158 research outputs found
Rapprocher les personnes de l’emploi : politiques des territoires, territoires des politiques
Introduction Le plan d’investissement dans les compétences (PIC), lancé en 2018, vise à construire une politique de l’emploi et de la formation professionnelle ambitieuse, par la formation des personnes éloignées de l’emploi et par la transformation du système de formation professionnelle. Entre autres mesures, il se décline en pactes régionaux d’investissement dans les compétences (PRIC), donnant aux Régions la possibilité d’impulser des expérimentations sur leur territoire par l’intermédiai..
The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations
The upper bound of 50 parts per trillion by volume for Mars methane above 5 km established by the ExoMars Trace Gas Orbiter, substantially lower than the 410 parts per trillion by volume average measured overnight by the Curiosity Rover, places a strong constraint on the daytime methane flux at the Gale crater. We propose that these measurements may be largely reconciled by the inhibition of mixing near the surface overnight, whereby methane emitted from the subsurface accumulates within meters of the surface before being mixed below detection limits at dawn. A model of this scenario allows the first precise calculation of microseepage fluxes at Gale to be derived, consistent with a constant 1.5 à 10â 10 kg·mâ 2·solâ 1 (5.4 à 10â 5 tonnes·kmâ 2·yearâ 1) source at depth. Under this scenario, only 2.7 à 104 km2 of Mars’s surface may be emitting methane, unless a fast destruction mechanism exists.Plain Language SummaryThe ExoMars Trace Gas Orbiter and the Curiosity Rover have recorded different amounts of methane in the atmosphere on Mars. The Trace Gas Orbiter measured very little methane (<50 parts per trillion by volume) above 5 km in the sunlit atmosphere, while Curiosity measured substantially more (410 parts per trillion by volume) near the surface at night. In this paper we describe a framework which explains both measurements by suggesting that a small amount of methane seeps out of the ground constantly. During the day, this small amount of methane is rapidly mixed and diluted by vigorous convection, leading to low overall levels within the atmosphere. During the night, convection lessens, allowing methane to build up near the surface. At dawn, convection intensifies and the nearâ surface methane is mixed and diluted with much more atmosphere. Using this model and methane concentrations from both approaches, we are ableâ for the first timeâ to place a single number on the rate of seepage of methane at Gale crater which we find equivalent to 2.8 kg per Martian day. Future spacecraft measuring methane near the surface of Mars could determine how much methane seeps out of the ground in different locations, providing insight into what processes create that methane in the subsurface.Key PointsNighttime SAMâ TLS seasonal cycle enrichment measurements and TGO sunset/sunrise measurements are not in oppositionMicroseepage fluxes must be local to Gale, range from 0.82 to 4.6 kg/sol, and are consistent with a constant source at depthLittle of Mars experiences microseepage unless a fast destruction mechanism exists or Gale is very unusualPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/1/grl59471-sup-0001-2019GL083800-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/2/grl59471_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/3/grl59471.pd
Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater
Mars Science Laboratory (MSL) Curiosity rover data are used to describe the morphology of desiccation cracks observed in ancient lacustrine strata at Gale crater, Mars, and to interpret their paleoenvironmental setting. The desiccation cracks indicate subaerial exposure of lacustrine facies in the Sutton Island member of the Murray formation. In association with ripple cross-stratification and possible eolian cross-bedding, these facies indicate a transition from longer-lived perennial lakes recorded by older strata to younger lakes characterized by intermittent exposure. The transition from perennial to episodically exposed lacustrine environments provides evidence for local to regional climate change that can help constrain Mars climate models
Experimental Wind Characterization with the SuperCam Microphone under a Simulated martian Atmosphere
Located on top of the mast of the Mars 2020 Perseverance rover, the SuperCam instrument suite includes a microphone to record audible sounds from 100 Hz to 10 kHz on the surface of Mars. It will support SuperCam’s Laser-Induced Breakdown Spectroscopy investigation by recording laser-induced shock-waves but it will also record aeroacoustic noise generated by wind flowing past the microphone. This experimental study was conducted in the Aarhus planetary wind-tunnel under low CO2 pressure with wind generated at several velocities. It focused on understanding the wind-induced acoustic signal measured by microphones instrumented in a real scale model of the rover mast as a function of the wind speed and wind orientation. Acoustic spectra recorded under a wind flow show that the low-frequency range of the microphone signal is mainly influenced by the wind velocity. In contrast, the higher frequency range is seen to depend on the wind direction relative to the microphone. On the one hand, for the wind conditions tested inside the tunnel, it is shown that the Root Mean Square of the pressure, computed over the 100 Hz to 500 Hz frequency range, is proportional to the dynamic pressure. Therefore, the SuperCam microphone will be able to estimate the wind speed, considering an in situ cross-calibration with the Mars Environmental Dynamic Analyzer. On the other hand, for a given wind speed, it is observed that the root mean square of the pressure, computed over the 500 Hz to 2000 Hz frequency range, is at its minimum when the microphone is facing the wind whereas it is at its maximum when the microphone is pointing downwind. Hence, a full 360° rotation of the mast in azimuth in parallel with sound recording can be used to retrieve the wind direction. We demonstrate that the SuperCam Microphone has a priori the potential to determine both the speed and the direction of the wind on Mars, thus contributing to atmospheric science investigations
