42 research outputs found

    Tulehdusreaktion ehdokasgeeneihin keskittyviä sydän- ja verisuonitaudin geneettisepidemiologisia tutkimuksia

    Get PDF
    Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.Sydän- ja verisuonisairaudet (SVT) kuuluvat perimältään monitekijäisiin sairauksiin. Sekä perinteiset riskitekijät, kuten korkea kolesteroli ja miessukupuoli, että perintötekijät altistavat SVT:lle. Tulehdusreaktio liittyy olennaisesti taudin kehitykseen vaikuttaen yhdessä muiden riskitekijöiden kanssa valtimoiden seinämien ateroskleroosin syntyyn. Tässä väitöskirjatyössä tunnistimme ensin useita tulehdusreaktioon liittyviä sydän- ja verisuonisairauksien riskitekijöitä, jotka ovat yhteydessä kokoverestä eristettävän DNA:n saantoon. Tuloksen perusteella voidaan olettaa, että tutkittavien valinta DNA-määrän perusteella geneettisiin epidemiologisiin tutkimuksiin saattaa aiheuttaa harhan tutkimusasetelmassa. Seuraavaksi tutkimme tulehdusreaktioon liittyvien kandidaattigeenien vaikutusta SVT:n riskiin kahdessa suomalaisessa väestöaineistossa. Ensiksi syvennyimme uuteen mielenkiintoiseen ehdokasgeeniin, selenoproteiini S:aan (SEPS1). SEPS1 on kalvoproteiini, joka suojaa soluja hapettumisen aiheuttamilta vaurioilta. Geneettinen vaihtelu geenin alueella on yhteydessä tulehdusreaktiota välittävien liukoisten sytokiinien pitoisuuksiin verenkierrossa. Tutkimuksemme osoitti, että perimän vaihtelu SEPS1 geenin alueella nostaa sepelvaltiomotaudin ja iskeemisen aivohalvauksen riskiä naisilla. Tämä on ensimmäinen kansainvälisellä tasolla julkaistu tutkimus, jossa on tutkittu kattavasti geneettistä variaatiota SEPS1 geenin alueella ja osoitettu sen vaikuttavan SVT:n riskiin. Seuraavaksi keskityimme seitsemään tulehdusreaktiota säätelevään interleukiini 6 (IL6) sytokiiniin liittyvään geeniin (angiotensiiniä konvertoiva entsyymi, angiotensin II reseptorityyppi I, C-reaktiivinen proteiini (CRP), sekä fibrinogeenin alfa-, beta-, ja gammaketjut (FGA, FGB, FGG)). Tutkimuksen perusteella eräs IL6 geenin muoto on yhteydessä suurentuneeseen SVT:n riskiin miehillä. Lisäksi toinen saman geenin muoto yhdessä erään FGA geenin muodon kanssa vaikutti suojaavan SVT:lta. Tulosten perusteella IL6:een kanssa tekemisissä olevilla geeneillä on vaikutusta sydän- ja verisuonisairauksien riskiin ja riskitekijöihin. On kuitenkin selvää, että IL6:n ja sen liitännäisgeenien tarkempi rooli SVT:ssa edellyttää kuitenkin lisätutkimuksia muissa populaatioissa. Näiden geenien lisäksi, kuvaamme väitöskirjassa useita kolmanteen osatyöhön liittyvien geenien yhteen sukupuoleen rajoittuneita assosiaatiolöydöksiä. Näistä useimmat esiintyivät naisilla ja korostavat miehillä ja naisilla erikseen tehtävän sydän- ja verisuonitaudin tutkimuksen tärkeyttä. Tässä tutkimuksessa tuotettu tieto toimii pohjana muissa väestöissä tehtävälle tutkimukselle ja lisää ymmärrystä SVT:n kehittymiseen liittyvistä tekijöistä

    Nifedipine disturbs fetal cardiac function during hypoxemia in a chronic sheep model at near term gestation

