation of the POEM experiment [73] is

the proposed Sounding Rocket POEM (SR-POEM) [78],
which is a WEP test designed to measure to 10�16 the
relative acceleration of freely falling test bodies on a
sounding rocket during certain phases of its flight.
Although not terrestrial, this experiment can also be ana-
lyzed using the methods presented here. A competitive
sensitivity is anticipated for measurements of the combi-

nation 	ð �aeþp�n
eff ÞT �mpð �ceþp�nÞTT=3 of isotropic coeffi-

cients. Obtaining sufficient data to resolve the periodic
changes necessary for sensitivity to other coefficient com-
binations would be challenging.
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E. Force-comparison WEP tests

Typical force-comparison WEP tests can be viewed as
comparing the motion of two or more bodies joined
through electromagnetic forces with that predicted by an
equation of the modified form (132). The predicted motion
depends on the details of the configuration, so a unified
analysis for all force-comparison WEP tests is impractical.
Here, we consider as an illustration a sensitive existing
force-comparison WEP test based on a torsion pendulum
[33,79]. Exceptional sensitivity to Lorentz violation can
be achieved using a torsion pendulum with a spin-
weighted bob [35,41,80], but here we treat instead a bob
with a dipolar composition. We remark in passing that
another interesting option for force-comparison WEP tests
is the use of superconducting gravimeters to compare
gravitational forces on parts of the Earth having different
compositions [81], although present sensitivities to coef-
ficients for Lorentz violation are likely to be somewhat
weaker.

For the torsion pendulum, a simple model of the bob is a
dumbbell viewed as a rod with test bodies 1 and 2 placed
on each end. The two test bodies are composed of different
materials, and the bob is suspended by a torsion fiber
attached at the midpoint between them. The resulting
pendulum is typically rotated in the laboratory to improve
the modulation of the signal. The relevant observable in
such tests is the twist angle �ðTÞ of the torsion fiber. This
angle can be calculated from the Newton second law as
modified by the presence of Lorentz violation.

At zeroth order in Lorentz violation, the pendulum
hangs at an angle � from the local vertical in the laboratory
given by Eq. (126). Lorentz-violating corrections to �
exist, but these make no contribution to the signal to the
order at which we work. This angle represents the equilib-
rium position for the swing mode of the pendulum.
Lorentz-violating modifications to this position could drive
small excitations of the swing mode, but experiments tuned
to the torsion mode are typically comparatively insensitive
to other modes [79].

The orientation of the bob about the axis perpendicular
to both the torsion fiber and to the dumbbell dipole moment
can also be considered. This is the equilibrium position for
the wobble mode of the pendulum. For simplicity, we
assume here that the bob is suspended at a point P equi-
distant between the centers of mass of the test bodies and
that the test bodies are constructed to ensure the dumbbell
is perpendicular to the torsion fiber. In the absence of
Lorentz violation, this implies equality of the two masses
m1 and m2. However, in the presence of Lorentz violation,
m1 and m2 differ at leading order in the coefficients for
Lorentz violation. As the pendulum rotates, this difference
could shift the dumbbell orientation away from its equi-
librium point and generate small excitations of the wobble
mode about P. Again, experiments are comparatively in-
sensitive to this mode.

To analyze the torsion mode, it is convenient to express
the relevant contributions to the difference m1 �m2 of
the test-body masses in a form displaying the dependence
on particle species. This form can be obtained from
Eq. (133), giving

m1 �m2 ¼ �X
w

ðNw
1 � Nw

2 Þð2	ð �aweffÞT þmwð �cwÞTTÞ:

(149)

At leading order in Lorentz violation, the oscillations of the
system are determined by the second-order differential
equation

I
d2�

dT2
þ 2�I

d�

dT
þ �� ¼ �; (150)

where � is the torsional damping constant and � is the
torsional spring constant. The moment of inertia I can be
taken as

I ¼ ðm1 þm2Þr20 þ I0; (151)

where r0 is the distance from P to the test bodies and I0 is
the moment of inertia of the remaining matter comprising
the dumbbell. The torque � includes Lorentz-violating
effects and is determined by the forces on the test bodies

calculated from the PNO(3) Lagrangian Lð3Þ
a;c;s.

The damping term in Eq. (150) ensures that free oscil-
lations vanish in the steady state. The time dependence of
the steady-state solution is therefore determined by the
rotations of the pendulum relative to the Sun-centered
frame. Neglecting possible torques other than those im-

plied by Lð3Þ
a;c;s, the steady-state solution can be written in

frequency-decomposed form as

�ðTÞ ¼X
n;w

ðNw
1 �Nw

2 Þ!2R	r0

I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2

0�!2
nÞ2þ4�2!2

n

q ½Kn sinð!nTþ
nþ	nÞ

þLn cosð!nTþ
nþ	nÞ�; (152)

where 
n ¼ 2�!n=ð!2
0 �!2

nÞ and where 	n is a phase

fixing the relationship between the time coordinate in the
turntable frame and the Sun-centered time T. The ampli-
tudes Kn, Ln and the phase 	n are given in Table VII. With
the exception of the first row in the table, these signals for
Lorentz violation are distinguished from other potential
sources of WEP violation by their characteristic time
dependence.
In the above analysis, the assumption of a steady-state

solution implies the pendulum motion is governed by
leading-order Lorentz violation, while the torque � is taken
as the only relevant source of Lorentz violation. Note that
Lorentz-violating contributions to the moment of inertia I
can be neglected here because they enter only at higher
order. These are a manifestation of the angular-momentum
nonconservation that accompanies Lorentz violation, and
they are analogous to the Lorentz-violating contributions
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to the effective inertial mass in the modified Newton
second law (132). In principle, the rotation of the apparatus
in the laboratory introduces similar effects proportional to
�cJK and !2

er0. These may be comparable in magnitude to
effects listed in Table VII that are suppressed by !2R	V	,
but they offer no additional advantage in terms of sensi-
tivity and so are disregarded here.

The above analysis can be used to extract constraints on
Lorentz violation from the results of the torsion-pendulum
WEP tests reported in Refs. [33,79]. The attained sensitiv-
ity to the differential acceleration of Be and Ti test bodies
at the level of 10�15 ms�2 [33] is the experimental basis
for our limit (121), which extends an earlier bound [11] to
include the coefficients �e�. In the remainder of this sub-

section, we revisit this issue to incorporate the slightly

weaker constraints from torsion-pendulum experiments
using Al, Be, Cu, and Si test bodies [79], and we consider
implications of nonzero ð �cwÞ��.

First, suppose ð �cwÞ�� ¼ 0. Inclusion of data from tests

with different materials permits the extraction of some
independent sensitivities to neutron coefficients and to
combinations of electron and proton coefficients. This
treatment relies on differences in binding energy between
the materials involved, so the signal sensitivity of
10�15 ms�2 relative to !2R	 ’ 3� 10�3 ms�2 is sup-
pressed both by the typical material-dependence factor of
ðNw

1 � Nw
2 Þ ’ 10�2 appearing in Eq. (152) and by another

order of magnitude from the binding-energy difference. By
combining available Be-Ti and Al-Be data [79] we obtain
the estimated bounds

TABLE VII. Amplitudes for torsion-pendulum tests.

Amplitude Phase 	n

K!e
¼ � 1

2 ðmwð �cwÞXX þmwð �cwÞYY � 2	ð �aweffÞTÞð1þ !2R	
g sin2�Þ sin2� �

K!eþ� ¼ � 1
2V		ðð �aweffÞY cos�þ ð �aweffÞZ sin�Þ sin2�þ 1

2m
wV	ð �cwÞðTYÞ cos� sin2� �

L!eþ� ¼ � 1
2V		ð �aweffÞX sin2�þ 1

2m
wV	ð �cwÞðTXÞ sin2� �

K!e�� ¼ � 1
2V		ðð �aweffÞY cos�þ ð �aweffÞZ sin�Þ sin2�þ 1

2m
wV	ð �cwÞðTYÞ cos� sin2� �

L!e�� ¼ 1
2V		ð �aweffÞX sin2�� 1

2m
wV	ð �cwÞðTXÞ sin2� �

K!eþ! ¼ mwð �cwÞðXZÞð1� !2R	
g cos2�Þsin2�� gVL	

5!2R	
ð �aweffÞYð1þ cos�Þ �þ c

L!eþ! ¼ �mwð �cwÞðYZÞð1� !2R	
g cos2�Þsin2�� gVL	

5!2R	
ð �aweffÞXð1þ cos�Þ �þ c

K!e�! ¼ mwð �cwÞðXZÞð1� !2R	
g cos2�Þsin2�þ gVL	

5!2R	
ð �aweffÞYð1� cos�Þ �� c

L!e�! ¼ mwð �cwÞðYZÞð1� !2R	
g cos2�Þsin2�þ gVL	

5!2R	
ð �aweffÞXðcos�� 1Þ �� c

K!eþ2! ¼ � 1
2m

wðð �cwÞXX � ð �cwÞYYÞðsin�þ sin� cos�þ !2R	
g sin3� cos�Þ �þ 2c

L!eþ2! ¼ mwð �cwÞðXYÞðsin�þ sin� cos�þ !2R	
g sin3� cos�Þ �þ 2c

K!e�2! ¼ 1
2m

wðð �cwÞXX � ð �cwÞYYÞðsin�� sin� cos�� !2R	
g sin3� cos�Þ �� 2c

L!e�2! ¼ mwð �cwÞðXYÞðsin�� sin� cos�� !2R	
g sin3� cos�Þ �� 2c

K!eþ!þ� ¼ � 1
2m

wV	ð �cwÞðTXÞ sin�sin2� �þ c

L!eþ!þ� ¼ 1
2m

wV	½ð �cwÞðTYÞ sin�� ð �cwÞðTZÞð1� cos�Þ�sin2� �þ c

K!eþ!�� ¼ � 1
2m

wV	ð �cwÞðTXÞ sin�sin2� �þ c

L!eþ!�� ¼ 1
2m

wV	½ð �cwÞðTYÞ sin�þ ð �cwÞðTZÞð1þ cos�Þ�sin2� �þ c

K!e�!þ� ¼ � 1
2m

wV	ð �cwÞðTXÞ sin�sin2� �� c

L!e�!þ� ¼ � 1
2m

wV	½ð �cwÞðTYÞ sin�þ ð �cwÞðTZÞð1þ cos�Þ�sin2� �� c

K!e�!�� ¼ � 1
2m

wV	ð �cwÞðTXÞ sin�sin2� �� c

L!e�!�� ¼ � 1
2m

wV	½ð �cwÞðTYÞ sin�� ð �cwÞðTZÞð1� cos�Þ�sin2� �� c

K!eþ2!þ� ¼ 1
2m

wV	ð �cwÞðTYÞð1� cos�Þ sin�ð1þ cos�Þ �þ 2c

L!eþ2!þ� ¼ 1
2m

wV	ð �cwÞðTXÞð1� cos�Þ sin�ð1þ cos�Þ �þ 2c

K!eþ2!�� ¼ � 1
2m

wV	ð �cwÞðTYÞð1þ cos�Þ sin�ð1þ cos�Þ �þ 2c

L!eþ2!�� ¼ � 1
2m

wV	ð �cwÞðTXÞð1þ cos�Þ sin�ð1þ cos�Þ �þ 2c

K!e�2!þ� ¼ � 1
2m

wV	ð �cwÞðTYÞð1þ cos�Þ sin�ðcos�� 1Þ �� 2c

L!e�2!þ� ¼ 1
2m

wV	ð �cwÞðTXÞð1þ cos�Þ sin�ðcos�� 1Þ �� 2c

K!e�2!�� ¼ 1
2m

wV	ð �cwÞðTYÞð1� cos�Þ sin�ðcos�� 1Þ �� 2c

L!e�2!�� ¼ 1
2m

wV	ð �cwÞðTXÞð1� cos�Þ sin�ð1� cos�Þ �� 2c
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j	ð �aeþp
eff ÞTj & 10�10 GeV; j	ð �aneffÞTj & 10�10 GeV;

(153)

valid for ð �cwÞ�� ¼ 0.

If instead nonzero coefficients ð �cwÞ�� are present, then

we obtain the estimated bound��������	ð �aeþp�n
eff ÞT � 1

3
mpð �ceþp�nÞTT � 1

6
mnð �cnÞQ

��������
& 10�11 GeV: (154)

The contributions due to the spatial neutron coefficient
ð �cnÞQ cannot be disentangled from those due to the tem-

poral components at this order in the analysis. However,
this separation becomes feasible when the result (154) is
combined with the limit achieved via free-fall WEP tests
given in row 2 of Table VI. We thereby obtain the con-
straints��������	ð �aeþp�n

eff ÞT � 1

3
mpð �ceþp�nÞTT

��������& 10�8 GeV;

jð �cnÞQj & 10�8:

(155)

As discussed following Eq. (125), the possibility of
ð �cwÞ��-type Lorentz-violating effects in the binding

energy impedes its direct use in extracting independent

sensitivities to j	ð �aeþp
eff ÞT � 1

3m
pð �ceþpÞTTj and j	ð �aneffÞT �

1
3m

pð �cnÞTTj.
In addition to the constraints (153)–(155), other new

bounds could be placed on the moduli of certain coeffi-
cients for Lorentz violation by reanalyzing the time depen-
dence of the data obtained in the experiments of
Refs. [33,79] using the result (152). Crude estimates of
these sensitivities are given in Table VIII. These are
obtained disregarding binding-energy considerations but
making the strong assumption that all relevant frequencies
in Table VII can be studied in the data. Allowing for
binding-energy effects could yield independent sensitiv-
ities to the neutron coefficients and to a combination of
proton and electron coefficients, both reduced by roughly a
factor of 10.

VIII. SATELLITE-BASED WEP TESTS

Space-based platforms offer certain advantages in
tests of gravity [82] and searches for Lorentz violation
[83]. The long free-fall times that may be attainable on a

drag-free spacecraft make satellite-based WEP tests par-
ticularly attractive. Several proposals are in an advanced
stage of development, including the Micro-Satellite à
traı̂née Compensée pour l’Observation du Principe
d’Equivalence (MicroSCOPE) [84], the Satellite Test of
the Equivalence Principle (STEP) [85], and the Galileo
Galilei (GG) mission [86]. A WEP reach similar to that
of STEP has also been suggested for the Grand Unification
and Gravity Explorer (GaUGE) mission [87].
The basic idea underlying these missions is to monitor

the relative motion of test bodies made of different
materials as they orbit the Earth in a satellite. In the
presence of nonzero coefficients for Lorentz violation
ð �aweffÞ� and ð �cwÞ��, the orbits of the test bodies become

material dependent. In this section, we determine the re-
sulting apparent WEP violations and then obtain crude
estimates of the sensitivities to ð �aweffÞ� and ð �cwÞ�� attain-

able in MicroSCOPE, STEP, and GG.

A. Theory

The basic observable for a satellite-based WEP test is
the differential local acceleration between the test bodies.
The typical design goal is to achieve excellent sensitivity to
one or two components of this acceleration. For present
purposes, we can idealize the situation as a pair of test
bodies aboard a satellite traveling in a circular orbit. In
what follows, we allow for the possibility that the test
bodies are also rotating about an axis perpendicular both
to the direction of motion of the satellite and to the direc-
tion of acceleration sensitivity.
Some notation relevant for our analysis of satellite-based

WEP tests is summarized in Table IX. Paralleling the
analysis of terrestrial experiments in Sec. VII A, it is
convenient to introduce an Earth-centered frame with co-
ordinates x ~� ¼ ð~t; ~x; ~y; ~zÞ, chosen so that ~t ¼ T and so that
the spatial components match those of the Sun-centered
frame at leading post-Newtonian order. The Earth-centered
coordinates can be related to the Sun-centered ones as
discussed in Sec. VIA. The angles �1, �2 in the table are
defined relative to the basis vectors of the Earth-centered
frame. The notation for properties of the test masses 1 and
2 follows that of Sec. VI B.