Continued Use of Exogenic Materials found on Mars as Planetary Research Tools
Exogenic materials (meteorites, micrometeorites and chemical tracers) are encountered both serendipitously and as campaign targets during Mars rover terrain traverse and reconnaissance. We advocate the continued study of these materials in-situ when encountered and permitted by extended and new Mars surface missions in the 2023–2032 decade.Whitepaper submitted to the Planetary Science and Astrobiology Decadal Survey 2023-2032. Additional co-authors: Sara Motaghian, Brandi L. Carrier, William H. Farrand, Marc D. Fries, Peter Grindrod, Andrew Langedam, Jérémie Lasue
The SuperCam Remote Sensing Instrument Suite for Mars 2020
International audienceThe Mars 2020 rover, essentially a structural twin of MSL, is being built to a) characterize the geology and history of a new landing site on Mars, b) find and characterize ancient habitable environments, c) cache samples for eventual return to Earth, and d) demonstrate in-situ production of oxygen needed for human exploration. Remote-sensing instrumentation is needed to support the first three of these goals [1]. The SuperCam instrument meets these needs with a range of instrumentation including the highest-resolution remote imaging on the rover, two different techniques for determining mineralogy , and one technique to provide elemental compositions. All of these techniques are co-boresighted, providing rapid comprehensive characterization. In addition, for targets within 7 meters of the rover the laser shock waves brush away the dust, providing cleaner surfaces for analysis. SuperCam will use an advanced version of the AEGIS robotic target selection software
The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
SuperCam Calibration Targets: Design and Development
SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover.
The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated.
The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system
Manganese-Iron Phosphate Nodules at the Groken Site, Gale Crater, Mars
The MSL Curiosity rover investigated dark, Mn-P-enriched nodules in shallow lacustrine/fluvial sediments at the Groken site in Glen Torridon, Gale Crater, Mars. Applying all relevant information from the rover, the nodules are interpreted as pseudomorphs after original crystals of vivianite, (Fe2+,Mn2+)3(PO4)2·8H2O, that cemented the sediment soon after deposition. The nodules appear to have flat faces and linear boundaries and stand above the surrounding siltstone. ChemCam LIBS (laser-induced breakdown spectrometry) shows that the nodules have MnO abundances approximately twenty times those of the surrounding siltstone matrix, contain little CaO, and have SiO2 and Al2O3 abundances similar to those of the siltstone. A deconvolution of APXS analyses of nodule-bearing targets, interpreted here as representing the nodules’ non-silicate components, shows high concentrations of MnO, P2O5, and FeO and a molar ratio P/Mn = 2. Visible to near-infrared reflectance of the nodules (by ChemCam passive and Mastcam multispectral) is dark and relatively flat, consistent with a mixture of host siltstone, hematite, and a dark spectrally bland material (like pyrolusite, MnO2). A drill sample at the site is shown to contain minimal nodule material, implying that analyses by the CheMin and SAM instruments do not constrain the nodules’ mineralogy or composition. The fact that the nodules contain P and Mn in a small molar integer ratio, P/Mn = 2, suggests that the nodules contained a stoichiometric Mn-phosphate mineral, in which Fe did (i.e., could) not substitute for Mn. The most likely such minerals are laueite and strunzite, (Fe2+,Mn2+)3(PO4)2·8H2O and –6H2O, respectively, which occur on Earth as alteration products of other Mn-bearing phosphates including vivianite. Vivianite is a common primary and diagenetic precipitate from low-oxygen, P-enriched waters. Calculated phase equilibria show Mn-bearing vivianite could be replaced by laueite or strunzite and then by hematite plus pyrolusite as the system became more oxidizing and acidic. These data suggest that the nodules originated as vivianite, forming as euhedral crystals in the sediment, enclosing sediment grains as they grew. After formation, the nodules were oxidized—first to laueite/strunzite yielding the diagnostic P/Mn ratio, and then to hematite plus an undefined Mn oxy-hydroxide (like pyrolusite). The limited occurrence of these Mn-Fe-P nodules, both in space and time (i.e., stratigraphic position), suggests a local control on their origin. By terrestrial analogies, it is possible that the nodules precipitated near a spring or seep of Mn-rich water, generated during alteration of olivine in the underlying sediments
Le radon, traceur géophysique de l'environnement martien : étude de son transport,première mise en évidence et développement d'une instrumentation pour sa mesure.