    Get PDF
    BACKGROUND: Nifedipine is a widely used drug in pregnancies complicated by maternal hypertensive disorders that can be associated with placental insufficiency and fetal hypoxemia. The evidence regarding fetal myocardial responses to nifedipine in hypoxemia is limited. OBJECTIVE: We hypothesized that nifedipine would not impair fetal sheep cardiac function under hypoxemic environment. In particular, we investigated the effects of nifedipine on fetal ventricular functional parameters and cardiac output. STUDY DESIGN: A total of 21 chronically instrumented fetal sheep at 122 to 134 gestational days (term, 145 days) were included in this study. Fetal cardiac function was evaluated by measuring global longitudinal strain, indices describing ventricular systolic and diastolic function, and cardiac outputs using two-dimensional speckle tracking and tissue and spectral pulsed-wave Doppler echocardiography. Fetal carotid artery blood pressure and blood gas values were invasively monitored. After baseline data collection, fetal hypoxemia was induced by maternal hyperoxygenation. After hypoxemia phase data collection, 9 fetuses received nifedipine infusion, and 12 fetuses received saline infusion. Data were collected 30 and 120 minutes after the infusion was started. After 120 minutes of data collection, maternal and fetal oxygenation were normalized, and normoxemia phase data were collected, while infusion was continued. RESULTS: Hypoxemia decreased fetal carotid artery mean arterial pressure from 40 (8) mm Hg to 35 (8) mm Hg (P CONCLUSION: In hypoxemic fetus, nifedipine impaired right ventricular function and reduced its cardiac output. The detrimental effects of nifedipine on fetal right ventricular function were abolished, when normoxemia was restored. Our findings suggest that in a hypoxemic environment nifedipine triggers detrimental effects on fetal right ventricular function.Peer reviewe

    Effects of nifedipine and sildenafil on placental hemodynamics and gas exchange during fetal hypoxemia in a chronic sheep model

    Get PDF
    Introduction We hypothesized that nifedipine and sildenafil would have no detrimental effects on placental hemodynamics and gas exchange under fetal hypoxemia. Methods In 33 chronically instrumented fetal sheep, placental volume blood flow (QPlac) and umbilical artery (UA) vascular impedance were measured by Doppler ultrasonography. Fetal carotid artery blood pressure and blood gas values were monitored. After baseline data collection, maternal and fetal hypoxemia were induced. Following hypoxemia phase data collection, 12 fetuses received sildenafil and 9 fetuses nifedipine infusion, and 12 fetuses served as controls receiving saline infusion. Data were collected 30 and 120 min after infusion was started. Then maternal oxygenation was normalized and normoxemia phase data were collected, while infusion was continued. Results Hypoxemia significantly decreased fetal pO2 and blood pressure. In the sildenafil group at 30- and 120-min hypoxemia + infusion phases, fetal blood pressure and QPlac were significantly lower and pCO2 higher than at baseline without returning to baseline level at normoxemia + infusion phase. In hypoxemia, nifedipine did not affect fetal blood pressure or placental hemodynamics. Both in the sildenafil and nifedipine groups, fetal pO2 remained significantly lower at normoxemia + infusion phase than in the control group. Umbilical artery vascular impedance did not change during the experiment. Discussion In fetal hypoxemia, sildenafil had detrimental effects on placental hemodynamics that disturbed placental gas exchange. Nifedipine did not alter placental hemodynamics in hypoxemia but disturbed placental gas exchange upon returning to normoxemia. Umbilical artery vascular impedance did not reflect alterations in placental hemodynamics.Peer reviewe

    Combined Effects of Thrombosis Pathway Gene Variants Predict Cardiovascular Events