TABLE VIII. Sensitivities for torsion-pendulum tests.

Coefficient Sensitivity

�cnðTJÞ [10�7]

	ð �aeþp�n
eff ÞX [10�8 GeV]

	ð �aeþp�n
eff ÞYþZ [10�7 GeV]

	ð �aeþp�n
eff ÞY [10�8 GeV]

	ð �aeþp�n
eff ÞZ [10�7 GeV]

TABLE IX. Notation for satellite-based WEP tests.

Quantity Definition

R	 Mean Earth radius

V	 Mean Earth orbital speed

rJ Earth-satellite separation

!s Satellite orbital frequency

!r Satellite rotational frequency

�1 Inclination of satellite orbit

�2 Longitude of satellite-orbit node

�1 Phase fixing satellite location at T ¼ 0
�2 Phase fixing satellite orientation at T ¼ 0
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Establishing the signal arising from nonzero coefficients
for Lorentz violation requires the transformation from the
Sun-centered frame to a frame comoving with the satellite.
The satellite frame serves as the equivalent of the labora-
tory frame for terrestrial searches. We denote coordinates
in the satellite frame by x�̂.

Since the satellite orbit is inclined relative to the Earth-
centered frame, it is also useful to introduce an intermedi-
ate frame aligned with the satellite orbit and hence rotated
with respect to the Earth-centered frame. The intermediate

coordinates are denoted by x�
0
. The rotation transforma-

tion from xj
0
to x

~j can be written as the matrix

R
~jk0
1 ¼

cos�2 � cos�1 sin�2 sin�1 sin�2

sin�2 cos�1 cos�2 � sin�1 cos�2

0 sin�1 cos�1

0
@

1
A (156)

using the angles �1 and �2 defined in Table IX.
The connection between the satellite coordinates and the

Earth-centered coordinates can be written

x
~j ¼ R

~jk0
1 ðRk0 l̂

2 xl̂ þ xk
0
s Þ: (157)

Here, xk
0
s is the world line of the satellite in the intermediate

coordinate system. This world line can be parametrized as

xk
0
s ¼ ðr cosð!sT þ �1Þ; r sinð!sT þ �1Þ; 0Þ; (158)

where r is the magnitude of the Earth-satellite separation.
The satellite therefore orbits in the x0-y0 plane. Also, in
Eq. (157) the rotation Rk0 l̂

2 of the satellite is given by the
matrix

Rk0 l̂
2 ¼

cosð!rT þ �2Þ � sinð!rT þ �2Þ 0
sinð!rT þ �2Þ cosð!rT þ �2Þ 0

0 0 1

0
@

1
A: (159)

The axis of the satellite rotation is therefore along ẑ.
For our purposes, it suffices to obtain explicitly the local

differential acceleration �ax̂ of the test bodies in the x̂
direction. We have

�ax̂ � d2�x̂

dt̂2
¼ �ax̂tidal þ�ax̂LV þ . . . : (160)

The first term on the right-hand side of this expression is
the conventional Newton tidal term. It takes the form

�ax̂tidal ¼ �
�
3

2
!2

s cosð2!rT � 2!sT þ �2 � �1Þ

þ!2
r þ 1

2
!2

s

�
�x̂: (161)

The second term in Eq. (160) contains Lorentz-violating
contributions to the differential acceleration. It can be
written

�ax̂LV ¼ r!2
s

X
w;n

�
Nw

1

m1

� Nw
2

m2

�
ðPn sinð!nT þ 	nÞ

þQn cosð!nT þ 	nÞÞ: (162)

The amplitudes Pm, Qm and the corresponding phases
are provided in Table X. Finally, the ellipsis in Eq. (160)
represents higher-order general-relativistic corrections
and Lorentz-violating effects at the same post-Newtonian
order as �ax̂tidal. The latter are typically of lesser interest.

If desired, the differential acceleration �aŷ along ŷ can be
obtained by performing the transformation !rT ! !rT �
�=2 on Eq. (160).

B. MicroSCOPE and STEP

Within our idealized scenario, MicroSCOPE [84] and
STEP [85] can be analyzed in parallel. Each apparatus
consists of a pair of cylindrical test bodies made of differ-
ent material but having a common symmetry axis. The test
bodies are free to move along this axis. In satellite coor-
dinates, this direction lies along x̂ and is perpendicular both
to the direction of motion of the satellite and to the axis of
the satellite rotation.
One prosaic origin of relative motion of the test bodies

along the x̂ direction could be the influence of tidal forces
on a misalignment of the two centers of mass, which would
lead to the acceleration �ax̂tidal in Eq. (160). This can be

separated from the acceleration due to WEP violations
stemming from Lorentz-invariant sources, which enters
with the characteristic frequency !s �!r. Here, we are
interested in a WEP-violating acceleration �ax̂LV arising
from the coefficients ð �aweffÞ� and ð �cwÞ�� for Lorentz viola-

tion. This can be distinguished from both the above effects
through careful separation of the frequencies associated
with the amplitudes in Table X, except for the amplitude
Q!s�!r

.

The sensitivity goals of MicroSCOPE and STEP are
�a=r!2

s < 10�15 and �a=r!2
s < 10�18, respectively.

These sensitivities and the results in Table X can be used
to obtain rough estimates of the reach of these experiments
for studies of Lorentz violation. For this purpose, we take
the quantityNw

1 =m1 � Nw
2 =m2 appearing in Eq. (162) to be

of order 10�2 GeV�1, which is the best available value
with the Pt-Ir, Be, and Nb test bodies presently proposed
for STEP. Note that the bounds scale linearly with this
difference, so a careful choice of test-body material can
maximize sensitivity to Lorentz violation. Moreover,
combining results for different test materials can yield
additional independent sensitivities. Note also that the
experimental reach may vary with the choice of orbit.
For definiteness, we suppose the sines and cosines of �1

and �2 are of order one.
Our crude estimates for attainable sensitivities to

the moduli of ð �aweffÞ� and ð �cwÞ�� for MicroSCOPE and

STEP are presented in Table XI. In each row, the listed
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sensitivities are obtained under the assumption that all
coefficients vanish except those appearing in the first entry.
The key factor underlying the difference in reach for the
various coefficient combinations is the boost entering
the relevant amplitude in Table X. Amplitudes containing
V	 are suppressed by roughly 10�4, while those containing
r!s are suppressed by about 10�5. As before, the braces
indicate the estimated sensitivities involve data from future
tests.

C. Galileo Galilei

Certain design features of GG [86] differ from those of
MicroSCOPE and STEP in ways that are significant for
studies of Lorentz violation. Although GG also uses coax-
ial cylindrical test bodies, it is sensitive to accelerations in
the plane perpendicular to the axis of the cylinders. Also,
the cylinders are rotated about their axis at a comparatively
high frequency of about 2 Hz.

In applying the generic analysis of Sec. VIII A to GG, it
is convenient to take the cylinder axes to lie along ẑ. The
experiment is then sensitive to accelerations in the x̂-ŷ
plane. The differential acceleration �ax̂ along x̂ is given
in Eq. (160), while �aŷ can be obtained by adjusting the
phase �2.

The sensitivity goal of GG is �a=r!2
s < 10�17. In

Table XI, we present rough estimates of the corresponding
reach for measurements of the coefficients ð �aweffÞ� and

ð �cwÞ�� for Lorentz violation, obtained using the result

(162). The values for GG in the table are based on the
same assumptions as those discussed above for
MicroSCOPE and STEP. This includes the material-
dependent factor, with the proposed materials for the GG
test bodies being Be and Cu. The boost factors leading to
the varying sensitivities for GG listed in the table are also
of the same order of magnitude as for the other satellite
experiments.
We remark in passing that the comparatively high rota-

tion rate for the GG cylinders could introduce additional
Lorentz-violating effects. Typically, the presence of non-
zero ð �cwÞ�� introduces modifications to the effective mo-

ment of inertia of a body. This can affect the dynamical
balance of the system, which can lead to observable sig-
nals. For example, potential effects of this type on the
timing of pulsar signals have been used to constrain
some combinations of ð �cnÞ�� [88]. In the present context,

the observable signals could include a material-dependent
Lorentz-violating wobble varying at the satellite frequency
and at the Earth’s orbital frequency. It is conceivable that

TABLE X. Amplitudes for satellite-based WEP tests.

Amplitude Phase

P!r
¼ mwr!s½ð �cwÞðTYÞ sin�1 þ ð �cwÞðTXÞ cos�1� þ !R2		 cos�2

5r ½ð �aweffÞX cos�1 þ ð �aweffÞY sin�1� �2

Q!r
¼ mwr!s½ð �cwÞðTXÞ sin�1 cos�2 � ð �cwÞðTYÞ cos�1 cos�2 � ð �cwÞðTZÞ sin�2� þ !R2

		
5r ½ð �aweffÞX sin�1 � ð �aweffÞY cos�1� �2

P!rþ!s
¼ 2mw½cos�2 cos2�1ð �cwÞðXYÞ þ sin�2 sin�1ð �cwÞðYZÞ þ 1

2 sin2�1 cos�2ðð �cwÞYY � ð �cwÞXXÞ þ sin�2 cos�1ð �cwÞðXZÞ� �1 þ �2

Q!sþ!r
¼ mw½ðcos2�2cos

2�1 � sin2�1 þ 1
2 sin

2�2Þðð �cwÞXX � ð �cwÞYY Þ þ 1
2 sin

2�2ðð �cwÞXX þ ð �cwÞYY � 2ð �cwÞZZÞ
� cos�1 sin2�2ð �cwÞðYZÞ þ sin�1 sin2�2ð �cwÞðXZÞ þ sin2�1ð1þ cos2�2Þð �cwÞðXYÞ�

�1 þ �2

Q!s�!r
¼ mw½ðcos2�1sin

2�2 þ 1
2 cos

2�2 þ 1
2Þðð �cwÞXX � ð �cwÞYYÞ � 1

2 sin
2�2ðð �cwÞXX þ ð �cwÞYY � 2ð �cwÞZZÞ

þ 2ð �cwÞYY þ sin2�1ð1� cos2�2Þð �cwÞðXYÞ � sin�1 sin2�2ð �cwÞðXZÞ þ cos�1 sin2�2ð �cwÞðYZÞ� � 2	ð �aweffÞT
�1 � �2

P2!s�!r
¼ �mwr!s½ð �cwÞðTXÞ cos�1 þ ð �cwÞðTYÞ sin�1� � 3!R2

		 cos�2
5r ½ð �aweffÞX cos�1 þ ð �aweffÞY sin�1� 2�1 � �2

Q2!s�!r
¼ mwr!s½ð �cwÞðTYÞ cos�1 cos�2 � ð �cwÞðTXÞ sin�1 cos�2 þ ð �cwÞðTZÞ sin�2� � 3!R2

		
5r ½ð �aweffÞX sin�1 � ð �aweffÞY cos�1� 2�1 � �2

P�þ!sþ!r
¼ mwV	½ðcos2�1 � sin2�1cos

2�2 � cos� cos�2 cos2�1 � sin� sin�2 cos�1Þð �cwÞðTXÞ
þ sin�1 sin�2ðcos�2 � cos�Þð �cwÞðTZÞ þ ðcos�1 þ cos�1cos

2�2 � sin� sin�2 � 2 cos� cos�1 cos�2Þ sin�1ð �cwÞðTYÞ�
�1 þ �2

Q�þ!sþ!r
¼ mwV	½ð2 cos�1 cos�2 � sin� sin�2 cos�2 � cos� cos�1ð1þ cos2�2ÞÞ sin�1ð �cwÞðTXÞ

� ðcos2�1 cos�2 � sin� cos�1 sin�2 cos�2 þ cos�ð1� cos2�1sin
2�2ÞÞð �cwÞðTYÞ

� ðcos�1 � sin� sin�2 � cos� cos�1Þ sin�2ð �cwÞðTZÞ�

�1 þ �2

P�þ!s�!r
¼ mwV	½ð1� sin2�1sin

2�2Þð �cwÞðTXÞ þ 1
2 sin2�1sin

2�2ð �cwÞðTYÞ � 1
2 sin�1 sin2�2ð �cwÞðTZÞ� � 	V	ð �aweffÞX �1 � �2

Q�þ!s�!r
¼ �mwV	½12 ðcos� sin2�1sin

2�2 � sin� sin�1 sin2�2Þð �cwÞðTXÞ þ ð12 sin� cos�1 sin2�2

þ ð1� sin2�2cos
2�1Þ cos�Þð �cwÞðTYÞ þ ðsin�sin2�2 þ 1

2 cos� cos�1 sin2�2Þð �cwÞðTZÞ�
þ 	V	½ð �aweffÞZ sin�þ ð �aweffÞY cos��

�1 � �2

P��!sþ!r
¼ mwV	½ð1� sin2�1sin

2�2Þð �cwÞðTXÞ þ 1
2 sin2�1sin

2�2ð �cwÞðTYÞ � 1
2 sin�1 sin2�2ð �cwÞðTZÞ� � 	V	ð �aweffÞX ��1 þ �2

Q��!sþ!r
¼ mwV	½12 ðsin� sin�1 sin2�2 � cos� sin2�1sin

2�2Þð �cwÞðTXÞ � ð12 sin� cos�1 sin2�2

þ cos�ð1� cos2�1sin
2�2ÞÞð �cwÞðTYÞ � ðsin�sin2�2 þ 1

2 cos� cos�1 sin2�2Þð �cwÞðTZÞ�
þ 	V	½ð �aweffÞZ sin�þ ð �aweffÞY cos��

��1 þ �2

P��!s�!r
¼ mwV	½ðcos2�1 � sin2�1cos

2�2 þ sin� cos�1 sin�2 þ cos� cos2�1 cos�2Þð �cwÞðTXÞ
þ ð12 sin2�1ð1þ cos2�2Þ þ sin� sin�1 sin�2 þ cos� sin2�1 cos�2Þð �cwÞðTYÞ þ ð12 sin2�2 þ cos� sin�2Þ sin�1ð �cwÞðTZÞ�

��1 � �2

Q��!s�!r
¼ mwV	½�ðsin2�1 cos�2 þ 1

2 sin� sin�1 sin2�2 þ 1
2 cos� sin�1ð1þ cos2�2ÞÞð �cwÞðTXÞ

þ ðcos2�1 cos�2 þ 1
2 sin� cos�1 sin�2 � cos�ðsin2�1 � cos2�1cos

2�2ÞÞð �cwÞðTYÞ
þ ðcos�1 sin�2 þ sin�sin2�2 þ 1

2 cos� cos�1 sin2�2Þð �cwÞðTZÞ�

��1 � �2
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these Lorentz-violating effects could be detected by the
GG apparatus that senses the test-body location. Notice
that the signals would be independent of gravity. They may
be detectable using sophisticated terrestrial dynamical-
balancing equipment, perhaps including that used in the
Galileo Galilei on the Ground (GGG) experiment [89]. The
investigation of these effects represents an interesting open
question for future work.

IX. EXOTIC GRAVITATIONAL TESTS

In this section, we offer a few remarks about some
gravitational searches for Lorentz violation using material
test bodies other than neutral bulk matter, neutral atoms, or
neutrons. These more exotic searches typically present
unique experimental challenges, but they could provide
access to combinations of coefficients for Lorentz violation
that are awkward or impossible to isolate and measure in
other searches discussed in this paper. Here, we briefly
consider tests with electrons and ions, studies with antihy-
drogen, and experiments using particles from the second
and third generation of the standard model.

A. Tests with electrons and ions

Measurements of the gravitational acceleration of
charged matter remain of definite theoretical interest be-
cause the WEP and other foundational aspects of gravity
are comparatively poorly tested in this regime. In this
subsection, we consider possible signals from studies of
charged electrons or ions. Given the experimental chal-
lenges of these tests and their limited attainable sensitiv-
ities, we restrict attention here to effects from ð �aweffÞ�,
setting other coefficients to zero for simplicity.

