431 research outputs found
ILLICON Analysis of Ellingsrud Test Fill
The 50-m diameter test fill at Ellingsrud, Norway was constructed by NGI to determine preconsolidation pressure of a soft clay, mobilized under field conditions. The height of the fill was increased in four increments during 1972 to 1978. Settlement observations as well as pore water pressure measurements over a period of eleven years are used to evaluate predictions made by the ILLICON computer program. ILLICON analysis requires vertical profiles of compressibility and permeability parameters. The computed surface settlements are within 2 cm of the measured values during the first three loading stages. After the fourth loading, there is a larger range in the measured settlements, however, the computed values lie within the measured range. The computed pore water pressures are also in reasonable agreement with the observations. However, compressibility and permeability data for major depth intervals of the 24m soil profile are not available. Therefore, in spite of good agreement between prediction and field observation one cannot be completely certain whether the input parameters in fact represent the true condition of the soil
An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays
Clayey soils tend to undergo continuous compression with time, even after excess pore pressures have substantially dissipated. The effect of time on deformation and mechanical response of these soft soils has been the subject of numerous studies. Based on these studies, the observed time-dependent behaviour of clays is mainly related to the evolution of soil volume and strength characteristics with time, which are classified as creep and/or relaxation properties of the soil. Apart from many empirical relationships that have been proposed in the literature to capture the rheological behaviour of clays, a number of viscid constitutive relationships have also been developed which have more attractive theoretical attributes. A particular feature of these viscid models is that their creep parameters often have clear physical meaning (e.g. coefficient of secondary compression, Cα). Sometimes with these models, a parameter referred to as initial/reference volumetric strain rate, has also been alluded as a model parameter. However, unlike Cα, the determination of and its variations with stress level is not properly documented in the literature. In an attempt to better understand , this paper presents an experimental investigation of the reference volumetric strain rate in reconstituted clay specimens. A long-term triaxial creep test, at different shear stress levels and different strain rates, was performed on clay specimen whereby the volumetric strain rate was measured. The obtained results indicated the stress-level dependency and non-linear variation of with time
Neutrophil-derived microvesicle induced dysfunction of brain microvascular endothelial cells in vitro
The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection
Stress dependent thermal pressurization of a fluid-saturated rock
Temperature increase in saturated porous materials under undrained conditions
leads to thermal pressurization of the pore fluid due to the discrepancy
between the thermal expansion coefficients of the pore fluid and of the solid
matrix. This increase in the pore fluid pressure induces a reduction of the
effective mean stress and can lead to shear failure or hydraulic fracturing.
The equations governing the phenomenon of thermal pressurization are presented
and this phenomenon is studied experimentally for a saturated granular rock in
an undrained heating test under constant isotropic stress. Careful analysis of
the effect of mechanical and thermal deformation of the drainage and pressure
measurement system is performed and a correction of the measured pore pressure
is introduced. The test results are modelled using a non-linear
thermo-poro-elastic constitutive model of the granular rock with emphasis on
the stress-dependent character of the rock compressibility. The effects of
stress and temperature on thermal pressurization observed in the tests are
correctly reproduced by the model
Differences in proliferation rate between CADASIL and control vascular smooth muscle cells are related to increased TGF beta expression
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a familial fatal progressive degenerative disorder. One of the pathological hallmarks of CADASIL is a dramatic reduction of vascular smooth muscle cells (VSMCs) in cerebral arteries. Using VSMCs from the vasculature of the human umbilical cord, placenta and cerebrum of CADASIL patients, we found that CADASIL VSMCs had a lower proliferation rate compared to control VSMCs. Exposure of control VSMCs and endothelial cells (ECs) to media derived from CADASIL VSMCs lowered the proliferation rate of all cells examined. By quantitative RT-PCR analysis, we observed increased Transforming growth factor-beta (TGF beta) gene expression in CADASIL VSMCs. Adding TGF beta-neutralizing antibody restored the proliferation rate of CADASIL VSMCs. We assessed proliferation differences in the presence or absence of TGF beta-neutralizing antibody in ECs co-cultured with VSMCs. ECs co-cultured with CADASIL VSMCs exhibited a lower proliferation rate than those co-cultured with control VSMCs, and neutralization of TGF beta normalized the proliferation rate of ECs co-cultured with CADASIL VSMCs. We suggest that increased TGF beta expression in CADASIL VSMCs is involved in the reduced VSMC proliferation in CADASIL and may play a role in situ in altered proliferation of neighbouring cells in the vasculature.Peer reviewe
A large-strain radial consolidation theory for soft clays improved by vertical drains
A system of vertical drains with combined vacuum and surcharge preloading is an effective solution for promoting radial flow, accelerating consolidation. However, when a mixture of soil and water is deposited at a low initial density, a significant amount of deformation or surface settlement occurs. Therefore, it is necessary to introduce large-strain theory, which has been widely used to manage dredged disposal sites in one-dimensional theory, into radial consolidation theory. A governing equation based on Gibson's large-strain theory and Barron's free-strain theory incorporating the radial and vertical flows, the weight of the soil, variable hydraulic conductivity and compressibility during the consolidation process is therefore presented
Recommendations for determining HPV status in patients with oropharyngeal cancers under TNM8 guidelines : a two-tier approach
ACKNOWLEDGEMENTS The funders had no role in study design, collection, data analysis or interpretation of the data. This work received funding from the Medical Research Council (D.Mc.C. and J.J.), the Health and Social Care Research and Development Division of the Northern Ireland Public Health Agency (D.M.c.C., J.J., M.Mo.), the Wellcome Trust through the Wellcome-FDS Research Training Fellowship, the Faculty of Dental Surgery of the Royal College of Surgeons of England (A.G.S.) and GlaxoSmithKline Ltd (T.J.). The Northern Ireland OPSCC TMAs used in this research were received from the Northern Ireland Biobank which has received funds from Health and Social Care Research and Development Division of the Public Health Agency in Northern Ireland and the Friends of the Cancer Centre. The Northern Ireland Cancer Registry who receives funding from the Northern Ireland Public Health Agency carried out collection of clinical data for the Northern Ireland OPSCC patients. The Faculty of Dental Surgery of the Royal College of Surgeons of England and the Liverpool Bio-innovation Hub Biobank carried out collection of clinical data for the Liverpool OPSCC patients.Peer reviewedPublisher PD
Development of a Smart Wireless Multisensor Platform for an Optogenetic Brain Implant
Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments
- …