    Get PDF
    The genetic background of complex diseases is proposed to consist of several low-penetrance risk loci. Addressing this complexity likely requires both large sample size and simultaneous analysis of different predisposing variants. We investigated the role of four thrombosis genes: coagulation factor V (F5), intercellular adhesion molecule 1 (ICAM1), protein C (PROC), and thrombomodulin (THBD) in cardiovascular diseases. Single allelic gene variants and their pair-wise combinations were analyzed in two independently sampled population cohorts from Finland. From among 14,140 FINRISK participants (FINRISK-92, n = 5,999 and FINRISK-97, n = 8,141), we selected for genotyping a sample of 2,222, including 528 incident cardiovascular disease (CVD) cases and random subcohorts totaling 786. To cover all known common haplotypes (>10%), 54 single nucleotide polymorphisms (SNPs) were genotyped. Classification-tree analysis identified 11 SNPs that were further analyzed in Cox's proportional hazard model as single variants and pair-wise combinations. Multiple testing was controlled by use of two independent cohorts and with false-discovery rate. Several CVD risk variants were identified: In women, the combination of F5 rs7542281 × THBD rs1042580, together with three single F5 SNPs, was associated with CVD events. Among men, PROC rs1041296, when combined with either ICAM1 rs5030341 or F5 rs2269648, was associated with total mortality. As a single variant, PROC rs1401296, together with the F5 Leiden mutation, was associated with ischemic stroke events. Our strategy to combine the classification-tree analysis with more traditional genetic models was successful in identifying SNPs—acting either in combination or as single variants—predisposing to CVD, and produced consistent results in two independent cohorts. These results suggest that variants in these four thrombosis genes contribute to arterial cardiovascular events at population level

    Effect of Sildenafil on Pulmonary Circulation and Cardiovascular Function in Near-Term Fetal Sheep During Hypoxemia

    Get PDF
    Sildenafil is a potential new treatment for placental insufficiency in human pregnancies as it reduces the breakdown of vasodilator nitric oxide. Pulmonary vasodilatation is observed in normoxemic fetuses following sildenafil administration. Placental insufficiency often leads to fetal hypoxemia that can cause pulmonary vasoconstriction and fetal cardiac dysfunction as evidenced by reduced isovolumic myocardial velocities. We tested the hypotheses that sildenafil, when given directly to the hypoxemic fetus, reverses reactive pulmonary vasoconstriction, increases left ventricular cardiac output by increasing pulmonary venous return, and ameliorates hypoxemic myocardial dysfunction. We used an instrumented sheep model. Fetuses were made hypoxemic over a mean (standard deviation) duration of 41.3 (9.5) minutes and then given intravenous sildenafil or saline infusion. Volume blood flow through ductus arteriosus was measured with an ultrasonic transit-time flow probe. Fetal left and right ventricular outputs and lung volume blood flow were calculated, and ventricular function was examined using echocardiography. Lung volume blood flow decreased and the ductus arteriosus volume blood flow increased with hypoxemia. There was a significant reduction in left ventricular and combined cardiac outputs during hypoxemia in both groups. Hypoxemia led to a reduction in myocardial isovolumic velocities, increased ductus venosus pulsatility, and reduced left ventricular myocardial deformation. Direct administration of sildenafil to hypoxemic fetus did not reverse the redistribution of cardiac output. Furthermore, fetal cardiac systolic and diastolic dysfunction was observed during hypoxemia, which was not improved by fetal sildenafil treatment. In conclusion, sildenafil did not improve pulmonary blood flow or cardiac function in hypoxemic sheep fetuses.Peer reviewe

    Risk Alleles of USF1 Gene Predict Cardiovascular Disease of Women in Two Prospective Studies