In the context of searches for Lorentz violation, gravi-
tational tests with charged matter offer unique access to the
coefficients ð �aweffÞ�. For example, measurements of this

kind can disentangle coefficients for Lorentz violation in
the proton and electron sectors. They can also detect
certain countershaded effects that are otherwise invisible.
In particular, some models have coefficients ð �aweffÞ� pro-

portional to electric charge, which would evade detection
in searches with neutral test bodies [11]. This possibility is
a natural consequence for theories in which the photon
modes are interpreted as Nambu-Goldstone bosons from

spontaneous Lorentz breaking and in which ð �aweffÞ�
remains physically observable, such as nonminimally
coupled bumblebee electrodynamics [14].
One candidate technique to measure gravitational effects

from the coefficients ð �aweffÞ� is charged-particle interfer-

ometry. Electron interferometry has been used to measure
the Sagnac effect at the 30% level [90], while ion inter-
ferometry is under investigation as a practical tool for
sensitive tests of Coulomb’s law [91]. In the present con-
text, electron or ion interferometry offers an interesting
alternative prospect to the free-fall tests with neutral matter
discussed in Sec. VII. For a given geometry, the observed
phase shift can be determined using the methods of
Sec. VII B. In the limit of interest here, the vertical accel-
eration aẑ of the electron or ion T in the gravitational field
of the Earth S is given at PNO(2) by

a ẑ ¼ �g� 2g	

mT
ð �aTeffÞt̂ �

2g	

mS
ð �aSeffÞt̂: (163)

As before, the PNO(3) version of this acceleration can be
frequency decomposed relative to the Sun-centered frame,
with the corresponding amplitudes depending on the
coefficients ð �aweffÞ� as given in Table IV.

In principle, a charged-particle interferometer can be
used for free-fall gravimeter tests of the type discussed in
Sec. VII B or for free-fall WEP tests as in Sec. VII D. A
free-fall gravimeter test is insensitive to ð �aweffÞT and has

only boost-suppressed signals from ð �aweffÞJ, so a substantial
improvement over the existing reach of charged-matter
interferometers would be required to achieve a sensitivity
compatible with perturbative consistency. In contrast, a
free-fall WEP test is directly sensitive to ð �aweffÞT but re-

quires a simultaneous measurement with two test bodies.
One option along these lines could be a direct comparison
with neutral matter via a falling corner cube or an atom
interferometer.
Another approach to gravitational tests with charged

matter is to study the motion of charged particles in a
vertical metallic drift tube. This setup is accompanied
by gravitationally induced electric forces caused by the
sagging of the tube [92], along with a variety of challeng-
ing systematics. An experiment of this type with electrons
[93] confirmed that the gravitational forces on the electrons
in the tube and on the electrons within the metal are

TABLE XI. Sensitivities for satellite-based WEP tests.

Coefficient MicroSCOPE GG STEP

	ð �aeþp�n
eff ÞT � 1

3m
pð �ceþp�nÞTT {10�13 GeVg {10�15 GeVg {10�16 GeVg

	ð �aeþp�n
eff ÞX {10�9 GeVg {10�11 GeVg {10�12 GeVg

	ð �aeþp�n
eff ÞYþZ {10�9 GeVg {10�11 GeVg {10�12 GeVg

	ð �aeþp�n
eff ÞY {10�7 GeVg {10�9 GeVg {10�10 GeVg

	ð �aeþp�n
eff ÞZ {10�7 GeVg {10�9 GeVg {10�10 GeVg

ð �cnÞQ {10�13g {10�15g {10�16g
ð �cnÞðTJÞ {10�9g {10�11g {10�12g
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comparable to about 10%. An analogous experiment in-
volving cold antiprotons [94] was designed to achieve a
sensitivity of 0.1% to the gravitational acceleration [95].
These measurements are all experimentally challenging,
and their interpretation is theoretically subtle [96].

In the present context of gravitational Lorentz violation
involving the coefficients ð �aweffÞ�, intuition for the theoreti-
cal implications of ballistic tests of this type can be gained
by considering the idealized case and working at PNO(2).
We suppose a test particle T of charge qT moves along the
symmetry axis of a vertical cylindrical metallic drift tube
with body comprised of a lattice of ions of type I and
conduction electrons e. Disregarding applied fields, stray
fields, and various systematics, the overall conventional
force on the particle T is the sum of the direct gravitational
force on T from the Earth S and the net force on T from the
electromagnetic field arising from the gravitationally in-
duced sagging of the tube. The presence of nonzero coef-
ficients ð �aweffÞ� introduces corrections to both these forces.

At PNO(2), the gravitational force on T is given by

ðFgravÞẑ ¼ �mTg� 2g	ð �aTeffÞt̂ � 2g	
mT

mS
ð �aSeffÞt̂; (164)

while the vertical component of the force on T from the
gravitationally induced electric field is

ðFemÞẑ¼qT

e

�
megþ2g	ð �aeeffÞt̂þ2g	

me

mS
ð �aSeffÞt̂

�

þ�
qT

e

�
mIgþ2g	ð �aIeffÞt̂þ2g	

mI

mS
ð �aSeffÞt̂

�
: (165)

In these expressions, me and mI are the masses of an
electron and an ion in the tube lattice, respectively,
while e and qI are the corresponding charges. The factor
� is a constant, set by the properties of the metal lattice. In
Eq. (165), the first three terms arise from the sagging of the
electrons in the tube walls, while the last three are propor-
tional to the dilation derivative of the work function for
the metal and originate in the longitudinal compression of
the lattice. These expressions reduce to standard ones when
the coefficients ð �aweffÞ� vanish.

Although the expressions (164) and (165) hold in an
idealized situation, they suffice to demonstrate in principle
that experiments of this type are sensitive to nonzero
coefficients ð �aweffÞ�, even when these coefficients are un-

detectable with neutral matter. This is also true if the
particle T is an electron, when the sum of the forces
ðFgravÞẑ and ðFemÞẑ leaves only the last three terms in

Eq. (165). In practice, however, the reported reach of
drift-tube experiments to date is insufficient to achieve
useful sensitivity in gravimeter tests. A WEP test relating
a drift-tube setup to an independent gravimeter may be of
more interest. For a given experiment, specific sensitivities
can be estimated using the analyses presented in Sec. VII.

A third methodology for investigating gravitational
Lorentz violation from nonzero coefficients ð �aweffÞ� could

conceivably be to adopt as the gravimeter a device that
wholly confines charged particles. For example, a single
charged particle can be trapped for long periods using a
Penning trap [97]. Measuring gravitational effects in this
way is ambitious, as can be appreciated from the size of
the quantity jmeg=ej ’ 6� 10�12 V=m. Nonetheless, the
feasibility of gravitational measurements with trapped
antiprotons at a sensitivity of about 1% has been suggested,
using a gravity-induced shift of radial orbits [98]. This
would also lead to sensitivity to the coefficients ð �aweffÞ�
via an analysis similar to those discussed above.

B. Tests with antimatter

The study of antimatter offers another realm in which to
search for Lorentz and CPT violation. Antihydrogen has
been detected [99,100] and produced in copious amounts
[101], while prospects for studies of trapped cold antihy-
drogen are excellent [102]. Antihydrogen spectroscopy
could yield special sensitivity to nongravitational SME
coefficients for Lorentz and CPT violation [103], and the
experiment for Atomic Spectroscopy and Collisions Using
Slow Antiprotons (ASACUSA) expects to achieve sensi-
tivities of parts in 10�7 to the predicted shifts in hyperfine
transitions [104].
To study the interaction of gravity and antimatter,

various ideas for measuring the gravitational acceleration
of antihydrogen have been advanced. Among them are
methods involving trapped antihydrogen [105], anti-
hydrogen interferometry [106], antihydrogen free fall
from an anti-ion trap [107], and tests in space [108]. One
approved project, the Antimatter Experiment: Gravity,
Interferometry, Spectroscopy (AEGIS) [109], has an inter-
oferometric design with an initial sensitivity goal of 1% to
the gravitational acceleration of antihydrogen.
In the context of gravitational Lorentz and CPT viola-

tion, these experiments offer the prospect of special sensi-
tivities to the coefficients ð �aweffÞ� and ð �cwÞ��. The key point

is that a CPT transformation has the net effect of reversing
the sign of ð �aweffÞ� while leaving ð �cwÞ�� unchanged. As a

result, experiments with antihydrogen could in principle
observe distinctive and novel behaviors. Moreover, when
compared with similar measurements on hydrogen, the
results would offer the opportunity for clean separation
of effects. For instance, free-fall WEP tests comparing
hydrogen and antihydrogen could yield independent sensi-
tivity to ð �ceþpÞTT . In general, the theoretical treatment of
prospective free-fall gravimeter or WEP tests with antihy-
drogen follows the same path as described in Sec. VII,
except with the sign of ð �aweffÞ� reversed throughout.

The literature contains numerous attempts to place
indirect limits on the possibility of unconventional
antimatter-gravity interactions, many of which are re-
viewed and critiqued in Ref. [110]. In the present context,
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the SME offers a general field-theoretic approach that can
elucidate aspects of this issue and provide new insights
about possible limitations on effects. We next present an
explicit toy model that evades some previous indirect
limits on large unconventional effects in antihydrogen.

For simplicity, we choose to work within the isotropic
limit of the SME. In any specified inertial frameO, a subset
of Lorentz-violating operators in the SME Lagrange den-
sity preserves rotational symmetry. Setting the coefficients
of all other operators to zero produces an interesting limit-
ing case. The frame O then becomes a preferred frame,
since the rotation invariance is broken in any frame O0
boosted with respect to O. Physical effects of Lorentz
violation are then isotropic in O but not in O0. The frame
O could in principle be identified as the rest frameU of the
cosmic microwave background, the Sun-centered frame S,
or any other desired choice. Isotropic models of this type
are sometimes called ‘‘fried-chicken’’ models because of
their popularity and simplicity.

In Minkowski spacetime, toy isotropic models can be
used to show that Lorentz- andCPT-violating effects could
in principle be substantially larger in antihydrogen than
hydrogen. One example is the isotropic ‘‘invisible’’ model
(IIM) [111], which is defined in the cosmic microwave
background frame U and yields effects challenging to see
in searches with ordinary matter. Denoting coordinates in
U by ðT0; X0; Y0; Z0Þ, the IIM assumes the only nonzero
coefficients for Lorentz violation are ðbpÞT0 and isotropic
ðdpÞ�0�0 obeying the simple condition

ðbpÞT0 ¼ kmpðdpÞT0T0 (166)

for a suitable choice of constant k. In the Sun-centered
frame S, this one-parameter model generates nonzero co-
efficients ðbpÞJ and ðdpÞJT . The dominant signals in terres-
trial experiments with hydrogen appear in the hyperfine
structure and involve the combination ðbpÞJ �mpðdpÞJT ,
which vanishes for suitable k. These experiments can
therefore detect only effects suppressed by at least one
power of the boost of the Earth around the Sun, which is
about 10�4 and requires an experiment sensitive to annual
modulations. In contrast, the dominant effects in experi-
ments with antihydrogen involve the combination ðbpÞJ þ
mpðdpÞJT , which produces unsuppressed signals in the
hyperfine structure. The IIM thus provides a toy field-
theoretic scenario in which observable effects in antihy-
drogen are at least 10 000 times greater than those in
hydrogen or other nonrelativistic neutral matter.

The IIM involves spin-dependent operators for Lorentz
and CPT violation in Minkowski spacetime. In this
work, the focus is on the gravitational couplings of spin-
independent operators with coefficients ð �aweffÞ� and ð �cwÞ��.

At the end of Sec. VIII A, we remark on the difficulty
of observing with matter any signals depending on the
combination 	ð �aTeffÞT �mTð �cTÞTT=3 of isotropic coeffi-

cients. Here, we consider some implications for

antimatter gravity of a specific toy model, the isotropic
‘‘parachute’’ model (IPM), in which unobserved com-
binations of this type provide the dominant source of
Lorentz-violating effects and could yield significant
a priori differences in the gravitational accelerations of
hydrogen and antihydrogen.
To construct the IPM, consider the Lagrange density

of the SME in the Sun-centered frame S, with nonzero
coefficients restricted to ð �aweffÞT and isotropic ð �cwÞ	�.
Following the derivation in the early sections of this
work, we can extract the PNO(3) effective classical
Lagrangian for a test particle T moving in the gravitational
field of a source S. This can be written in the suggestive
form

LIPM ¼ 1

2
mT

i v
2 þGNm

T
gm

S
g

r
; (167)

where mT
i is the effective inertial mass of T, while mT

g and

mS
g are the effective gravitational masses of T and S,

respectively. All these effective masses are defined in terms
of the coefficients ð �aweffÞT , ð �cwÞTT for Lorentz violation and

the body masses mB of Eq. (71). We find

mB
i ¼ mB þX

w

5

3
ðNw þ N �wÞmwð �cwÞTT;

mB
g ¼ mB þX

w

ððNw þ N �wÞmwð �cwÞTT

þ 2	ðNw � N �wÞð �aweffÞTÞ; (168)

where B is either T or S. These expressions adopt the
notation Nw and N �w for the number of particles and
antiparticles of type w, respectively, while as before mw

is the mass of a particle of type w. Note that for a given
body the passive and active gravitational masses are iden-
tical, reflecting the preservation of Newton’s third law in
the model.
For electrons, protons, and neutrons, the IPM is defined

by the three conditions

	ð �aweffÞT ¼ 1

3
mwð �cwÞTT; (169)

where w ranges over e, p, n. Since there are three inde-
pendent conditions on six real parameters, this produces a
three-parameter IPM. The condition (169) ensures that for
a matter body B the effective inertial and gravitational
masses are equal,

mB
i ¼ mB

g ðmatterÞ; (170)

and hence no Lorentz-violating effects appear in gravita-
tional tests to PNO(3) using ordinary matter. However, for
an antimatter test body T this condition fails,

mT
i � mT

g ðantimatterÞ; (171)

so observable signals arise in comparisons between
the gravitational responses of matter and antimatter or
between different types of antimatter. Ensuring the validity
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of perturbation theory requires that the coefficients
	ð �aweffÞT ¼ mwð �cwÞTT=3 are perturbatively small relative

to mw. With theoretically conceivable values perhaps
even as large as 0:5mw, the gravitational accelerations of
hydrogen and antihydrogen might differ at the 50% level.

Rather than a serious effort at a realistic theory, the IPM
is constructed as a simplistic playground within which to
explore field-theoretic limitations on unconventional prop-
erties of antimatter and antihydrogen. In the next few
paragraphs we treat it as such, briefly addressing some
concerns about unconventional signals in this context.

One issue is whether energy remains conserved when
matter and antimatter have different gravitational interac-
tions [112]. For the analysis of the SME in the present
work, this issue is moot because an explicit conserved
energy-momentum tensor exists. As an illustration, con-
sider the gedanken experiment in which a particle-
antiparticle pair is lowered in a gravitational field, con-
verted to a photon pair, raised to the original location, and
finally reconverted to the particle-antiparticle pair. In ge-
neric scenarios the particle, antiparticle, and photons
each provide different contributions to the energy and so
problems can arise. However, in the IPM these complica-
tions are avoided. The photons make no contribution be-
cause they are conventional, partly via the coordinate
choice (23). The particle and antiparticle do contribute to
the energy via the coefficient ð �aweffÞT , but the two contribu-

tions cancel. Contributions involving the coefficient ð �cwÞTT
exist and combine during the lowering procedure, but the
definition (70) of the conserved energy also contains
ð �cwÞTT and so the net change remains zero at the end of
the experiment. The resolution of this and other illustrative
scenarios is less transparent when more nonzero coeffi-
cients for Lorentz violation are present, but the existence
of a conserved energy-momentum tensor ensures that no
contradictions arise.

