314 research outputs found

    Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence

    Get PDF
    The Eulerian gyrokinetic turbulence code GENE has recently been extended to a full torus code. Moreover, it now provides Krook-type sources for gradient-driven simulations where the profiles are maintained on average as well as localized heat sources for a flux-driven type of operation. Careful verification studies and benchmarks are performed successfully. This setup is applied to address three related transport issues concerning nonlocal effects. First, it is confirmed that in gradient-driven simulations, the local limit can be reproduced-provided that finite aspect ratio effects in the geometry are treated carefully. In this context, it also becomes clear that the profile widths (not the device width) may constitute a more appropriate measure for finite-size effects. Second, the nature and role of heat flux avalanches are discussed in the framework of both local and global, flux-and gradient-driven simulations. Third, simulations dedicated to discharges with electron internal barriers are addressed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3567484

    Standard values and relationship-specific validity of the Bielefeld Relationship Expectations Questionnaire (BFPE)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bielefeld Partnership Expectations Questionnaire (BFPE) is a tool to assess attachment in the romantic relationships of adults. The attachment styles are operationalized as configuration patterns of scale scores. While convergent validity has already been investigated, discriminant validity is still lacking confirmation.</p> <p>Methods</p> <p>The present sample (n = 1509) is representative for the German population aged 18 to 50. The mean age was 34.6 years. Most of the participants lived in a relationship (77.3 %). Discriminant validity was analyzed using a marital quality questionnaire (PFB), a social support questionnaire (F-Soz-U K-14), and a life satisfaction questionnaire (FLZ).</p> <p>Results</p> <p>All the BFPE scales have a satisfying internal consistency between r = .79 and .86. Those individuals who showed a secure pattern, i.e. increased "Readiness for Self-Disclosure" and "Conscious Need for Care" as well as reduced "Fear of Rejection" experienced their partner as socially supportive, reported higher marital quality in all of its facets, and were more satisfied within the life-domains "family/children" and "relationship/sexuality". Standard values for each scale are presented.</p> <p>Conclusions</p> <p>The BFPE has repeatedly been verified as a short, reliable, and valid instrument applicable to research practice with healthy individuals as well as within clinical contexts.</p

    14 Examples of How LLMs Can Transform Materials Science and Chemistry: A Reflection on a Large Language Model Hackathon

    Full text link
    Chemistry and materials science are complex. Recently, there have been great successes in addressing this complexity using data-driven or computational techniques. Yet, the necessity of input structured in very specific forms and the fact that there is an ever-growing number of tools creates usability and accessibility challenges. Coupled with the reality that much data in these disciplines is unstructured, the effectiveness of these tools is limited. Motivated by recent works that indicated that large language models (LLMs) might help address some of these issues, we organized a hackathon event on the applications of LLMs in chemistry, materials science, and beyond. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines

    Flood-resilient waterfront development in New York City: bridging flood insurance, building codes, and flood zoning

    Get PDF
    Waterfronts are attractive areas for many—often competing—uses in New York City (NYC) and are seen as multifunctional locations for economic, environmental, and social activities on the interface between land and water. The NYC waterfront plays a crucial role as a first line of flood defense and in managing flood risk and protecting the city from future climate change and sea-level rise. The city of New York has embarked on a climate adaptation program (PlaNYC) outlining the policies needed to anticipate the impacts of climate change. As part of this policy, the Department of City Planning is currently preparing Vision 2020: New York City Comprehensive Waterfront Plan for the over 500 miles of NYC waterfront (NYC-DCP, 2011). An integral part of the vision is to improve resilience to climate change and sea-level rise. This study seeks to provide guidance for advancing the goals of NYC Vision 2020 by assessing how flood insurance, flood zoning, and building code policies can contribute to waterfront development that is more resilient to climate change

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    stairs and fire

    Get PDF
    • 

    corecore