    Get PDF
    Upstream transcription factor 1 (USF1) is a ubiquitously expressed transcription factor controlling several critical genes in lipid and glucose metabolism. Of some 40 genes regulated by USF1, several are involved in the molecular pathogenesis of cardiovascular disease (CVD). Although the USF1 gene has been shown to have a critical role in the etiology of familial combined hyperlipidemia, which predisposes to early CVD, the gene's potential role as a risk factor for CVD events at the population level has not been established. Here we report the results from a prospective genetic–epidemiological study of the association between the USF1 variants, CVD, and mortality in two large Finnish cohorts. Haplotype-tagging single nucleotide polymorphisms exposing all common allelic variants of USF1 were genotyped in a prospective case-cohort design with two distinct cohorts followed up during 1992–2001 and 1997–2003. The total number of follow-up years was 112,435 in 14,140 individuals, of which 2,225 were selected for genotyping based on the case-cohort study strategy. After adjustment for conventional risk factors, we observed an association of USF1 with CVD and mortality among females. In combined analysis of the two cohorts, female carriers of a USF1 risk haplotype had a 2-fold risk of a CVD event (hazard ratio [HR] 2.02; 95% confidence interval [CI] 1.16–3.53; p = 0.01) and an increased risk of all-cause mortality (HR 2.52; 95% CI 1.46–4.35; p = 0.0009). A putative protective haplotype of USF1 was also identified. Our study shows how a gene identified in exceptional families proves to be important also at the population level, implying that allelic variants of USF1 significantly influence the prospective risk of CVD and even all-cause mortality in females

    CRP gene variation affects early development of Alzheimer's disease-related plaques

    Get PDF
    Introduction We used the Tampere Autopsy Study (TASTY) series (n = 603, age 0-97 yrs), representing an unselected population outside institutions, to investigate the pathogenic involvement of inflammation in Alzheimer's disease-related lesions. Methods We studied senile plaque (SP), neurofibrillary tangles (NFT) and SP phenotype associations with 6 reported haplotype tagging single nucleotide polymorphisms (SNPs) in the CRP gene. CRP and Aβ immunohistochemistry was assessed using brain tissue microarrays. Results In multivariate analyses (age- and APOE-adjusted), non-neuritic SP were associated with the high-CRP TA-genotype (3.0% prevalence) of rs3091244 and CA-genotype (10.8%) of rs3093075 compared to common genotypes. Conversely, the low-CRP C allele (39.3%) of rs2794521 reduced the risk of harbouring early non-neuritic SP, compared to the TT genotype. CRP haplotype TAGCC (high) associated with non-neuritic SP, whereas haplotype CCGCC offered protection. TT genotypes (high) of rs3091244 and rs1130864 were associated with CRP staining. There were no associations between SNPs or haplotypes and NFT. CRP staining of the hippocampal CA1/2 region correlated with Aβ staining. Conclusions CRP gene variation affects early SP development in prodromal Alzheimer's disease, independent of APOE genotype.BioMed Central Open acces

    Lack of association between polymorphisms of the IL18R1 and IL18RAP genes and cardiovascular risk: the MORGAM Project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-18 is a pro-inflammatory cytokine suspected to be associated with atherosclerosis and its complications. We had previously shown that one single nucleotide polymorphism (SNP) of the <it>IL18 </it>gene was associated with cardiovascular disease (CVD) through an interaction with smoking. As a further step for elucidating the contribution of the IL-18 pathway to the etiology of CVD, we here investigated the association between the genetic variability of two IL-18 receptor genes, <it>IL18R1 </it>and <it>IL18RAP</it>, with the risk of developing CVD.</p> <p>Methods</p> <p>Eleven tagging SNPs, 5 in <it>IL18R1 </it>and 6 in <it>IL18RAP</it>, characterizing the haplotypic variability of the corresponding genes; were genotyped in 5 European prospective CVD cohorts including 1416 cases and 1772 non-cases, as part of the MORGAM project. Both single-locus and haplotypes analyses were carried out to investigate the association of these SNPs with CVD.</p> <p>Results</p> <p>We did not find any significant differences in allele, genotype and haplotype frequencies between cases and non-cases for either of the two genes. Moreover, the search for interactions between SNPs located in different genes, including 5 <it>IL18 </it>SNPs previously studied in the MORGAM project, and between SNPs and environmental factors remained unfruitful.</p> <p>Conclusion</p> <p>Our analysis suggests that the variability of <it>IL18R1 </it>and <it>IL18RAP </it>genes are unlikely to contribute to modulate the risk of CVD.</p

    A large-scale genome-wide association study meta-analysis of cannabis use disorder

    Get PDF
    Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10−9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe
    corecore