Another attempt to argue against the possibility of an
anomalous antimatter response to gravity is based on the
large binding-energy content of baryons, atoms, and bulk
matter [113]. For hydrogen and antihydrogen, a modern
version of the argument could proceed by first noting that
the quarks in hydrogen contain only about 10% of the mass
with most of the remainder contained in the gluon and sea
binding, and then concluding that since the binding forces
are comparable for hydrogen and antihydrogen their gravi-
tational response cannot differ by more than about 10%.
This type of reasoning implicitly assumes that the gravita-
tional response of a body is determined by its mass and
hence also by its binding energy. However, as shown
generically in Sec. VIII A, the coefficient ð �aweffÞT in the

IPM leads to a correction to the gravitational force that is
independent of mass and can vary with flavor. Indeed, the
binding forces are largely conventional in the IPM, and the
gravitational responses of hydrogen and antihydrogen are
primarily determined by the flavor content of the valence

particles. It is even conceivable in principle that a large
gravity effect could be associated purely with the positron,
as occurs in the IPM when only ð �aeeffÞT is nonzero and

satisfies the condition (169). A careful treatment of this
issue in the IPM would require consideration of radiative
effects involving ð �aweffÞT , ð �cwÞTT , and other SME coeffi-

cients for Lorentz violation [18,114], perhaps imposing the
condition (169) only after renormalization. In any case, the
essential points illustrated with the IPM remain valid: the
gravitational response of a body can be independent of
mass, can vary with flavor, and can differ between particles
and antiparticles.
The gravitational response of antimatter could in prin-

ciple also be restricted by the results of experiments study-
ing kaons [115] and other neutral-meson systems, which
are natural interferometers mixing strong-interaction par-
ticle and antiparticle eigenstates via weak-interaction
effects. When analyzed in the context of the SME in
Minkowski spacetime, neutral-meson mixing places tight
constraints on certain differences of the coefficients ð �aweffÞ�
for w ranging over several quark flavors [53,54]. However,
these constraints have no dominant implications for lep-
tons or for baryons, which involve three valence quarks
rather than a quark and an antiquark as in mesons.
Moreover, the neutral-meson constraints necessarily in-
volve valence s, c, and b quarks, which are largely irrele-
vant for protons and neutrons. In the presence of
gravitational interactions, the same line of reasoning holds,
with the flavor dependence of Lorentz and CPT violation
leading to the conclusion that the IPM evades restrictions
from meson oscillations.
We can also use the IPM to illustrate a type of constraint

on more realistic model building arising from the extensive
searches for Lorentz and CPT violation in Minkowski
spacetime. The key point is that the mixing of Lorentz-
violating operators under rotations and boosts can imply
indirect limits on some coefficients. In the IPM, for ex-
ample, the coefficient ð �aweffÞT is unobservable inMinkowski

spacetime, as discussed in Sec. II C, but certain non-
gravitational experiments could in principle obtain
boost-suppressed sensitivity to ð �cwÞTT for some w via
measurements of the coefficients ð �cwÞJK. As one illustra-
tion, a measurement with a Cs-Rb double fountain clock
over a total of five weeks in the spring and fall of 2005
achieved a sensitivity of parts in 1025 on some combina-
tions of the coefficients ð �cpÞJK [116]. This suggests that
continuing an experiment of this type over a longer
period could attain parts in 1017 on the coefficient ð �cpÞTT
by analyzing the data allowing for the Earth’s orbital
boost V	 ’ 10�4. Similarly, a careful analysis of multiple
searches for Lorentz violation involving the electron sector
could be used to measure ð �ceÞTT at the level of parts in 1015
[117]. Although these types of nongravitational studies
remain to be performed, they could in principle place
experimental limits on the magnitude of the anomalous
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gravitational response of antihydrogen in the IPM and
possibly also in more realistic models. We remark in pass-
ing that these kinds of constraints nonetheless leave con-
siderable room for realistic model building, in particular,
when operators of arbitrary dimension are incorporated in
the framework [118].

C. Tests with matter beyond the first generation

Most studies of fermion-gravity couplings to date have
involved particles from the first generation of the SM.
However, the SME coefficients for Lorentz and CPT
violation can differ between sectors, so investigations of
higher-generation matter-gravity couplings are of indepen-
dent interest. Since fermion masses and hence fermion-
gravity couplings typically increase with the generation,
it is conceivable that an unconventional gravitational cou-
pling may be more readily identified in gravitational tests
with higher-generation matter. Comparatively few results
exist for the coefficients ð �aweffÞ� and ð �cwÞ�� for particles w

beyond the first generation [2], so there is considerable
room for measurements of effects involving gravity
couplings.

The comparatively long lifetime of the muon makes it an
interesting candidate for gravitational tests of Lorentz vio-
lation with second-generation particles. Several muon co-
efficients for Lorentz and CPT violation have already been
measured [119], but the sensitivities are largely limited to
spin-dependent effects. Measurements of Lorentz-violating
gravitational couplings of the muon could be achieved via
muonium interferometry, with an estimated initial reach of
10% [120]. Interferometry with muonic hydrogen may also
be possible [121]. In principle, these experiments could
yield first measurements of some components of the coef-
ficients ð �a�effÞ� and ð �c�Þ�� in the muon sector. In particular,

free-fall WEP tests using muonium interferometry to search
for Lorentz and CPT violation offer the prospect of direct
sensitivity to the coefficients ð �a�effÞT and ð �c�ÞTT . In contrast,
performing free-fall gravimetric tests with muonium inter-
ferometry is unlikely to be useful in the near future because
the dominant signals appear at annual frequencies and are
suppressed by the boost V	.

Consider for definiteness a free-fall WEP experiment
comparing the gravitational acceleration of muonium
with that of neutral matter N. Muonium is a bound
system containing an antimuon and an electron, so its
spin-independent Lorentz-violating gravitational proper-
ties are determined by the coefficients �ð �a�effÞ�, ð �c�Þ��,

ð �aeeffÞ�, and ð �ceÞ��. Following the line of reasoning in

Sec. VI B, we find that the dominant observable combina-
tion of coefficients for CPT-odd effects in a free-fall WEP
experiment is

ð �a�þe�N
eff Þ� ¼ �ð �a�effÞ� þ ð �aeeffÞ� �m� þme

mN ð �aNeffÞ�;
(172)

where mN is the mass of N and ð �aNeffÞ� is its effective

coefficient for Lorentz and CPT violation. Assuming N
is composed of first-generation particles, the existing con-
straints on coefficients [2] imply that for most models it is a
good approximation to neglect all but the first term on the
right-hand side of this equation. For CPT-even effects, the
relevant observable combination of coefficients is

ð �c�þe�NÞ�� ¼ ð �c�Þ�� þ me

m� ð �ceÞ�� �m� þme

m� ð �cNÞ��:

(173)

Again, only the first term is likely to be significant in
practice. Similar expressions hold for muonic hydrogen,
with the replacements e ! p for the superscripts and
ð �a�effÞ� ! �ð �a�effÞ� for the muon coefficient for Lorentz

violation.
Searches for Lorentz-violating gravitational couplings

of other second- and third-generation particles could also
be countenanced. The typically short lifetimes of these
particles can in principle be overcome by boosting, so
accelerator experiments are likely to provide the best labo-
ratory prospects. Studying the gravitational infall of parti-
cles of extraterrestrial origin in the context of free-fall
WEP searches might be a source of additional constraints.
The physical mixing of uncharged particles of different

flavors w offers an interesting alternative method to
achieve sensitivity to the coefficients ð �aweffÞ�. Examples

already yielding SME constraints on Lorentz and CPT
violation include the interferometric oscillations of neutral
mesons [53,54] and of neutrinos [55]. Particle mixing
implies nondiagonal terms in the propagator matrix, so
field redefinitions of the type (14) cannot be used to remove
the coefficients ð �aweffÞ� from the theory. Differences be-

tween the coefficients ð �aweffÞ� then become observable even

in Minkowski spacetime, offering sensitivity to effects that
would otherwise be undetectable. For instance, the recent
observation of anomalous CP-violating effects in B-meson
oscillations [122] could originate in one or more nonzero
coefficients ð �aweffÞT for Lorentz and CPT violation in the

quark sector, since these control CP-odd but T-even op-
erators that contribute to the effective Hamiltonian for the
mixing [54]. Spin-independent CPT-odd Lorentz violation
involving coefficients such as ð �awÞ� could also underlie the

observed baryon asymmetry in the Universe [123].
In terms of the perturbative counting scheme of

Sec. II D, the existing SME studies using neutral-meson
and neutrino oscillations lie at O(1,0). Incorporating
leading-order gravitational couplings along the lines in
this paper would introduce O(1,1) oscillation effects,
including species-dependent modifications of the meson
or neutrino trajectories with characteristic time depen-
dences similar to the WEP-violating effects discussed in
Sec. VII D. Possible O(1,0) contributions to the oscillations
can be distinguished from O(1,1) ones via the dependences
on energy, baseline, flavor, and time. The advent of
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neutrino-oscillation experiments with long and very long
baselines of order 100–1000 km and corresponding
changes in gravitational potential along the beams may
offer particularly interesting options for free-fall WEP tests
of Lorentz and CPT violation of this type. A detailed
consideration of these possibilities would be a worthwhile
subject for future investigation.

X. SOLAR-SYSTEM TESTS

Studies of the motion of bodies within the solar system
provide an important source of information about gravita-
tional couplings to matter. In this section, we investigate
the effects of nonzero coefficients ð �aeffÞ� and �c�� for

Lorentz violation in two solar-system contexts: lunar
and satellite laser ranging, and perihelion precession. The
analysis here neglects effects that act merely to scale the
mass of the gravitational source. These are unobservable
using solar-system observations alone, but they may be
detectable in combined measurements using photon tests.
This latter issue is revisited in Sec. XI.

A. Lunar and satellite laser ranging

Lunar and satellite laser ranging provides a sensitive test
of gravitational physics. The relevant orbital perturbations
to the motion of a satellite orbiting the Earth that arise from
nonzero Lorentz violation in the pure-gravity sector of the
minimal SME have been established [7] and used to con-
strain some of the coefficients �s�� [4]. Here, we seek to

extend these results to include dominant effects from non-
zero coefficients ð �aeffÞ� and �c��.

Where possible in this subsection, we follow the con-
ventions of Ref. [7]. A summary of our notation is given in
Table XII. The flavor dependence of the matter-gravity
couplings leads to composition-dependent factors in

some of the equations to follow. To simplify these expres-
sions, it is useful to define the eight combinations

nw1 ¼ Nw
1 þNw

2 ; nw2 ¼ Nw
1 �Nw

2 ;

nw3 ¼M

�
Nw

1

m1

þNw
2

m2

�
; nw4 ¼M

�
Nw

2

m2

�Nw
1

m1

�
;

nw5 ¼ 1

M
ðm1N

w
2 þm2N

w
1 Þ; nw6 ¼ 1

M
ðm1N

w
2 �m2N

w
1 Þ;

nw7 ¼ m2

m1

Nw
1 þm1

m2

Nw
2 ; nw8 ¼ 1

M

�
m2

2

m1

Nw
1 �m2

1

m2

Nw
2

�
:

(174)

The primary observable in laser-ranging tests is the
coordinate acceleration aJES of the relative Earth-satellite

separation. Working in the Sun-centered frame, we can
obtain this acceleration from the equation of motion (78).
The relevant contributions to the coefficient and metric
fluctuations from ð �aeffÞ� and �c�� can be found in

Sec. IVC, while those from �s�� are given in Ref. [7].

Incorporating perturbative effects of other bodies in-
cluding the Sun, the coordinate acceleration can be written

a J
ES �

d2rJ

dT2
¼ aJN þ aJT þ aJQ þ aJLV þ . . . : (175)

The first three terms in this expression involve effects
independent of Lorentz violation. They represent the ac-
celeration due to the Newton gravitational field of the
Earth-satellite system, the Newton tidal quadrupole term,
and the quadrupole moment of the Earth, respectively.
Their explicit form is given in Ref. [7]. The leading
Lorentz-violating contributions to the acceleration are rep-
resented by the fourth term aJLV. This term can itself be split
into four pieces,

TABLE XII. Notation for laser-ranging tests.

Quantity Definition

m1 Satellite mass

Nw
1 Number of particles of species w in the satellite

m2 Earth mass

Nw
2 Number of particles of species w in the Earth

M ¼ m1 þm2 Total Earth-satellite mass

�m ¼ m2 �m1 Earth-satellite mass difference

mn Mass of the nth perturbing body

M Sun mass

Nw Number of particles of species w in the Sun

rJ1 Satellite position

rJ2 Earth position

rJ ¼ rJ1 � rJ2 ¼ ðx; y; zÞ Earth-satellite separation, of magnitude r ¼ j~r1 � ~r2j
RJ ¼ ðm1r

J
1 þm2r

J
2Þ=M Position of Newton center of mass for Earth-satellite system

�	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNM=R3

p
Mean Earth orbital frequency

vJ ¼ vJ
1 � vJ

2 ¼ drJ=dT Relative Earth-satellite velocity

VJ ¼ ðm1v
J
1 þm2v

J
2Þ=M Velocity of Newton center of mass for Earth-satellite system
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a J
LV ¼ aJ�aeff ; �c;ES þ aJ�aeff ; �c;tidal þ aJ�s;ES þ aJ�s;tidal: (176)

The first two terms are the ones of interest in the present
work and are discussed below. The last two depend on the
coefficient �s��, with aJ�s;ES arising from the Earth-satellite

system and aJ�s;tidal involving perturbations due to other

bodies. The explicit form of these two quantities is pro-
vided in Ref. [7].
The term aJ�aeff ; �c;ES in Eq. (176) provides the Lorentz-

violating acceleration of the Earth-satellite system from
the matter-gravity couplings ð �aeffÞ� and �c��. It takes the

form

aJ�aeff ; �c;ES ¼
GN

r3
X
w

½�2nw3	ð �aweffÞTrJ � nw1m
wð �cwÞTTrJ þ 2nw7m

w�JKð �cwÞðKLÞrL � 2nw3	ð �aweffÞKVKrJ

� 2nw2	ð �aweffÞK�JKvLr
L þ 2nw2	ð �aweffÞKvKrJ þ 2nw7m

wð �cwÞðTKÞVJrK � 2nw1m
wð �cwÞðTKÞVKrJ

þ 2nw6m
wð �cwÞðTKÞvKrJ þ 2nw7m

w�JKð �cwÞðTKÞVLr
L � 2ðnw6 � 2nw8 Þmw�JKð �cwÞðTKÞvLr

L þ 2nw8m
wð �cwÞðTKÞvJrK�:

(177)

In principle, aJ�aeff ; �c;ES also acquires contributions proportional to R	!, but these are neglected here because they are
typically suppressed compared to effects proportional to VJ and vj.

In Eq. (176), the term aJ�aeff ; �c;tidal contains the Lorentz-violating tidal acceleration involving ð �aeffÞ� and �c��, which arises

from perturbing bodies. When the satellite is taken as theMoon, the dominant tidal contributions are due to the Sun and can
be written

aJ�aeff ; �c;tidal ¼ �2	
X
w

��
Nw
m

�
2	ð �aweffÞT þmwð �cwÞTT

�
� 2

M
nw1	ð �aweffÞT

�
ð3rLR̂LR̂

J � rJÞ þ 2

M
nw4	ð �aweffÞTRJ

� 2
mw

M
nw4�

JKð �cwÞKLRL � 2
mw

M
nw7�

JKð �cwÞðKLÞð3rMR̂MR̂
L � rLÞ � 2

mw

M
½2nw4�JKVLð �cwÞðTKÞ

� 2nw7�
JKvLð �cwÞðTKÞ þ nw4 V

Jð �cwÞðTLÞ � nw7 v
Jð �cwÞðTLÞ�RL þ 4

Nw
m

	ð �aweffÞK�J½KvL�RL

� 4
Nw
m

	ð �aweffÞK
�
�m

M
�J½KvL� þ �J½KVL�

�
ð3rMR̂MR̂L � rLÞ � 2

mw

M
½2nw7�JKVLð �cwÞðTKÞ þ 2nw8�

JKvLð �cwÞðTKÞ

þ nw7 V
Jð �cwÞðTLÞ þ nw8 v

Jð �cwÞðTLÞ�ð3rMR̂MR̂
L � rLÞ

	
: (178)

If instead the satellite is artificial, then there are tidal
effects from both the Sun and the Moon. However,
these are suppressed relative to the Earth-satellite accel-
eration (177).