Radon-222, an inert and radioactive gas stemming from the uranium decay series, and its progeny are often used as tracers to study transfers in soils and in the atmosphere. They have also been studied on the surface of the Moon in connection with lunar outgassing. On Mars, where radon has never been studied nor measured so far, we show that their measurement could provide new insight and constraints on the chemical nature of the hydrogen measured in the Martian soil, in surface-atmosphere exchange processes, in atmospheric transport and, finally, in the dust cycle. Our approach is based on a coupled soil-atmosphere transport model implemented into the Global Circulation Model LMDZ. It includes the source term, the diffusion and adsorption of radon within the soil, and its atmospheric transport. The model input parameters are derived either experimentally (emanation factor and adsorption coefficient extrapolated to low temperatures) or by realistic models of porous media (diffusion coefficient at low pressure and as a function of thewater saturation level). The model yields predictive maps of the radon exhalation rate as well as 3D fields of concentration in the soil and atmosphere, which will allow direct comparison with bismuth-214 measurements made by the GRS onboard the Mars Odyssey orbiter. We present preliminary results on this subject. An analysis of alpha spectra acquired by the APXS of the rover. Opportunity is also presented, which shows evidence of a polonium-210 deposit on atmospheric dust, providing the first indirect proof of the presence of radon in the Martian atmosphere. We propose a simplified dust cycle model that enables us to infer an estimate of the global average radon exhalation rate on Mars. Lastly, we simulate the performance of an alpha spectrometer aimed at measuring radon and its progeny on the surface of the planet.Le radon-222, gaz inerte et radioactif issu de la chaîne de désintégration de l'uranium, de même que ses descendants, sont fréquemment utilisés comme traceurs dans les sols et l'atmosphère terrestres. Le radon "lunaire" a également donné lieu à de nombreuses études portant sur le dégazage de notre satellite. Sur Mars, où il n'a encore jamais été étudié, nous montrons que sa mesure et celle de ses descendants pourraient apporter un nouvel éclairage, et de nouvelles contraintes, sur l’état physico-chimique de l'hydrogène mesuré dans le sol de la planète, sur les processus d'échanges sol-atmosphère, sur le transport atmosphérique et, enfin, sur le cycle de la poussière. Nous basons notre étude sur un modèle de transport couplé sol/atmosphère, implémenté dans le Modèle de Circulation Générale LMDZ. Il inclut le terme source, la diffusion et l'adsorption du gaz dans le sol, et son transport atmosphérique. Les paramètres d'entrée du modèle ont été déterminés expérimentalement (facteur d'émanation et coefficient d'adsorption, extrapolés à basse température) ou à partir d'une modélisation réaliste de divers milieux poreux (coefficient de diffusion à basse pression, en fonction du niveau de saturation). Le modèle permet d'obtenir une cartographie prédictive de l'exhalaison de radon et des champs 3D de concentrations dans le sol et l'atmosphère, qui pourront être directement comparés aux mesures de bismuth-214 effectuées par le GRS de Mars Odyssey. Nous présentons quelques résultats préliminaires à ce sujet. Parallèlement, une analyse des spectres alpha obtenus par l'APXS du rover Opportunity a permis de mettre en évidence la présence de polonium-210 sur la poussière atmosphérique, apportant une première preuve indirecte de la présence de radon dans l'atmosphère. Nous proposons un modèle simplifié du cycle de la poussière qui permet d'estimer, à partir de cette mesure, le flux global moyen de radon sur Mars. Enfin, nous dimensionnons un instrument destiné à la mesure du radon et de ses descendants à la surface de la planète
- …