32 research outputs found

    Thrombin generation in human coronary arteries after percutaneous transluminal balloon angioplasty

    Get PDF
    AbstractObjectives. The aim of this study was to investigate the relation between coronary atherosclerotic plaque injury and activation of the coagulation cascade.Background. Thrombus formation after atherosclerotic plaque disruption has been implicated in the pathogenesis of atherosclerosis, unstable angina and myocardial infarction.Methods. Biochemical markers of thrombin generation (prothrombin fragment F1+2) and thrombin activity (fibrinopeptide A) were measured in coronary blood before, during and immediately after percutaneous transluminal coronary angioplasty. After demonstrating that blood withdrawal through an angioplasty catheter does not artifactually elevate the plasma levels of these markers in patients after heparinization, coronary artery samples ware collected proximal and distal to the lesion before and distal to the lesion after baltoon inflation in 26 patients.Results. Plasma levels of F1+2measured proximal to the lesion before angioplasty (median 0.47 nmol/liter, 95% confidence interval [CI] 0.40 to 0.50) were significantly elevated after angioplasty (median 0.55 nmol/liter, 95% CI 0.46 to 0.72, p = 0.001). In contrast, plasma fibrinopeptide A levels measured proximal to the lesion before angioplasty (median 2.0 ng/ml, 95% CI 1.3 to 22) were similar to those measured after angioplasty (median 1.8 ng/ml, 95% CI 1.3 to 3.0, p = NS). After we defined a normal range of interassay variability on the basis of values obtained from samples drawn proximal and distal to the lesion before angioplasty, seven patients (27%) had a significant increase in F1+2plasma levels. A significant increase in plasma fibrinopeptide A occurred in five of these seven patients. Lesions with dissection, filling defects or haziness on postangioplasty angiography were associated with more thrombin generation than lesions without these features.Conclusions. Markers of thrombio generation and activity can be collected safely and assayed accurately in heparinized blood withdrawn through aa angioplasty catheter. Balloon dilation of coronary stenoses increases thrombin generation and activity within the coronary artery in a substantial subgroup of patients undergoing angioplasty

    Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.

    Get PDF
    BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).Supported by a career development award from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) (K08HL114642 to Dr. Stitziel) and by the Foundation for Barnes–Jewish Hospital. Dr. Peloso is supported by the National Heart, Lung, and Blood Institute of the NIH (award number K01HL125751). Dr. Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital, the Donovan Family Foundation, grants from the NIH (R01HL107816 and R01HL127564), a grant from Fondation Leducq, and an investigator-initiated grant from Merck. Dr. Merlini was supported by a grant from the Italian Ministry of Health (RFPS-2007-3-644382). Drs. Ardissino and Marziliano were supported by Regione Emilia Romagna Area 1 Grants. Drs. Farrall and Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z), the British Heart Foundation (BHF) Centre of Research Excellence. Dr. Schick is supported in part by a grant from the National Cancer Institute (R25CA094880). Dr. Goel acknowledges EU FP7 & Wellcome Trust Institutional strategic support fund. Dr. Deloukas’s work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research (NIHR). Drs. Webb and Samani are funded by the British Heart Foundation, and Dr. Samani is an NIHR Senior Investigator. Dr. Masca was supported by the NIHR Leicester Cardiovascular Biomedical Research Unit (BRU), and this work forms part of the portfolio of research supported by the BRU. Dr. Won was supported by a postdoctoral award from the American Heart Association (15POST23280019). Dr. McCarthy is a Wellcome Trust Senior Investigator (098381) and an NIHR Senior Investigator. Dr. Danesh is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. Drs. Erdmann, Webb, Samani, and Schunkert are supported by the FP7 European Union project CVgenes@ target (261123) and the Fondation Leducq (CADgenomics, 12CVD02). Drs. Erdmann and Schunkert are also supported by the German Federal Ministry of Education and Research e:Med program (e:AtheroSysMed and sysINFLAME), and Deutsche Forschungsgemeinschaft cluster of excellence “Inflammation at Interfaces” and SFB 1123. Dr. Kessler received a DZHK Rotation Grant. The analysis was funded, in part, by a Programme Grant from the BHF (RG/14/5/30893 to Dr. Deloukas). Additional funding is listed in the Supplementary Appendix.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa150765

    Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease.

    Get PDF
    IMPORTANCE: The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL) lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. OBJECTIVE: To determine whether rare and/or common variants in LPL are associated with early-onset coronary artery disease (CAD). DESIGN, SETTING, AND PARTICIPANTS: In a cross-sectional study, LPL was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305 699 individuals of the Global Lipids Genetics Consortium and up to 120 600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. EXPOSURES: Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. MAIN OUTCOMES AND MEASURES: Circulating lipid levels and CAD. RESULTS: Among 46 891 individuals with LPL gene sequencing data available, the mean (SD) age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI, 0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32 646 control participants (0.32%) and 83 of 14 245 participants with early-onset CAD (0.58%). Compared with 46 703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 × 10-22) per 1-SD increase in triglycerides. CONCLUSIONS AND RELEVANCE: The presence of rare damaging mutations in LPL was significantly associated with higher triglyceride levels and presence of coronary artery disease. However, further research is needed to assess whether there are causal mechanisms by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease
    corecore