The Lorentz-violating coordinate accelerations given by
Eqs. (177) and (178) exhibit some interesting features. The
first two terms in Eq. (177) and the first term in Eq. (178)
are composition-dependent scalings of the corresponding
Newton accelerations. These terms are therefore detectable
only by comparison to results obtained using satellites
of different compositions. Also, unlike the contributions
aJ�s;tidal obtained in Ref. [7], here the tidal acceleration (178)

from the Sun on the Moon-Earth system involves non-
trivial WEP violations because the Moon and the Earth
fall differently towards the Sun when the coefficients
ð �aweffÞ� and ð �cwÞ�� are nonzero. It is also interesting to

note that the tidal acceleration (178) contains contributions
at PNO(2) that are independent of rJ and hence are
enhanced at this order relative to other contributions by a
factor of R=r. This too is a consequence of the WEP
violations arising from ð �aeffÞ�. Similar terms appear at

PNO(3) as well.

A typical experiment measures the time of flight for
laser photons to travel from the Earth to a reflector on
the satellite and back. To analyze the results, the laser-
ranging data can be fitted by incorporating Eq. (175) and
other conventional perturbing effects into an appropriate
modeling code. An alternative approach is to perform an
analytical perturbative expansion along the lines of the one
performed for the �s�� contributions in Ref. [7] and then

match to the data. This latter method is adopted in Ref. [4]
to constrain combinations of the coefficients �s��.

In the present context, we can obtain crude estimates of
sensitivities to ð �aweffÞ� and ð �cwÞ�� attainable in lunar laser

ranging via either of these procedures, by using term-by-
term comparison of the accelerations Eqs. (177) and (178)
to the accelerations aJ�s;ES and aJ�s;tidal obtained for the coef-

ficient �s�� in Ref. [7]. With the precision already achieved

in lunar laser ranging [124], we thereby find estimated
sensitivities at parts in 1010 to combinations of ð �cwÞðJKÞ
and �sJK, and parts in 10

6 to various combinations of ð �aweffÞJ,ð �cwÞðTJÞ, and �sTJ. Actual measurements at roughly these

levels can be expected to result from a reanalysis of exist-
ing data. A significant further improvement is likely to be
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possible using data from the Apache Point Observatory
Lunar Laser-Ranging Operation (APOLLO) [125].
Assuming that millimeter ranging is achieved as expected
and disregarding probable substantially improved statis-
tics, we anticipate competitive estimated sensitivities of
10�7 GeV on various combinations of 	ð �aweffÞX and

	ð �aweffÞYþZ, and a sensitivity of 10�7 on ð �cnÞðTJÞ, where
the notation of Eq. (148) is used and the dependence on the
coefficients �s�� has been omitted for simplicity.

Ranging to artificial satellites with orbit orientations
different from that of the Moon can yield sensitivity to
additional independent linear combinations of ð �aweffÞ�
and ð �cwÞ��. Typically, the reach of satellite ranging is

expected to be about an order of magnitude less than lunar
laser ranging. Other possibilities for gravitational tests of
Lorentz violation include ranging to objects orbiting
bodies other than the Earth. For example, the time variation
G�1

N dGN=dt of the Newton gravitational constant has been
constrained by ranging data to the Viking landers on Mars,
to the Mariner 9 spacecraft orbiting Mars, and to other
bodies including the Moon [126]. These studies primarily
seek secular changes in the gravitational force. Although
secular changes in coupling constants can result from
Lorentz violation [127], the signals of interest in the
present context are periodic. Reanalysis of existing data
to seek periodic effects in G�1

N dGN=dt would yield sensi-
tivities to Lorentz violation estimated to be somewhat less
than lunar laser ranging but involving different combina-
tions of ð �aweffÞ� and ð �cwÞ��.

We conclude this subsection with some comments about
the coordinate location RJ of the center of mass of an
Earth-satellite system. Boost invariance normally ensures
this location is fixed, but the presence of Lorentz violation
means it can be time dependent, although the effect may be
unobservable via laser ranging. Neglecting the effects of
other bodies and working at PNO(3), the Lorentz-violating
contributions to the equation of motion for the center of
mass of the Earth-satellite system can be written as the sum

€R J � €RJ
�aeff

þ €RJ
�c þ €RJ

�s (179)

of contributions from ð �aweffÞ�, ð �cwÞ��, and �s�. Explicitly,

we find

€R J
�aeff

¼ X
w

2GNn
w
5�

JK	ð �aweffÞKvLr
L

r3
; (180)

which contains only PNO(3) effects involving the internal
motion of the system. The second term in Eq. (179) is

€RJ
�c ¼

X
w

2GNm1m2m
w

M2r3

�
1

2
nw2 ð �cwÞTTrJ þ nw2�

JKð �cwÞKLr
L

þ �JKð �cwÞðTKÞðnw2 VL þ nw5 vLÞrL þ ð �cwÞðTKÞ
� ðnw2 VK þ nw5 v

KÞrJ þ ð �cwÞðTKÞðnw2 VJ þ nw5 v
JÞrK

�
:

(181)

The first two terms are at PNO(2) and reflect the modifi-
cation of the effective Newton inertial mass in the presence
of nonzero �c��, while the remaining terms are at PNO(3).

The ones proportional to VJ arise as a result of the system
boost in the Sun-centered frame, and those proportional to
vJ are due to the internal motion of the system. The last
term in Eq. (179) is

€RJ
�s ¼

GNm1m2

Mr3
½3�JK �sTKvLr

L � �sTKv
JrK

� �sTKv
KrJ þ 3�sTKr

JvLr̂
Kr̂L�; (182)

which again consists only of PNO(3) effects proportional
to the internal motion of the system. Note that all these
contributions introduce an oscillatory motion for the center
of mass, and their presence is required by momentum
conservation.

B. Perihelion precession

The presence of nonzero coefficients ð �aeffÞ� and �c�� for

Lorentz violation leads to corrections to the motion of a
test body in a gravitational field. These corrections can be
calculated from the equation of motion (78) and from the
expressions for the coefficient and metric fluctuations
given in Sec. IVC. In this subsection, we determine the
effect of nonzero ð �aeffÞ� and �c�� on the perihelion preces-

sion for planetary orbits. We follow the treatment of
Ref. [7], which obtains the perihelion shift arising from
nonzero SME coefficients �s��. Our notation matches that

of Table XII and Eq. (174) in Sec. XA, with the labels 1
and 2 representing the planet and Sun, respectively.
The derivation of the perihelion precession used here

relies on the method of osculating elements [128], in which
the instantaneous motion of the planet is treated as part of
an ellipse. The ellipse is characterized using the standard
Kepler orbital elements, and the motion of the planet is
described by specifying them as a function of time. The
relevant orbital elements in the present case are the angle!
between the line of ascending nodes and the semimajor
axis of the ellipse, the longitude � of the ascending node,
and the inclination i with respect to the ecliptic. These are
specified in the reference coordinate system, which can be
taken as the Sun-centered frame for the planetary orbits
considered here. More generally, the reference frame is
related to the Sun-centered frame by a rotation and possi-
bly a boost, as discussed in Sec. V E 5 of Ref. [7]. The
physical quantity relevant for the perihelion precession is
the change per period �~! of the perihelion angle ~! with
respect to the equinox. In terms of the basic orbital ele-
ments, ~! can be expressed as

~! ¼ !þ�cosi: (183)

For the cases of interest here, the angle i can be assumed
small.
The secular changes in the orbital elements arising from

ð �aeffÞ� and �c�� can be obtained by considering the relative

acceleration of the planet and the Sun, which has the form
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d2rj

dt2
¼ �GN

r3

X
w

½Mþ 2nw3	ð �aweffÞ0rj þ nw1m
wð �cwÞ00rj

� 2�jknw7m
wð �cwÞðklÞrl þ 2nw2	ð �aweffÞk�jkvlr

l

� 2nw2	ð �aweffÞkvkrj � 2nw6m
wð �cwÞð0kÞvkrj

þ 2�jkðnw6 � 2nw8 Þmwð �cwÞð0kÞvlr
l

� 2nw8m
wð �cwÞð0kÞvjrk�: (184)

The unperturbed ellipse is given as the solution ~r0 of the
Kepler-type equation

d2rj0
dt2

¼ �GN

r3
X
w

½Mþ 2nw3	ð �aweffÞ0 þ nw1m
wð �cwÞ00�rj:

(185)

This shows that the frequency n and semimajor axis a of
the unperturbed elliptic motion are related according to

n2a3 ¼ GN

X
w

½Mþ 2nw3	ð �aweffÞ0 þ nw1m
wð �cwÞ00�: (186)

Note that the right-hand side of this expression depends on
the composition of the planet and the Sun.

The orientation of the orbit can be specified using

three unit vectors ~k, ~P, and ~Q. The first is chosen perpen-
dicular to the orbit, the second points from the focus to the
perihelion, and the third completes the orthonormal set.
Their explicit form in terms of orbital elements is given in
Eq. (116) of Ref. [7]. In terms of this basis set, the un-
perturbed elliptical orbit can be expressed as

~r 0 ¼ að1� e2Þ
1þ e cosf

ð ~P cosfþ ~Q sinfÞ; (187)

where e is the eccentricity and f is the true anomaly.
The perturbing acceleration a0j consists of the terms

in Eq. (184) that are absent from Eq. (185),

a 0j ¼ d2rj

dt2
� d2rj0

dt2
: (188)

The time dependence of the orbital elements can be ex-
tracted from this equation via the method of osculating
elements. The general procedure is to insert the unper-
turbed solution (187) for ~r into the expression (188) for
a0j, to project the result as desired, and to integrate over the
true anomaly.

To obtain the perihelion precession, the final results for
the orbital elements ! and� must be combined according
to Eq. (183). After some calculation, we obtain the ex-
pression

�~! ¼ 2�
X
w

�ðe2 � 2�Þ
Me4

nw7m
wðð �cwÞQQ � ð �cwÞPPÞ

� 2naðe2 � �Þ
e3M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ½ðnw6 � 2nw8 Þmwð �cwÞð0QÞ

þ nw2	ð �aweffÞQ�
�

(189)

for the shift in the perihelion per orbit. Here, the subscripts
P and Q on the coefficients for Lorentz violation indicate

projections along the directions ~P and ~Q, respectively.
The quantity � is the eccentricity function, defined by

� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
.

The result (189) reveals that the perihelion precession
depends on the orbit orientation through the projections of

the coefficients ð �aeffÞ� and �c�� along the directions ~P and

~Q. Also, the factors scaling the coefficients in Eq. (189)
vary with the composition of the orbiting body. This means
that the orbits of different planets or, more generally,
different satellites are affected by different linear combi-
nations of coefficients for Lorentz violation. It is therefore
valuable to consider data from multiple systems so that
independent measurements can be obtained.
To illustrate the sensitivities that can be achieved, we

consider explicitly the perihelion precessions of Mercury
and of the Earth. Substituting the relevant orbital data for
the two planets into Eq. (189) in turn, taking the planetary
mass as small compared to the solar mass m, and incor-
porating the results for the coefficients �s�� obtained in

Eq. (190) of Ref. [7], we find the overall perihelion shifts
_~!* of Mercury and _~!	 of the Earth are given in units of arc

seconds per century C by the expressions

_~!* � 7� 10700

C
�s* þ 1� 10800

C

X
w

�
3� 10�3 N

w
m

ð �aweffÞ*

� Nw
*
mw

m*

ð �cwÞ*
�
;

_~!	 � 2� 10700

C
�s	 þ 4� 10700

C

X
w

�
3� 10�2 N

w
m

ð �aweffÞ	

� Nw	mw

m	
ð �cwÞ	

�
: (190)

The combinations of coefficients for Lorentz violation
appearing in these equations are defined as

ð �aweffÞ* ¼ 	ð �aweffÞQ; ð �aweffÞ	 ¼ 	ð �aweffÞQ;
ð �cwÞ* � ½ð �cwÞQQ � ð �cwÞPP� � 6� 10�3ð �cwÞð0QÞ;

ð �cwÞ	 � ½ð �cwÞQQ � ð �cwÞPP� � 5� 10�2ð �cwÞð0QÞ;

�s* � ð �sPP � �sQQÞ � 6� 10�3 �sð0QÞ;

�s	 � ð �sPP � �sQQÞ � 5� 10�2 �sð0QÞ:

(191)

Note that the subscripts P, Q here represent projections
that differ for Mercury and the Earth.
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The chemical composition of the Sun is believed to be
over 70% hydrogen and about 27% helium by mass [129].
The factors in Eq. (190) that depend on the solar compo-
sition can therefore be estimated as Ne=m ¼ Np

=m ’
0:9 GeV�1 andNn=m ’ 0:1 GeV�1. As can be seen from
Eq. (191), these factors suffice for placing approximate
bounds on the coefficients ð �aweffÞ� from knowledge of the

perihelion precessions. The composition of Mercury is
believed to be about 70% iron and about 30% rocky
material [129], so the analogous ratios for Mercury are
roughly Ne

*=m* ¼ Np
*
=m* ’ 0:4 GeV�1 and Nn

* =m* ’
0:6 GeV�1. For the Earth, using Ref. [46] and following
the discussion of Sec. IVA2, we findNe	=m	 ¼ Np

	=m	 �
Nn	=m	 ’ 0:5 GeV�1. However, for the approximate
bounds obtained below on the coefficients �c��, it suffices

that the composition-dependent factors for the planets are
of order 10�1 GeV�1.

We are now in a position to place constraints on some
combinations of the coefficients ð �aweffÞ�, �c��, and �s�� by

adopting the established error bars in the existing data for
perihelion shifts. These error bars are 0:04300C�1 for
Mercury and 0:400C�1 for the Earth [8,130]. Taking the
error bars to be upper bounds on the perihelion shifts in
Eq. (190), we obtain the order-of-magnitude constraints

j�s* þ 10�3½ð �aeeffÞ* þ ð �apeffÞ*� þ 10�4ð �aneffÞ* � 10�4ð �ceÞ*
� 10�1ð �cpÞ* � 10�1ð �cnÞ*j & 10�9 GeV;

j�s	 þ 10�2½ð �aeeffÞ	 þ ð �apeffÞ	� þ 10�3ð �aneffÞ	 � 10�4ð �ceÞ	
� 10�1ð �cpÞ	 � 10�1ð �cnÞ	j & 10�8 GeV: (192)

Assuming a model with nonzero coefficients ð �aweffÞ� only,

this yields the approximate constraints

jð �aeeffÞ* þ ð �apeffÞ* þ 0:1ð �aneffÞ*j & 10�6 GeV;

jð �aeeffÞ	 þ ð �apeffÞ	 þ 0:1ð �aneffÞ	j & 10�6 GeV:
(193)

Similarly, assuming a model with nonzero coefficients
ð �cwÞ�� only and making use of existing limits on �c�� for

protons and electrons [2], we obtain the approximate con-
straints

jð �cnÞ*j & 10�8; jð �cnÞ	j & 10�7: (194)

A careful reanalysis of the existing data for multiple bodies
in the solar system could yield sharper sensitivities.

The result (193) represents first constraints on the
spatial coefficients 	ð �aweffÞJ. A sense of the maximal

attained sensitivity to the nine components in 	ð �aweffÞJ
can be obtained by taking each component in turn to be the
only nonzero one. Extracting these sensitivities requires

the explicit form of the vectors ~Q* and ~Q	. The relevant

orbital elements in heliocentric coordinates are !* ’ 29�,
�* ’ 48�, i* ’ 7� and !	 ’ 103�, �	 ¼ 0�, i	 ¼ 0�.
Converting to the Sun-centered frame using a counter-
clockwise rotation by � ’ 23:5� about the X axis yields

~Q * ’ �0:97eX þ 0:15eY þ 0:18eZ;

~Q	 ’ �0:97eX � 0:21eY � 0:10eZ:
(195)

Taking each component 	ð �aweffÞJ as the only nonzero coef-

ficient in turn yields the order-of-magnitude sensitivities

j	ð �aeeffÞXj & 10�6 GeV;

j	ð �aeeffÞYj; j	ð �aeeffÞZj & 10�5 GeV;

j	ð �apeffÞXj & 10�6GeV;

j	ð �apeffÞYj; j	ð �apeffÞZj & 10�5 GeV;

j	ð �aneffÞXj & 10�5 GeV;

j	ð �aneffÞYj; j	ð �aneffÞZj & 10�4 GeV:

(196)

These results are the maximal sensitivities achieved to date
on the coefficients 	ð �aweffÞJ.

XI. PHOTON TESTS

In this penultimate section, we consider searches for
gravitational Lorentz violation involving the trajectories
of photons. With the coordinate choice (23) adopted in this
work, photons follow null geodesics. The signals of inter-
est therefore arise from the modifications to the metric,
which are associated with Lorentz-violating matter-gravity
couplings of the source body and in certain cases also of
the clocks and rods used for measurements.
Photon tests for Lorentz violation involving the coeffi-

cients �s�� in the pure-gravity sector of the SME have been

studied in Refs. [7,131]. Here, this analysis is extended to
include the matter-sector coefficients ð �aweffÞ� and ð �cwÞ��.

The treatment and notation of Ref. [131] is adopted where
possible. Some quantities relevant for the analysis are
listed in Table XIII.
In what follows, we consider various effects on a light

signal as it travels from an emission event E to a spacetime
point P located near a massive body. The light path can be
specified parametrically as x� ¼ x�ð�Þ, where � is the
path parameter. The wave 4-vector p� of the ray tangent
to the path is

p� ¼ dx�

d�
; (197)

and it obeys the conditions

dx�

d�
¼ ���

	
p
	p
; p�p�g�� ¼ 0: (198)

The wave 4-vector can be linearized as

p� ¼ �p� þ �p�; (199)

where the first term is the zeroth-order wave vector and the
second term contains gravitational corrections. Our interest
here lies in the O(1,1) contributions to �p�. The basic
procedure is to insert the modifications (84) and (88) of the
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metric arising from matter-sector effects into the general
expressions obtained in Ref. [131]. We consider in turn
Lorentz-violating contributions to the Shapiro time delay,
to the gravitational Doppler shift, to the gravitational red-
shift, and to the null redshift, and we compare the results to
the effective mass of a gravitational source as measured by
orbital tests. We also offer some comments about the
implications of the results for various experiments.

A. Shapiro time delay

In this subsection, we obtain the Lorentz-violating mod-
ifications to the Shapiro time delay of a light signal as it
passes from a source to a detector in the presence of a
massive body such as the Sun. The one-way time delay
tP � tE can be determined by integrating �p� along the
path and applying the null condition,

tP � tE ¼ Rþ 1

2

Z lP

�lE

h�� �p
� �p�d�: (200)

Inserting the Lorentz-violating metric modifications (84)
and (88) and integrating, we find the delay can be written in
the form

tP � tE ¼ Rþ ðtP � tEÞGR þ ðtP � tEÞ �aeff ; �c þ ðtP � tEÞ�s:
(201)

Here, R is the zeroth-order time difference. The second
term is the standard GR contribution, which at O(0,1) and
PNO(2) takes the form

ðtP � tEÞGR ¼ 2GNm
S ln

�
rE þ rP þ R

rE þ rP � R

�
: (202)

The third term of Eq. (201) consists of contributions from
Lorentz-violating matter-gravity couplings associated with
the source body S. At O(1,1) and PNO(2), these contribu-
tions are

ðtP � tEÞ �aeff ; �c ¼ 2GNm
S

�
	

mS
ð �aSeffÞ0 þ

	

mS
ð �aSeffÞjR̂j þð �cSÞ00

�

� ln

�
rE þ rP þR

rE þ rP �R

�
�GN	ðð �aSeffÞ0

þð �aSeffÞjR̂jÞ
�
lE
rE

þ lP
rP

�

�GN	ð �aSeffÞkbk
�
rE � rP
rErP

�
: (203)

The final term in Eq. (201) arises from gravitational
Lorentz violation involving the coefficient �s�� and is given

in Ref. [131].
In typical time-delay measurements, an observer emits a

light signal at E that is reflected at the spacetime point P
and subsequently detected by the observer at E0. The
round-trip coordinate travel time �t, which is related to
the measured proper time��E by the factor d�E=dt, can be
written to O(1,1) and PNO(2) as

�t¼ 2Rð1þv2 � ~v � R̂Þþ ð�tÞGR þð�tÞ �aeff ; �cþð�tÞ�s:
(204)

The zeroth-order term in this expression incorporates
Lorentz-violating corrections to the trajectory of the
emitter, which here can depend on particle species. These
can in principle be determined by modeling the relevant
orbits along the lines of the treatment in Sec. X and
Ref. [7]. The second term in Eq. (204) contains the leading
GR corrections,

�tGR ¼ 4GNm
S ln

�
rE þ rP þ R

rE þ rP � R

�
: (205)

The third term in Eq. (204) contains the leading contribu-
tions from nonzero ð �aeffÞ� and �c��,

�t �aeff ; �c ¼ 4GNm
S

�
	

mS
ð �aSeffÞ0 þ ð �cSÞ00

�
ln

�
rE þ rP þ R

rE þ rP � R

�

� 2GN	ð �aSeffÞ0
�
lE
rE

þ lP
rP

�
: (206)

The last term of Eq. (204) contains corrections involving
the coefficient �s�� and is given in Ref. [131]. Note that

contributions from the coefficients ð �aeffÞj and �s0j cancel in

the round-trip expression, a result that can be traced to the
parity-odd nature of the corresponding Lorentz-violating
operators. Note also that the time-delay signal changes
over two relevant time scales, the conjunction time b=v
and the typically longer orbital time r=v, which enables
separation of the zeroth-order and gravitational effects.
The dominant Lorentz-violating corrections to �t are

proportional to the logarithm in Eq. (206). The primary

TABLE XIII. Notation for photon tests.

Quantity Definition

x
�
E ¼ ðtE; ~rEÞ Coordinates of event E
rE Magnitude of ~rE
x
�
P ¼ ðtP; ~rPÞ Coordinates of event P
rP Magnitude of ~rP
~R ¼ ~rP � ~rE Zeroth-order light trajectory

R̂ ¼ ~R=R Unit vector along ~R
R ¼ j ~Rj Magnitude of ~R
bj ¼ rjP � R̂j ~rP � R̂ Impact-parameter vector

b Magnitude of ~b
mS Mass of source body

lP ¼ ~rP � R̂ � at P
�lE ¼ ~rE � R̂ � at E
�E Proper time of E
�P Proper time of P
u
�
E ¼ dx

�
E=d�E 4-velocity of E

u
�
P ¼ dx

�
P=d�P 4-velocity of P

~v ¼ d~rE=dt 3-velocity of E
~w ¼ d~rP=dt 3-velocity of P
�E Frequency at E
�P Frequency at P
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effect of the Lorentz-violating matter-gravity couplings is
therefore to scale the factor of GNm

S in the usual GR time
delay (205). The scaling can be interpreted as an effective
value ðGNMÞTD for the source body relevant for time-delay
tests,

ðGNMÞTD ¼ GNm
S

�
1þ 	

mS
ð �aSeffÞ0 þ ð �cSÞ00 þ �s00

�
:

(207)

This scaling is unobservable in time-delay tests alone.
However, we show in what follows that other tests can
yield different effective values of GNm

S, so suitable com-
parisons can reveal signals for Lorentz violation. This
prospect is considered in Sec. XI E below.

B. Gravitational Doppler shift

When light passes near a massive body, it suffers a
frequency shift as well as a time delay. In this and the
subsequent subsections, we consider the corrections to the
frequency shift due to the matter-sector coefficients ð �aeffÞ�
and �c��.

The relevant quantity is the ratio of frequencies observed
at the two events E and P,

�P

�E
¼ ðu�p�ÞP

ðu�p�ÞE : (208)

At PNO(3), this can be written as

�P

�E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

1� w2

s �
1� ~w � R̂
1� ~v � R̂

��
1þ

�
�P

�E

�
g

�
: (209)

Here, the term labeled g contains gravitational effects
involving both the Doppler shift and the redshift,�

�P

�E

�
g
¼

�
�P

�E

�
DS

þ
�
�P

�E

�
RS
: (210)

This subsection treats the gravitational Doppler shift, while
the redshift effects are discussed in the next subsection.

Corrections to the gravitational Doppler shift ð�P=�EÞDS
depending on the coefficients ð �aeffÞ�, �c��, and �s�� can be

obtained by inserting into Eq. (31) of Ref. [131] the
modifications to the metric from Eqs. (84) and (88), along
with those due to �s�� given in Ref. [7]. Near conjunction,

we find that the dominant effects take the form

�
�P

�E

�
DS

� 4GNm
S

b

�
1þ 	

mS
ð �aSeffÞ0 þ

	

mS
ð �aSeffÞjR̂j

þ ð �cSÞ00
�
db

dt
þ

�
�P

�E

�
DS;�s

; (211)

where the last term contains the contributions from �s��

found in Ref. [131].

Typical searches measure the round-trip frequency shift,

�
��

�

�
DS

¼ 8GNm
S

b

�
1þ 	

mS
ð �aSeffÞ0þð �cSÞ00

�
db

dt
þ
�
��

�

�
DS;�s

:

(212)

Note that the effects from parity-odd operators again can-
cel. The coefficients ð �aeffÞ0, �c00, and �s00 associated with
isotropic Lorentz violation in the chosen inertial frame act
to scale the factor GNm

S in the usual expression for the
gravitational Doppler shift, leading to an effective value
ðGNMÞDS given by

ðGNMÞDS ¼ GNm
S

�
1þ 	

mS
ð �aSeffÞ0 þ ð �cSÞ00 þ �s00

�
:

(213)

The scaling (213) is unobservable in Doppler-shift tests
alone. This result for ðGNMÞDS is identical in form to that
of the time-delay value ðGNMÞTD in Eq. (207).

C. Gravitational redshift

The Lorentz-violating contributions to the term
ð�P=�EÞRS in Eq. (210) for the gravitational redshift can
be viewed as subdominant to the time delay or Doppler
shift because they occur at the slow time scale. However, in
dedicated redshift measurements, the Lorentz-violating
gravitational redshift can appear as the dominant effect.
In this subsection, we discuss Lorentz-violating modifica-
tions to the usual gravitational redshift and effects in null-
redshift tests.
To place in context the results in this subsection, we note

that clocks can be used to perform three distinct types of
gravitational tests that are often convolved in the literature
under the term ‘‘redshift tests.’’ The first type, which
measures the traditional gravitational redshift, involves
two clocks held at different gravitational potentials whose
frequency is compared using light or some other signal
passing between them. This type of test is discussed in
Sec. XIC 1 below. The second type of test is called a null-
redshift test, and it involves monitoring the frequencies of
two clocks of different composition as they move together
through the gravitational potential. This is discussed in
Sec. XIC 2. The third kind of test involves synchronizing
two clocks and then moving one of them around a closed
path in the gravitational potential. The signal in this case is
the accumulated phase difference between the clocks. An
example of this ‘‘twin-paradox’’ redshift test is the free-fall
gravimeter measurement with interferometers discussed in
Sec. VII D. These three kinds of tests produce related
signals in GR. However, they can yield distinct sensitivities
in a more general context such as the SME, as is demon-
strated in what follows.
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1. Modified redshift

The term ð�P=�EÞRS in Eq. (210) for the gravitational
redshift can be understood as the product�

�P

�E

�
RS

¼
�
dt

d�P

��
d�E
dt

�
; (214)

of the factors relating proper and coordinate times for the
clocks at the two points E and P. Each factor is determined
by the dispersion relation for the corresponding clock,
which depends on coefficients for Lorentz violation via
its material composition and on the Lorentz violation
associated with the gravitational field.

For simplicity in what follows, we assume the sending
and receiving clocks are identical. This eliminates the
need to consider O(1,0) effects, which have been sought
in numerous clock-comparison experiments performed
with both clocks at the same gravitational potential [2].
To the order at which we work, the redshift can then be
expanded as�

�P

�E

�
RS

¼
�
�P

�E

�ð0;1Þ
RS

þ
�
�P

�E

�ð1;1ÞS
RS

þ
�
�P

�E

�ð1;1ÞT
RS

; (215)

where the term at O(0,1) is the conventional redshift, the
term at O(1,1) labeled by S contains Lorentz-violating
corrections from the gravitational source, and the last
term labeled by T involves O(1,1) contributions from
the clocks. For our present purposes, it suffices to work
at PNO(2).

For an ideal clock, the Lorentz-violating contributions to
the first two terms in Eq. (215) can be calculated by
inserting into the usual redshift equation the modifications
(84) and (88) to the metric from the coefficients ð �aeffÞ� and

�c��, along with the corrections from Ref. [7] involving the

coefficients �s��. This gives

�
�P

�E

�ð0;1Þ
RS

þ
�
�P

�E

�ð1;1ÞS
RS

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðhð0;1Þ00 ÞE � ðhð1;1Þ00 ÞE
1� ðhð0;1Þ00 ÞP � ðhð1;1Þ00 ÞP

vuut :

(216)

Expanding to PNO(2) and keeping leading-order terms in
Lorentz violation, we obtain the conventional PNO(2)
result, �

�P

�E

�ð0;1Þ
RS

¼ GNm
S

�
re � rp
rerp

�
;

together with the correction�
�P

�E

�ð1;1ÞS
RS

¼ GNm
S

�
2	

mS
ð �aSeffÞ0 þ ð �cSÞ00

��
re � rp
rerp

�

þ
�
�P

�E

�
RS;�s

: (217)

The last term contains the contributions from �s�� given

in Ref. [131].

For the remaining term in Eq. (215), the situation is
more complicated because the clock frequency must be
calculated directly and typically depends on the structure
and composition of the clock. Moreover, although our
interest is at O(1,1), all three of the perturbative contribu-
tions O(1,0), O(0,1), O(1,1) must be treated due to the
appearance of cross terms in the calculation. For conve-
nience, we can express the last term in Eq. (215) in the
form �

�P

�E

�ð1;1ÞT
RS

¼ GNm
S�clock

�
re � rp
rerp

�
; (218)

where �clock is a function of the coefficients for Lorentz
violation associated with the clock. If the clock’s ticking
rate is set by its inertial properties, as is the case for most
atomic clocks, then �clock can be expected to depend on the
coefficients ð �cwÞ��. If the clock’s ticking rate depends

intrinsically on the local gravitational acceleration, as oc-
curs for a pendulum clock, then �clock can be expected to
depend on the coefficients ð �aweffÞ�. In general, the value of

�clock can depend on both sets of coefficients,

�clock ¼ �clockðð �aweffÞ�; ð �cwÞ��Þ: (219)

The key point is that different clocks have different �clock

according to the details of their construction and flavor
content.
Combining the above results, we see that the dominant

Lorentz-violating effects for the gravitational redshift can
be represented as an effective value ðGNMÞRS implement-
ing a scaling of GNm

S, in parallel with the results for the
time delay and the gravitational Doppler shift. We obtain

ðGNMÞRS¼GNm
S

�
1þ2	

mS
ð �aSeffÞ0þð �cSÞ00þ5

3
�s00þ�clock

�
:

(220)

This represents an unobservable scaling in any particular
redshift test, but comparing redshift tests performed with
different clocks could yield access to differences in �clock.
Moreover, the result for ðGNMÞRS differs from both the
time-delay value ðGNMÞTD in Eq. (207) and the Doppler-
shift value ðGNMÞDS in Eq. (213), so comparing results
from different tests could yield independent sensitivities to
ð �aSeffÞ0 that are inaccessible in other searches with ordinary
matter. This prospect is considered in Sec. XI E.
We remark in passing that for certain special models the

observable redshift effects in ðGNMÞRS may be hidden in
WEP tests. A simple example is provided by the isotropic
parachute model discussed in Sec. IXB. By virtue of
Eq. (169), the effective inertial and gravitational masses
in this model are equal for a test body made of ordinary
matter, so no signals are observable in WEP tests.
However, the presence of nonzero ð �cwÞ�� implies a non-

zero rescaling of ðGNMÞRS, which is observable by com-
paring to ðGNMÞTD or ðGNMÞDS. Signals from this model
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could also arise in the null-redshift tests discussed in
Sec. XI C 2 below.

We conclude this subsection with an illustrative calcu-
lation of �clock for a simplified clock based on transitions
between the Bohr levels of hydrogen, for which we deter-

mine ð�P=�EÞð1;1ÞTRS and �clock � �H;Bohr assuming both the

clocks and the gravitational source are at rest. This calcu-
lation is straightforward due to the spherical symmetry and
the zero velocity, and also because a simple match exists

between the zeroth-order Hamiltonian hð0;0Þ and the kinetic
contributions to the sum hð1;0Þ þ hð0;1Þ þ hð1;1Þ of the per-
turbative corrections presented in Sec. III C. By matching
these expressions, we find that the kinetic portion of the
Hamiltonian in the presence of gravity and Lorentz viola-
tion can be obtained from the zeroth-order one by the
following simple replacements for the proton and electron
mass:

1

mp
! 1

mp

�
1� 3

2
h00 þ 5

3
ð �cpÞ00 þ 13

6
ð �cpÞ00h00

�
;

1

me !
1

me

�
1� 3

2
h00 þ 5

3
ð �ceÞ00 þ 13

6
ð �ceÞ00h00

�
:

(221)

Also, the source term in the Maxwell equations is corrected
by the vierbein determinant e, and the result can be ob-
tained by a simple replacement for the proton charge,

qp ! qp

e
� qpð1� h00Þ: (222)

It follows that the calculation of interest can be directly
performed by implementing the above replacements in the
standard result for the Bohr energy levels. This yields

E ! E

�
1� 1

2
h00 þ 1

mp þme ½mpð �ceÞ00 þmeð �cpÞ00�

�
�
5

3
� 1

2
h00

��
: (223)

The modification (218) to the gravitational redshift is
therefore given by

�
�P

�E

�ð1;1ÞT
RS

¼ � 2GNm
S

3ðmp þmeÞ ðm
pð �ceÞ00

þmeð �cpÞ00Þ
�
re � rp
rerp

�
(224)

when the clock transitions are those of the Bohr levels of
hydrogen. This implies the result

�H;Bohr ¼ � 2

3ðmp þmeÞ ðm
pð �ceÞ00 þmeð �cpÞ00Þ: (225)

The value of �clock for a realistic clock can be obtained via
calculation if the Hamiltonian describing the clock is
known.

2. Null redshift

Another Lorentz-violating signal can be accessed by
comparing two clocks of different types as they explore
the gravitational potential together. This type of measure-
ment is called a null-redshift test [132].
Consider comparing the frequencies of two clocks A and

B having different values �clock ¼ �A and �clock ¼ �B that
are located at a point P with gravitational potential hP00.
The frequency ratio is given by

�
�A

�B

�
P ¼

�
1þ 1

2
ð�A � �BÞhP00

��
�ð0Þ
A

�ð0Þ
B

�
; (226)

where the superscript (0) denotes a frequency at a hypo-
thetical zero gravitational potential h�� ¼ 0. This fre-

quency ratio depends inseparably on the potential hP00 at

point P and the ratio in zero potential.
When the same two clocks are moved to a point Q

at potential hQ00, the frequency ratio takes a new value. If

the values �A and �B differ, then so do the frequency ratios
at P and Q. The ratio of frequency ratios then shifts away
from 1 and is given by�

�A

�B

�
P
�
�B

�A

�
Q ¼ 1� 1

2
ð�A � �BÞðhQ00 � hP00Þ: (227)

The shift is an observable, and it depends on the difference
��AB ¼ �A � �B and also on the potential difference be-
tween P and Q.
For a gravitational source with h00 ¼ 2GNm

S=r at
PNO(2), we obtain�

�A

�B

�
P
�
�B

�A

�
Q ¼ 1�GNm

S��AB

ðrP � rQÞ
rPrQ

: (228)

Unlike the other Lorentz-violating photon effects dis-
cussed here, all of which represent scalings of GNm

S,
this result is a qualitative change from conventional grav-
ity. It is also strictly a gravitational effect, vanishing in
Minkowski spacetime.
Since the shift varies with spacetime position, it exhibits

features analogous to violations of local position invari-
ance, which have been the subject of numerous studies [8].
In the present case, these features arise from the Lorentz-
violating flavor dependence of the clock material. Note
also that the observable (228) contains the same informa-
tion as the result of two separate redshift tests performed
with different clocks but the same gravitational source.
This can be verified by inspection of the effective value
ðGNMÞRS in Eq. (220). Some relevant experiments are
described in Sec. XI E.

D. Comparison to effective orbital mass

The preceding subsections reveal that the Lorentz-
violating contributions to the Shapiro time delay, the gravi-
tational Doppler shift, and the gravitational redshift are all
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controlled by the effective value of GNM for the gravita-
tional source. In the context of the solar-system tests dis-
cussed in Sec. X, rescalings of GNM also occur but can be
disregarded as unobservable. Here, we determine the ef-
fective value of GNM relevant to observations of orbiting
bodies, ðGNMÞOB.

For Lorentz violation involving the coefficients ð �aeffÞ�
and �c��, the secular changes in the orbital elements for the

trajectory of an orbiting body are given by Eq. (184). The
analogous result for the coefficients �s�� is given in

Eq. (162) of Ref. [7]. Inspecting these equations, we can
deduce the effective reduced mass of the source and test
bodies and hence extract the effective value ðGNMÞOB.
Making no additional assumptions about the masses of
the source and test bodies, we find

ðGNMÞOB ¼GNM

�
1þ2	

mS
ð �aSeffÞ0þ

2	

mT
ð �aTeffÞ0þ

5

3
�s00

þmS� 2
3m

T

M
ð �cSÞ00þ

mT� 2
3m

S

M
ð �cTÞ00

�
: (229)

To obtain an expression that is more readily comparable
to the effective values of ðGNMÞ measured in photon tests,
we note that mT � mS under typical circumstances. The
above result then reduces to

ðGNMÞOB ¼ GNm
S

�
1þ 2	

mS
ð �aSeffÞ0 þ ð �cSÞ00 þ 5

3
�s00

þ 2	

mT
ð �aTeffÞ0 �

2

3
ð �cTÞ00

�
: (230)

This expression for ðGNMÞOB contains a linear combina-
tion of coefficients for Lorentz violation that is indepen-
dent of the three combinations ðGNMÞTD, ðGNMÞDS, and
ðGNMÞRS obtained for photon tests. Some comments about
tests with this result are provided in the next subsection.

E. Experiments

The above subsections show that each type of photon
test of Lorentz symmetry is sensitive to an effective value
of GNM that contains a combination of coefficients for
Lorentz violation. The time-delay value ðGNMÞTD is given
by Eq. (207), and it depends on the coefficients 	ð �aSeffÞ0,ð �cSÞ00, and �s00. The gravitational Doppler shift involves the
value ðGNMÞDS in Eq. (213) and involves the same combi-
nation of the three coefficients. The value ðGNMÞRS for the
gravitational redshift is given by Eq. (220), which contains
a different combination of coefficients and varies also
with �clock. All three of these photon tests yield sensitivities
differing from those in orbital tests, which involve the
value ðGNMÞOB in Eq. (230) that depends also on the
test-body coefficients 	ð �aTeffÞ0 and ð �cTÞ00. Note that no

qualitatively new signals are involved in any of these cases,
since the effects are merely scalings of established physics.
In contrast, the null-redshift observable given in Eq. (227),
which depends on the difference of clock quantities ��AB,

represents a qualitative departure from conventional gravi-
tational physics.
Comparisons of the time-delay value ðGNMÞTD or the

Doppler-shift value ðGNMÞDS to the redshift value
ðGNMÞRS for the same source body can be used to obtain
sensitivity to combinations of coefficients for Lorentz vio-
lation. High-quality data for the time delay and the gravi-
tational Doppler shift have been obtained by tracking the
Cassini spacecraft [133] in the gravitational field of the
Sun. Proposed missions such as the Astrodynamical Space
Test of Relativity Using Optical Devices (ASTROD) [134],
the Mercury Orbiter Radio-Science Experiment (MORE)
[135], the Search for Anomalous Gravitation Using
Atomic Sensors (SAGAS) [136], and the Solar System
Odyssey (SSO) [137] have the potential to improve these
measurements using the Sun as the gravitational source,
while the Beyond Einstein Advanced Coherent Optical
Network (BEACON) [138] could sharpen results using
the Earth as the gravitational source. Another relevant
recent proposal involves the use of very-long-baseline
interferometry (VLBI) [139] to measure the deflection of
radio waves from distant sources by solar-system objects.
The sensitivity of this measurement to Lorentz violation is
likely to be comparatively weaker but may be offset by the
enhanced access to independent coefficient combinations
offered by multiple measurements and perhaps by access to
anisotropic effects involving spatial components of �s��.

Redshift tests permit sensitivities to effects controlled by
�clock. These can be isolated either by comparing separate
redshift tests performed with different clocks in the same
gravitational source or more directly by null-redshift tests,
in which the signal depends on the difference ��AB be-
tween two clocks A, B and vanishes in the absence of
gravity. The results of some investigations of local position
invariance can be reinterpreted as measurements of ��AB.
For example, a recent Earth-based test comparing a hydro-
gen maser with a Cs fountain [140] obtained a sensitivity
that corresponds to the bound

j�H � �Csj< ð0:1� 1:4Þ � 10�6; (231)

while another comparing a hydrogen maser with a cryo-
genic sapphire oscillator [141] yields the measurement

�H � �CSO ¼ ð�2:7� 1:4Þ � 10�4: (232)

These results offer a benchmark for currently attainable
sensitivities to �clock. The two experiments involve differ-
ent clocks and hence likely different sensitivities to the
coefficients ð �cwÞ��. Calculating the specific constraints on

ð �cwÞ�� and possibly other coefficients for Lorentz violation

from these and other tests is an interesting open project.
Note that Earth-based searches of this type typically
take advantage of the annual and diurnal variations in
the gravitational potential of the Sun as experienced in
the laboratory. In searches using the annual variation,
it is challenging and perhaps impossible to disentangle

V. ALAN KOSTELECKÝ AND JAY D. TASSON PHYSICAL REVIEW D 83, 016013 (2011)

016013-52



gravitational effects of nonzero �clock from other Lorentz-
violating effects in Minkowski spacetime. However,
diurnal searches can distinguish the two types of effects
because the Minkowski-spacetime signals occur at the
sidereal frequency instead. Note also that other clock-
comparison tests normally viewed as sensitive to SME
coefficients in Minkowski spacetime may also have sensi-
tivity to �clock. One intriguing possibility is that suitable
choices of clocks could separate effects from ð �ceÞTT and
ð �cpÞTT , which would then lead to independent sensitivities
to ð �aeeffÞT and ð �apeffÞT , a result otherwise challenging to

achieve.
Satellites carrying two different clocks offer interesting

prospects for improved null-redshift searches for Lorentz
violation. Since the attainable sensitivities improve
with the gravitational potential difference according to
Eq. (227), it is desirable to acquire elliptical orbits. The
Space-Time Asymmetry Research (STAR) program [142]
presently under development proposes to compare two
different clocks on a satellite traveling in an elliptical orbit.
This mission could improve sensitivities to �clock by an
order of magnitude or more relative to ground-based tests.
Improved sensitivities may also be possible by comparing
clocks aboard the proposed SAGAS spacecraft. Note also
that experiments in highly elliptical orbits can be expected
to have increased sensitivity to anisotropic effects on the
redshift produced by �sJK.

Provided effects due to �clock are excluded, either
through independent experiments or by using a clock
with �clock ¼ 0, then the dependence of ðGNMÞRS on
ð �aSeffÞT implies that measurements of the gravitational red-

shift can be compared with other photon tests performed
with the same gravity source to obtain independent sensi-
tivities to ð �aweffÞT . The Gravity Probe A (GPA) mission

[143], which used the Earth as the gravity source, con-
firmed the conventional gravitational redshift to parts in
104. This result could eventually be combined with pro-
posed time-delay or Doppler-shift measurements of the
BEACON type to yield sensitivity to the coefficient
ð �aSeffÞT for the Earth. Improved tests of the gravitational

redshift are also proposed for the Atomic Clock Ensemble
in Space (ACES) [144], SAGAS, and STAR missions.
With the Sun as the gravity source instead, the Galileo
space probe obtained sensitivity to deviations for the gravi-
tational redshift at the level of parts in 102 [145]. Given
knowledge of �clock for the Galileo clock, this result could
be combined with the Cassini results to yield sensitivity to
the coefficient ð �aSeffÞT for the Sun. If feasible, a redshift test

performed directly with Cassini would be of interest in
this respect. Other gravitational sources could also be used.
For example, the gravitational redshift was measured to
parts in 102 using Saturn as the source during the flyby of
Voyager [146]. Time-delay or Doppler-shift data could
therefore permit sensitivity to the coefficient ð �aeffÞT for
Saturn.

Combinations of photon tests with measurements of the
effective orbital mass are also of interest. In the limit of
zero matter-sector Lorentz violation, the result (230) for
ðGNMÞOB has been combined with Eq. (207) for ðGNMÞTD
to extract sensitivity to �sTT [131]. However, with nonzero
coefficients ð �aeffÞ� and �c��, the effective value ðGNMÞOB
involves properties of the test body as well as the source.
Note that these appear in the familiar combination
	ð �aTeffÞT �mTð �cTÞTT=3 discussed in Secs. VII and IXB.

TheWEP tests considered in this work constrain the degree
to which this combination can differ between neutrons and
neutral combinations of electrons and protons, but only
through the indirect arguments involving binding energy
described in Sec. VIB. In contrast, comparing GNM fac-
tors for measurements with orbiting bodies and for photon
tests offers the opportunity to obtain direct sensitivity to

	ð �aneffÞT �mTð �cnÞTT=3 and 	ð �aeþp
eff ÞT �mTð �ceþpÞTT=3.

Comparisons with sensitive gravimeters may also be of
interest in this respect.
We remark in passing that proposed sensitive experi-

ments to measure gravitational light bending, including the
Laser Astrometric Test of Relativity (LATOR) [147] and
the Space InterferometryMission (SIM) [148], are likely to
have signals affected by Lorentz violation. The attainable
sensitivities can be expected to be similar to those dis-
cussed above, but the analysis of this possibility lies be-
yond our present scope.

XII. SUMMARY

This work studies the gravitational couplings of matter
in the presence of Lorentz violation. The framework for the
investigation is the fermion sector of the gravitationally
coupled minimal SME in a post-Newtonian expansion. Our
primary goal is to develop a suitable methodology for
searches for Lorentz and CPT violation that exploit the
couplings of matter to gravity, incorporating, in particular,
effects that are challenging or impossible to detect in
Minkowski spacetime.
Section II presents the basic formalism for the work. The

action for the gravity-matter system is given in Sec. II A,
and the linearization procedure is outlined in Sec. II B.
Some types of Lorentz violation are unobservable in prin-
ciple. This issue is discussed in Sec. II C, which also fixes
the coordinate choice (23) used in this work. The metric
and coefficient fields for Lorentz violation can fluctuate
about their background values, and the corresponding in-
teractions must be incorporated in analyses of experiments.
In Sec. II D, we develop general perturbative techniques to
analyze these fluctuations. Two notions of perturbative
order are introduced. One is denoted Oðm; nÞ and tracks
the orders in Lorentz violation and in gravity, while the
other is denoted PNOðpÞ and tracks the post-Newtonian
order. The goal of this work is to investigate dominant
terms involving Lorentz violation in gravity, which are
at O(1,1).
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Section III studies the quantum theory of the gravity-
matter system. Starting from the field-theoretic action, we
construct the relativistic quantum mechanics in the pres-
ence of gravitational fluctuations and Lorentz violation.
Formulating the quantum theory for matter in the presence
of gravitational fluctuations is a standard challenge. In
Sec. III A, we present a solution to this problem via a field
redefinition, which yields a Hamiltonian that is Hermitian
with respect to the usual scalar product for wave functions.
We then use this procedure in Sec. III B to extract the
explicit form of the relativistic Hamiltonian involving all
coefficients for Lorentz violation in the minimal QED
extension. The result forms the appropriate starting point
for general investigations of Lorentz and CPT violation in
matter-gravity couplings. To maintain a reasonable scope
in this work, we subsequently specialize our focus to
the study of spin-independent Lorentz-violating effects,
which are governed by the coefficient fields ðaeffÞ�, c��

and the metric fluctuation h��. The nonrelativistic quan-

tum Hamiltonian for this case is obtained in Sec. III C
using the standard Foldy-Wouthuysen procedure.

Measurements of gravity-matter couplings typically are
performed at the classical level. Section IV constructs the
classical theory associated with the quantum-mechanical
dynamics of matter involving nonzero ðaeffÞ�, c��, and

h��. The behavior of test and source bodies in the presence

of Lorentz violation is the subject of Sec. IVA. Working
from the action for a point particle, we provide expressions
for the mass and for the effective coefficients for Lorentz
violation for a test or source body, along with the effective
action (76) describing the dynamics of the body. These
results enable the derivation in Sec. IVB of the modified
Einstein equation and the equation (78) for the trajectory of
a test particle. To apply this equation in practice requires
knowledge of the coefficient and metric fluctuations. In
Sec. IVC, we develop a systematic methodology for cal-
culating this information in perturbation theory and obtain
general expressions for the coefficient and metric fluctua-
tions to O(1,1) in terms of various gravitational potentials
and the background coefficient values ð �aeffÞ� and �c��.

To illustrate the application of the general formalism, we
consider in Sec. V a specific class of bumblebee models,
which are theories with a vector field driving spontaneous
Lorentz breaking. The action for the bumblebee field B� is

given in Sec. VA, where a match at the field-theoretic level
to the general formalism of earlier sections is made and the
coefficient fields ðaeffÞ� and c�� are identified in terms of

B� and the metric. In Sec. VB, we explicitly solve the

model at the relevant order in perturbation theory, extract
the modified Einstein equation, and derive the equation for
the trajectory of a test particle. The results are shown to
match those obtained using the general formalism devel-
oped in the earlier sections.

The largest portion of the paper is devoted to a discus-
sion of experiments and observations that can achieve

sensitivity to the coefficients ð �aeffÞ� and �c��. Section VI

presents some general material broadly applicable to
searches for Lorentz violation. Various choices of refer-
ence frame and their relationship to the canonical Sun-
centered frame are discussed in Sec. VIA. Attainable
sensitivities to the coefficients ð �aeffÞ� and �c�� in any

measurement procedure are constrained by certain generic
features. Section VIB considers some of these, including
the role of binding energy in impeding or aiding the
analysis of WEP tests for signals of Lorentz violation.
A major class of searches for Lorentz violation involves

laboratory tests with ordinary neutral bulk matter, neutral
atoms, and neutrons. Section VII treats this topic. The
PNO(3) Lagrangian describing the dynamics of a test
body moving near the surface of the Earth in the presence
of Lorentz violation is considered in Sec. VII A.
Expressions are given in an Earth-centered frame and the
transformation to the laboratory frame is outlined. The
resulting description of laboratory signals for gravitational
Lorentz violation includes effects from the matter-sector
coefficients ð �aeffÞ� and �c�� and ones from the gravity-

sector coefficients �s�� obtained in Ref. [7]. It reveals that

the gravitational force acquires tiny corrections both along
and perpendicular to the usual free-fall trajectory near the
surface of the Earth, while the effective inertial mass of a
test body becomes a direction-dependent quantity. These
effects can be sought in numerous laboratory experiments.
Since the standard relationship between force and accel-
eration is modified, it is useful to distinguish tests measur-
ing gravitational acceleration from ones comparing forces.
In Sec. VII B, we consider free-fall gravimeter tests such
as falling corner cubes and atom interferometry. Force-
comparison gravimeter tests using equipment such as
superconducting gravimeters are studied in Sec. VII C.
An important potential signal for gravitational Lorentz
violation arises from the flavor dependence of the effects,
which implies signals in WEP tests. A variety of free-fall
WEP tests are considered in Sec. VII D, while force-
comparison WEP tests with a torsion pendulum are treated
in Sec. VII E. For all the tests considered, the possible
signals for Lorentz violation are decomposed according
to their time dependence, and estimates of the attainable
sensitivities are obtained.
Section VIII considers satellite-based WEP tests, which

offer interesting prospects for improved sensitivities to
Lorentz violation. In this context, the signal for Lorentz
violation is an anomalous time variation of the relative
local acceleration between two test bodies of differing
composition located on the satellite. We derive the fre-
quency decomposition of the signal for Lorentz violation,
and we consider idealized scenarios for several proposed
satellite-based WEP tests. Based on the design reach of
the missions, we estimate the sensitivities that could be
achieved to various combinations of the matter-sector co-
efficients ð �aeffÞ� and �c��.
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Studies of the gravitational couplings of charged parti-

cles, antimatter, and second- and third-generation particles

present distinct experimental challenges but can yield sen-

sitivities to Lorentz and CPT violation that are otherwise

difficult or impossible to achieve. Section IX addresses

some of these possibilities, including charged-particle in-

terferometry, ballistic tests with charged particles, gravita-

tional experiments with antihydrogen, and signals in

muonium free fall. For antihydrogen experiments, simple

toy models are introduced to illustrate aspects of their

discovery potential and to address attempts to place indi-

rect limits on possible effects.
Traditional tests of gravity couplings to matter include

observations of the motion of bodies within the solar

system. Section X contains a discussion of the signals

accessible via lunar and satellite laser ranging and via

measurements of the precession of the perihelion of orbit-

ing bodies. A reanalysis of existing data from lunar laser

ranging could yield interesting sensitivities to some com-

binations of the matter-sector coefficients ð �aeffÞ� and �c��.

We use the established advance of the perihelion for

Mercury and for the Earth to obtain constraints on combi-

nations of ð �aeffÞ�, �c��, and �s��.

The interaction of photons with gravity offers a different
arena in which to seek Lorentz and CPT violation.
Section XI is devoted to this topic. We consider signals
arising in measurements of the photon time delay, studies

of the gravitational Doppler and redshifts, and com-
parisons of the behaviors of photons and massive bodies.
A variety of existing and proposed experiments on space-
craft offer interesting prospects for these measurements.
Tables XIVand XV collect estimated sensitivities to the

matter-sector coefficients ð �aweffÞ� and ð �cwÞ�� obtained from

many of the measurements discussed in this work. These
tables disregard possible effects from the pure-gravity co-
efficients �s�� that could in principle be relevant to solar-

system tests. Table XIV concerns existing data, while
Table XV tabulates future prospects. One result omitted

from these tables is the generalization (121) of the
constraint obtained in Ref. [11] using data from force-
comparison WEP tests with a torsion pendulum. In
Sec. VII E, multiple data sets are combined to separate

this constraint into the two limits (153), and both of these
are included in Table XIV instead.
The formalism and the analytical results for gravita-

tional signals of Lorentz violation presented in this work
apply to the nonzero matter-sector coefficients ð �aweffÞ�,
ð �cwÞ�� and in some cases also to the gravity-sector coef-

ficients �s��. Comparatively little is known about the co-

efficients ð �aweffÞ�, and scenarios exist in which they could

be countershaded, having large values while still escaping
notice in searches to date [11]. However, nongravitational
measurements have already yielded impressive sensitiv-
ities to various components of ð �cwÞ�� [2]. The estimated

TABLE XIV. Summary of actual and attainable sensitivities in past or present tests.

Coefficient combinations Gravimeter Free-fall WEP Force-comparison WEP Solar system

	ð �aeþp
eff ÞX [10�7 GeV] [10�3 GeV] [10�7 GeV] . . .

	ð �aeþp
eff ÞYþZ [10�7 GeV] [10�3 GeV] [10�6 GeV] . . .

	ð �aeþp
eff ÞY [10�5 GeV] . . . [10�7 GeV] . . .

	ð �aeþp
eff ÞZ [10�5 GeV] . . . [10�6 GeV] . . .

	ð �aeþp
eff ÞT . . . 10�7 GeVy 10�10 GeVy . . .

	ð �aneffÞX [10�7 GeV] [10�3 GeV] [10�7 GeV] . . .
	ð �aneffÞYþZ [10�7 GeV] [10�3 GeV] [10�6 GeV] . . .
	ð �aneffÞY [10�5 GeV] . . . [10�7 GeV] . . .
	ð �aneffÞZ [10�5 GeV] . . . [10�6 GeV] . . .
	ð �aneffÞT . . . 10�7 GeVy 10�10 GeVy . . .
	ð �aeþp�n

eff ÞX [10�7 GeV] [10�4 GeV] [10�8 GeV] [10�6 GeV]
	ð �aeþp�n

eff ÞYþZ [10�7 GeV] [10�4 GeV] [10�7 GeV] [10�6 GeV]
	ð �aeþp�n

eff ÞY [10�5 GeV] . . . [10�8 GeV] . . .
	ð �aeþp�n

eff ÞZ [10�5 GeV] . . . [10�7 GeV] . . .
	ð �aeþp�n

eff ÞT � 1
3m

pð �ceþp�nÞTT . . . 10�8 GeVz 10�8 GeVz . . .
	ð �aeþp�n

eff ÞT � 1
3m

pð �ceþp�nÞTT þ ð12 cos2�� 1
6Þmnð �cnÞQ . . . 10�8 GeV . . . . . .

	ð �aeþp�n
eff ÞT � 1

3m
pð �ceþp�nÞTT � 1

6m
nð �cnÞQ . . . . . . 10�11 GeV . . .

ð �aeeffÞ* þ ð �apeffÞ* þ 0:1ð �aneffÞ* . . . . . . . . . 10�6 GeVy
ð �aeeffÞ	 þ ð �apeffÞ	 þ 0:1ð �aneffÞ	 . . . . . . . . . 10�6 GeVy
ð �cnÞðTJÞ [10�7] [10�4] [10�7] [10�6]

ð �cnÞQ . . . 10�8z 10�8z . . .
ð �cnÞ* . . . . . . . . . 10�8y
ð �cnÞ	 . . . . . . . . . 10�7y
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attainable sensitivities to ð �cwÞ�� derived in this work are

therefore primarily restricted to components of ð �cnÞ��,

for which existing constraints are weaker. Tables XIV

and XV reflect these facts, containing mostly entries for

combinations of the coefficients ð �aweffÞ� along with some

results for ð �cwÞ��.

Table XIV summarizes actual sensitivities or estimated

attainable ones using data from past or present measure-

ments. The table is based on the calculations presented in

this work and includes only sensitivities below parts in 102.
Each entry in the first column of this table represents a

linear combination of coefficients that is accessible in

principle via existing searches. Each of the other four

columns contains our estimates for sensitivities that could

be achieved in the listed class of tests, expressed to the

nearest order of magnitude. Values in these four columns

that are shown without brackets represent order-of-

magnitude sensitivities implied by our present analysis to

the modulus of the coefficient combination displayed.

Values appearing in brackets in the table represent our

estimate of sensitivities that could in principle be obtained

from a suitable reanalysis of existing data. An obelisk ( y )

following a value indicates a limit attainable under the

assumption that either ð �aweffÞ� or ð �cwÞ�� is negligibly small

or vanishes. A diesis ( z ) indicates a sensitivity that is

attained by combining data from two different classes of

experiments, and this sensitivity is placed in each of the

two corresponding columns in the table.
Table XV contains future attainable sensitivities to the

moduli of various combinations of the matter-sector coef-
ficients ð �aweffÞ� and ð �cwÞ��, as estimated in previous sec-

tions of this work. The structure of this table is similar to
that of Table XV. The listed entries are based on the best

design reach and are given to the nearest order of magni-
tude. For each class of search, we assume enough mea-
surements have been performed to achieve the maximum
number of independent sensitivities. The reader is cau-
tioned that for certain coefficients a single measurement
cannot attain the indicated sensitivity, but instead only a
linear combination of coefficients with multipliers con-
trolled by composition and orientation factors. Note that
elsewhere in this work the convention is to display values
of future sensitivities in braces, but this convention is
suppressed in Table XV because all entries are of this
type. Note also that further improvements in theoretical
techniques and experimental design in all types of
searches, including ones not listed in Table XV such as
exotic gravitational tests or photon tests, are expected to
yield additional interesting prospects for future attainable
sensitivities.
Taken together, Tables XIV and XV reveal excellent

prospects for using matter-gravity couplings to seek effects
of Lorentz violation. The opportunities for measuring the
countershaded coefficients ð �aweffÞ� at sensitive levels are of

particular interest in this context, as these coefficients
typically cannot be detected in nongravitational searches.
Indeed, the spatial components of ð �aweffÞ� remain essen-

tially unconstrained to date. The tests proposed here can be
performed with existing or near-future technology, and
they offer a promising new arena for searches for signals
from the Planck scale.
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TABLE XV. Summary of attainable sensitivities in future tests.

Coefficient combinations Free-fall gravimeter Free-fall WEP Satellite WEP Solar system

	ð �aeþp
eff ÞX 10�10 GeV 10�10 GeV 10�11 GeV . . .

	ð �aeþp
eff ÞYþZ 10�10 GeV 10�10 GeV 10�11 GeV . . .

	ð �aeþp
eff ÞY 10�8 GeV 10�8 GeV 10�9 GeV . . .

	ð �aeþp
eff ÞZ 10�8 GeV 10�8 GeV 10�9 GeV . . .

	ð �aeþp
eff ÞT . . . 10�14 GeVy 10�15 GeVy . . .

	ð �aneffÞX 10�10 GeV 10�10 GeV 10�11 GeV . . .
	ð �aneffÞYþZ 10�10 GeV 10�10 GeV 10�11 GeV . . .
	ð �aneffÞY 10�8 GeV 10�8 GeV 10�9 GeV . . .
	ð �aneffÞZ 10�8 GeV 10�8 GeV 10�9 GeV . . .
	ð �aneffÞT . . . 10�14 GeVy 10�15 GeVy . . .
	ð �aeþp�n

eff ÞX 10�10 GeV 10�11 GeV 10�12 GeV 10�7 GeV
	ð �aeþp�n

eff ÞYþZ 10�10 GeV 10�11 GeV 10�12 GeV 10�7 GeV
	ð �aeþp�n

eff ÞY 10�8 GeV 10�9 GeV 10�10 GeV . . .
	ð �aeþp�n

eff ÞZ 10�8 GeV 10�9 GeV 10�10 GeV . . .
	ð �aeþp�n

eff ÞT � 1
3m

pð �ceþp�nÞTT . . . 10�15 GeV 10�16 GeV . . .
ð �cnÞðTJÞ 10�10 10�11 10�12 10�7

ð �cnÞQ . . . 10�15 10�16 . . .
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